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Abstract

In this paper, we consider the attainability of a maximizing problem

Di= sw (¥ +alul}),

flell 1, n=1
H’Y

1

where N > 2, N <p<oo,a>0,0<vy<N and HUHH}{,N = (|lul|} + IVul|%) 7. The existence of a

maximizer for D is closely related to the exponent 7. In fact, we show that the value

1-— 7
o= Qy 1= inf (4HI§DHN>
llull 1, v =1 llullp
Y

is a threshold in terms of the attainability of D.
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1 Introduction and main results

The following standard Sobolev inequality is well-known:

1Lp(mN
[ullf < SUVullp +[lully), weHPRY), (1.1)
where N > 2, 1 <p< N,p<q<p*:= NN—_’; and S is a constant which depends only on N and p. We

can consider the associated variational problem, namely, the attainability of the value

S = sup [Jul® (1.2)
u€HLP(RN), ||Vullp+lullp=1

and now the existence of a maximizer associated with S is a standard fact.

In the case where p = N, the situation is changed. For bounded domains, Trudinger introduced
the so-called Trudinger inequality in [17] (see also [15, 19]) and later Moser found its best-constant in



[9]. For unbounded domain case, (1.1) holds for every ¢ € [p,00) and the limiting inequality is the
1

following Trudinger-Moser type one. Let Sy := Nw ]]VV:ll, where wpy_; denotes the surface area of the

(N — 1)-dimensional unit sphere. Then the following generalization of the Trudinger-Moser inequality to
the whole space case is known:

dn g = sup [ oxaw <o, se .5 (1.3)
WEHLN ®N), [Vull+lull y=1 /RN

N ; ,
where @ 5(t) := e MY T — Z;.V:_(f %|t|%], see Cao [2], Ruf [16]. For another generalization, see e.g.

[1, 6, 10, 11, 12, 13, 14] and references therein.

For bounded domains, the attainability of the supremum is discussed e.g. in [3, 4, 8]. As for the
attainability of the supremum dy g in unbounded domains, the first author proved the following fact [5].

Proposition 1.1.

(a) Let N > 3. Then dn g is attained for any 8 € (0, Bn).

(b) Let N =2. Then dn g is attained for 5 € (3%7477] and never attained for sufficiently small B, where
. flull

Bz = SWPuepr (v2)\{0} Toullful

Also for the case (a), the attainability of dy g, is proved by Li-Ruf [7].

Proposition 1.1 is rather strange since, different from the usual Sobolev case (1.2), the situation for
the attainability of dy g heavily depends on the dimension. Moreover, in the two dimensional case, dy g
is attained if 8 is nearly critical and never attained if § is sufficiently subcritical, which is against, in
a sense, with the natural expectation for the existence and nonexistence of maximizers. The method
of the proof for Proposition 1.1 relies on the careful analysis using the concentration-compactness type
argument together with the behavior of the functional

N, B o2
I ) = Jally + S %, a4)
N—-1

which corresponds to the first two terms of the original functional [,y ®n 5(u).

Just after the publication of the paper [5], the second author pointed out that, even in the higher
dimensional case, the attainability of dx g heavily depends on the value 3 if one replaces the normalizing
condition ||[Vu|¥ + |lul|¥ = 1 by ||[Vu|y + |lully = 1. This result suggests that the attainability of
the supremum value depends delicately on the choice of normalizing conditions even if conditions are
equivalent.

In this paper, we consider the following model problem to clarify the effect of the dimension, o and the
equivalent normalizing condition on the solvability of the associated maximizing problem. Throughout
this paper, we assume N > 2, N < p < oo and 0 < v < N. We consider the attainability of D defined by

D=D(N,p,v,a):=  sup  ([lully +alul}),
ue HLN ®RN),

lfull 1, N =1
Hy

where o« > 0 and |Jul| 1.y = (fJul|} + ||Vu||7v)% When we are mainly concerned with the relationship
Y
between o and D, sometimes we denote D by D,. We need

. 1 — Jull ¥
N G
lull 1, =1
1



It is easy to see
a > a, is equivalent to D, > 1. (1.5)

Also let

By — 01

Vel el ¥
for any v € HVN(RY)\ {0} and

[oll5

B:= el NN
HAN @)} [Vl vl

The critical Gagliardo-Nirenberg-Sobolev inequality implies that B < co. Moreover, it is somewhat well-
known that for any N > 2, B is attained. This fact is proved by Weinstein [18] for N = 2 and we give
a proof for the case N > 3 in the appendix A for the sake of the completeness. Here and henceforth, a
maximizer associated with B which is normalized in || - || HiN s denoted by V (see Proposition A.1 for

the existence).

Let us recall our assumption N > 2, N < p < oo and 0 < v < N. Our main results are the following;:

Theorem 1.2.
Letv>p— N. Then o, =0 and D is attained for any o > 0.

Theorem 1.3.
Let v =p— N. Then a, = % and D is attained for any o > % while never attained for

N
XS BN -

Theorem 1.4.

Let v < p— N. Then D is attained for any o > «, and never attained for a < a,.. Moreover,
s = a.(y) satisfies the following:

5 (=) <[ 5 Gmas) T 0w
lim o, () = oo, (L.7)
dm0n0) = 50 (18)

By putting v = N, we have an immediate corollary of Theorem 1.2 to Theorem 1.4.

Corollary 1.5.

(a) Let 2N > p. Then D is attained for all o > 0.

(b) Let 2N = p. Then D is attained for o > & and not attained for o < 3.

(c) Let 2N < p. Then D is attained for o > o, = o (N) and not attained for a < o.

As is mentioned above, the attainability of the supremum value dy g associated with the Trudinger-

Moser type inequality defined by (1.3) is closely related with the behavior of the functional Jy g given
n (1.4). If N > 3, then the balance between the first and the second term of Jy g satisfies 2N > NN—_Zl,
thus Corollary 1.5 yields the existence of the maximizer for Jy g for any 8 > 0. On the other hand,

since 2N = NN—jl holds for IV = 2, thus Jy, g possesses a maximizer for 3 > % and does not possess any



maximizer for § < %. These results suggest the close relationship between Proposition 1.1 and Corollary
1.5.

This paper is organized as follows. Section 2 is devoted to preliminary facts for proofs of Theorem
1.2-Theorem 1.4. We show Theorem 1.2, Theorem 1.3 and Theorem 1.4 in Section 3, 4 and 5, respectively.
In the appendix, we prove some auxiliary facts used throughout the paper.

Throughout the paper, ||-||,,o denotes the standard L?(Q2)-norm. We occasionally use the abbreviation
| |lp- We write Bg and B as the ball in RY with radius R centered at the origin and its complement,
respectively. wy_1 denotes the surface area of the (N — 1)-dimensional unit sphere in RY. We pass to
subsequences freely.

2 Preliminaries

The proofs of Theorem 1.2-Theorem 1.4 are based on the fundamental existence theorem together
with the careful estimates of D in terms of suitable family of comparison functions. We introduce these
facts in this section. Let I, (u) := [u|¥ + allul?.

2.1 Existence and nonexistence

The following proposition is a key fact for the proof of Theorem 1.2 to Theorem 1.4.

Proposition 2.1.
Let v < N and o > «,, where

iy
ay = a(N,]% 7) T ueHll.rIl\ff(mN), <||1ng '
el 1, N =1
5

Then D is attained.

In the rest of this subsection, we are devoted to the proof of Proposition 2.1.

Let (un)nen C HYN (RY) be a sequence satisfying |[un || ;1.8 = 1 and u, — u weakly in HMV(R”) as
ol
n — co. Let us introduce values defined by

vy = Izlgnw7llgrgo(IlunII%,BR+OKIIUn||§7BR)a

voo = Jim i (Juall¥. g+l ).

7o = I%EHOOJHECHUHH%BR’ Noo i= I%ijnmnlirlgo“un‘|%,3§7

po = lim Tm [[Vun|l§ gy phoo = lim lim [V |3 g

by taking subsequences if necessary. For R > 0, take hr € C*°([0,c0)) satisfying

hr(r)=1 for 0 <r <R,
0<hg(r)<1l for R<r<R+1,
hr(r)=0 for r > R+1,

|Pp(r)] <2 for r>0.



We define cut-off functions ¢% and ¢ by
$r(@) = hp(lz]) and ¢F(z) =1 - hg(lz]),
and let uy, p := un@p, where x =0 or oco.

Lemma 2.2. Let *x =0 or co. Then there hold

() v = Jim Tim ([, ¥+ ol g2) -

(i) e = Jim_Tim [lu;, 51N

(i) pre = Jim_Tim Vs, oIl

Proof. We first show (ii). By the definition of ¢%, we see

/ |un|Ndx§/ |u9L,R|Ndx§/ |un|Nd:r.
Br RN Br+1

Hence, taking lim lim , we obtain 1o = lim lim |ju) ;| ¥. Similarly, we have
R—o00 n—00 R—00 n—00
/ \un\Nde/ |u;’L°R|Ndac§/ |, | N da,
B, RN B,
and then passing to the limits lim lim yields o = lim lim ||u; R|| Since we can verify (i) in the
R— 00 n—00 R— 00 n—o0

same way as above, we omit its proof. Finally, we prove (iii). By the definition of ¢35, we have

/ |Vun\Ndx§/ |¢1°§|N|Vun|Ndx§/ V| N dz,
B RN B,

%#»1
and then
. . _ oo |N N
Rh_{n00 nh_)n;o - |V, |Ndr = Rhm nh_)rrgo x [oF |7 [Vun | de.

On the other hand, by the mean value theorem, we see
IVaEalN = [ 167 Vo + 0, VoxVdo = [ (07| Vu ¥ do + R,
RN RN
where
Ror = N/ |65 Vi, + 0un, Vo |V 2 (055 Vg + 0u, VO3 ) - u, Voss da
]RN

with some 0 < § < 1. From Holder’s inequality and ||Vo%¥ |lcc < 2, we obtain

Roal <N [ (105 V| + a0, V65D fu Vo

1

<V ([ Gorvul o) ae) T ([ everva)”

o0 N*l o0 —
<N ([Vunlln + 1VoF oo lltnlln)™ " IVOF oo ltnlln,ar,mr1) < 23V Nllualln, acr,mr1)

where A(R,R+1) :={z € RV |R < |z| < R+ 1}. Since ||un||n, a(r,r+1) = |UllN,A(r,R+1) 8 1 — 00 by
the compactness, we see that Rhm lim R, r =0. As a result, we have po, = hm lim ||Vu,° R||N In
—00 N—+00 —00 N—>00

a same way as above, we can show o = lim lim [|[Vu? R||N Thus Lemma 2. 2 is proved. O
R—00 n—00



Let (tn)neny € HYY(RY) be a sequence satisfying u,, — u weakly in HVN (RY) as n — co. We call
(un)nen a normalized vanishing sequence (NVS) if (uy,)nen satisfies ||un||H$N =1, u=0in HHN(RY)
and vg = 0. A (NVS) consisting of functions to be non-negative, radially symmetric and non-increasing
in the radial direction is called a radially symmetric normalized vanishing sequence (RNVS). Let us also
introduce a value dyv, called a normalized vanishing limit defined by

dNVL = dNVL(vav e a) = sup lim (”un”% + O‘HUHHS) .
(un)nen: (RNVS) M7

The following Lemma is a key for the proof of Proposition 2.1. In fact, we can calculate dyv, = 1 which
is a threshold so that the vanishing phenomenon for (u,),en occurs.

Lemma 2.3.
There holds dyvyy = 1.
Proof. Let (u,)neny be a (RNVS). We first claim that Rlim ILm lJwnlly e, = 0. To show this, we need
—oon o0 ’ 2

a decay estimate of u,. Indeed, since u,, is non-negative, radially symmetric and non-increasing in the
radial direction, by notating @, (|z|) := un(z), we see for any r > 0,

T

~ :
_ _ _ - WN-1 ~
1> |lun||N = wN,l/ tp(s)V sV 1ds > wN,lun(r)N/ sNlds = ~ T ()N el
0 0

1

and then @, (r) < (w]fjv_l )~ r~1. Hence, we obtain

o0

Junl g, = o1 [ eyt
) R

<wN1( N )N/Oor_p+N_1dr: WN-1 <N >NR_(p_N)7
WN-1 R p—N \wn-1

which implies lim lim |ju,||? g. = 0. Hence, it holds vo, = lim lim |lu,||3 ge. Then since vy = 0
R—o00 n—>00 P,BR R—00 n—00 PR

and ||u,||n <1, we have

nll)ngo (HunH% + a”“ﬂ”ﬁ) =Vt Voo = Voo = Rh_rgo nh_fgo ||un||%,Bf% <1,

which gives dyvyy < 1.

Next, we show the converse inequality. Take ¢ € HLY(RY) to be non-negative, radially symmetric
and non-increasing in the radial direction, and assume ¢ satisfies ||¢||ny = ||Vo|x = 1. By scaling, let
Yn(z) == L¢(Z) for n € N. Then we see |[¢n||v = |9y = 1 and ||V, | v = L, and then ¢, — o
weakly in Hlﬂ(RN) as n — oo for some 1 € HVN(RY). Tt turns out that ¢ = 0 in HYN (RY) since
IVY||n < lim ||Vi,||n = 0. Moreover, defining w, := W, we have [|w,|| ;1.8 =1 and

n—00 n H}fN Y

wy, = L SN 0 weakly in HYN(RY)

(1+ (1))

as n — 0o. From the compactness, we obtain for any R > 0,

Jm (1l o+ ol ) =0



and then it holds vy = 0. Thus (w,)nen is a (RNVS). Since [[1,||x = 1 and 1), — 0 weakly in HLN (RY)
as n — 0o, by the compactness again, we see for any R > 0,

n—r oo

= lim [t |V da + lim/ [ |V da = lim/ 1 |N d,
Br n— 0o B, n— o0 B,
and then

1= lim lim || N d.
R—00 n—00 B,

On the other hand, we have

To sum-up, we see

[¥nlIN, e

. N o o . . N T . s o

A (el +ofunlp) = vo tvee = veo 2 Jim M onllysg = i, Mo o = =1
which gives dyyy > 1. Thus Lemma 2.3 is proved. O

In what follows, let (u,)nen € HYYN(RY) be a maximizing sequence for D, and assume v < N and
a > a,. Note that o > «, is equivalent to D > 1. Moreover, by virtue of the radially symmetric
rearrangement, we can assume that (u,)nen are non-negative, radially symmetric and non-increasing in
the radial direction.

Lemma 2.4. There hold
(i) D =vy+ Vo,
(i) 1= (o + 1100 ¥ + (p0 + poc) -
Proof. (i) For any R > 0, we see
lunl¥ + allunlls = (lunll 5 + allunl?, s, ) + (Inll, o5, + allunl? o)
and then taking lim lim yields D = 1y + voo.

R—0c0 n—o0

(i) Since ||ty ;1.8 = 1, we see
v

1= / |un|Nda:+/ |t | N da
Br Bg

R

Z]2
2z}

+ / |Vun|Nd:c+/ |Vu,|Nde |,
Br BS,

and then passing to the limits lim lim yields
R—o0 n—o0

2k

1= (770 + noo)% + (MO + Moo)

Lemma 2.5. It holds

a2 2 a2 2
(ng” + g o) = (1, D) and (n& + p&,veo) = (0,0).



Proof. First we show 73" + 11" = 0 or = 1. We argue by the contradiction. Assume on the contrary, we
have

2 2
0<ng +py <1
Now we show, under (2.1)

(2.1)

0<no%o +uo%o<1 (2.2)
holds. Indeed, if n& + pu&d = 0, then we have 7,0 = oo =0 and 1 = 770% + Mo in view of (ii) of Lemma
X2 X2
2.4, which contradicts (2.1). On the other hand, if n& + ud = 1, then again together with (ii) of Lemma
2.4,

¥ a %
L= (10 + 1o0) ™ + (Ho + poo) ¥ 2 0 + 1t
o = 0, which implies

e

1

)

thus we obtain ny =

2 2
no +he =0,
a contradiction to (2.1).

By the definition of D, we see

D> [, RIIN [u, 15
=l RHHl N ||UZ,R||Z;I$,N
1 * N * p
H || Hun,RHN +a||un,RH
n,RI 1y

e l[un, Il ) » (2.3)
Up, R Hl N

and then taking hm lim yields

—00 N—>00

N
DY +ul)>

1
> Vit (wwpw - 1) (s = m4), (2.4)
(M + )

where we have used Lemma 2.2. Then since v, > 7, to be seen by the definition of v, and 7., and
a 2
0 <nd + ud <1, we obtain

2|z

DinF 1
(" + pd)

> Vs (2.5)
Moreover, using (2.5), 3 < 1 and Lemma 2.4, we have
o2 % TN N
D =D ((n+m)¥ + (o + 1) %) " = D (0 + 1) % + X +43)%) 20 +vee =D, (26)
X 20N
which implies D(nd + ud )7 = v,.

Then since 0 < 7 + pf¥ < 1, from (2.4), we obtain v, < 7,, and then D = vy + Voo < o + Moo < 1

X2 X2

This is a contradiction to D > 1. As a result, it holds either 73" + " =0or 1
Now we assume

=
OZP
+
=
OZP
I
o



and derive a contradiction. Under (2.7), we see
1= (00 4+ 0o0) ™ + (4o + froo) ¥ = 1% + p&.

a2 a2
Moreover, since n¥ + Y =0, we have ———— — 1 > 1 for large R > 0 and n € N. For such R and
770 /J’O Huo RHP R 2 g
norllyr,

n, it follows from (2.3) that
e!
Dl gl > g gl + adlug, I} + 5 llup zl15-

Passing to the limits lim lim to this relation, we obtain
R— 00 n—00

1
> v+ 5(1/0 — o) = vo,

2=z

D(ng” + o)
which implies vy = 0 since 770% + /‘0% = 0. Then we see D = vy + Voo = Voo and (up)nen is a (RNVS)
since vy = 0. Hence, from Lemma 2.3, we obtain

D= lim (Junlly +allunllf) < dwve =1,

which is a contradiction to D > 1.
Thus it holds
a 2

Ny +Huy =1 (2:8)
First we show

nE +u% =0 (2.9)
irrelevant to - <1 or > 1. Indeed, if - <1, then we have
N

TN
5

e 2N e
> (g +ug’ )7 + (X + p&)

* % N ks
which implies (2.9). If 3 > 1, then we have

* * * ot % ot

2

1= ("70 + 7700)% + (MO + ,Uoo)
again (2.9).

Then we see —1> 1 for large R > 0 and n € N. For such R and n, by (2.3), we have

o ||P—N
Hu"‘RHH}Y’N

a
DHU;.L?R”ZLN > HU?RH% +allup gD + = llun g llb-
¥ 2

Taking lim lim to this relation yields
R—00 n—00

(Voo - 7700) Z Voo,

which implies v,, = 0 since r]o%o + ,uo%o = 0. Then we obtain D = vy + vse = vy. Thus Lemma 2.5 is
proved. O



We are now in the position to complete the proof of Proposition 2.1.

Proof of Proposition 2.1. We claim that D = [Ju[|¥ + aul2. To show this, we need to prove
lim |jun || % = |lul|¥. Indeed, for any R > 0, we have
n—00
[l =) <[ [l = )]+ [ i [ s
RN Br B, B,
=:(A)+ (B) + (O).

It is obvious that H}im (C) = 0. Moreover, we have lim (A) = 0 since the embedding H" (Bg) <
—00

n—oo

LN (Bg) is compact. Finally, we obtain Rlim lim (B) = e = 0 by Lemma 2.5. Thus lim |u,||¥ =
—00 N—00 n—00

lul|¥ is obtained. Then we see
D — ([ull§ + allullp) = llunll ¥ + allunlll = (Julli + allul) + o(1)
= Jlunlly = lull ¥ + allunllf — llullp) + o(1) = o(1),

where we have used the compactness of {u € HLN (RY) | u is radial} < LP(RY) with p > N. As a result,
we obtain D = [[u|§ 4 /|ul5. Thus it remains to prove ||ul| ;1.5 = 1, which implies that v is a maximizer
y

for D. Since 0 < ||'LLHH;,N < nl;rr;o ||un||H%,N =1, we see

- e} - - _
HUHH;N HUHZ}YN ||U||ZI)_I}{N HUII%N ||UHI;I§%
1 1
HYN HYN
which gives |ul| ;1.5 > 1, and then it holds |Ju|| 1.~ = 1. Thus Proposition 2.1 is proved. O
il il

We end with the following assertion which claims a converse of Proposition 2.1.

Proposition 2.6.
D is not achieved if o < auy.

1— ¥ 1—[lull¥
weHLN (RN, [l foas

ull 1N =1
Hy

Proof. First note that

for all u € HYN (RY) with [ull 2.5 = 1, hence we have 1 > [ull N + allult for all w € HYN(RN) with

lul| j1.~ = 1. On the other hand, D > dyvr = 1 holds in view of Lemma 2.3. These facts show that no
v

admissible u achieves D. O

2.2 A family of comparison functions
Let u*(x) := Au(Az) for A > 0 and u € HYNV(RY). It is easy to see that
a5 = AN ullp, VeI = AV [ Vull . (2.10)
Now take any v € HV(RY) with ||’UHH‘1y,N =1and t € (0,1). We define a curve v; passing v in the

following way:

10



(1) First, for v and t above, let
v

Wt ‘= t%i
[ollv

(2.11)

It is easy to see that
lwel[ % =t € (0,1).

(2) Next, for L(\) == [|[Vwp [} + [wr| X = A7[[Vwe || % + [|wel| %, note that L(0) = [jw|[} =t < 1 and
L(X\) = oo as A 1 0o. Hence there exists A = A(t) satisfying L(A(t)) = 1, namely,
19w R+ Ol = 1.
Particularly, (2.10) and (2.11) yield

t t [Voll;
L= 1V IR+ wd @ IR = MeyeS T+,
N

which implies

-0\t ol
W’( ; ) Vol

(3) Finally, we put

ve(x) = () = AM)w(A\()x
1 1
(1—-t)~ )” HvllN
= x (2.12)
IIVUIIN < t IVl n
Then we see that
oy =t €(0,1), vl gz =1, (2.13)
N p=N [[v]5 N p=N
vellb =t5(1—t) 7 ————F—— =:t"(1—t) 7 B(v). (2.14)
' Vol llolly
Moreover, noting the fact that ||Vo||}, = 1 —t since t = |[v|},(€ (0,1)) and |[v|| 1.y = 1, we have, from

(2.12),

Consequently, v; is a curve in HYV (RY) passing v satisfying (2.13) and (2.14). We denote v; simply
by v if no confusion occurs. Moreover, we have

La(v) = lorlN + allvel2 = 7 + aB@)tT (1 - 1) = fa(t;v) (2.16)
and
L) = ;tT_l [1+aB( )1 —1) (1 - %t)}
— %t%*l L+ aB()h(t)], (2.17)
where




3 Proof of Theorem 1.2

Let v >p— N and a > 0. Take any v € H>Y (RY) with ||'UHH$,N = 1. Then from (2.17), we have

m _N N_ 1 p
fa(t,v)—;tv 1 1+O[B(U)m (1—Nt)‘|$—00

as t 1 1, thus obtain
D, > foc(t;v) > fa(1§v) =1 (3'1)

for ¢ sufficiently close to 1. This fact together with (1.5) yields o > a., hence a,. = 0 follows. Proposition
2.1 together with (3.1) leads the existence of a maximizer associated with D,. O

4 Proof of Theorem 1.3

Let vy=p— N and a > %. This assumption together with the definition of B implies that there
exists v such that

B(v) € (a(pj\_[N),B> C ol =1,

Then by (2.17), we find that

o = 2 [rrasw (1- 2] <o

Hence we obtain D, > f,(t;v) > fo(l;v) = 1 for ¢ sufficiently close to 1. This fact together with (1.5)
yields

o> O, (4.1)

hence

N

oy < ———— 4.2
B(p—N) (42
follows. Proposition 2.1 together with (4.1) leads the existence of the maximizer associated with D,,.

Next let a = %. We will derive a contradiction by assuming that D,, is attained by a function
vy with vg € HVN(RY) satisfying ||vg|| ;1.5 = 1. Then by noting the fact that ¢ — f.(t;v) takes its
vy
maximum at t = |lvg]|}, in view of (2.15), we get

fallvollX; vo) = 0. (4.3)
We next show that the function vy becomes a maximizer for B. To this end, we use the scaling

v (w) := Avg(Az) for A > 0. Note that U s a curve passing vg (for A = 1) and there holds

A
llvg ”H#N

d A
0=—1, )\Uio
ax" \ gl

since vy attains a supremum value D,,.

A=1

12



By the scali Al = A My = d IVudlly = MV d th
y the scaling, we see [[v3]], [vollps lvgllx = llvollx and [Vog||n = A[[Vuglln, and then we

have
; ( ) ) _ ol N Gl (1
a Py - N B -
Il ) (ool + AIVeol}) ™ ool + X[ Veol %)

Thus a direct computation yields

d

'UA _ _N_
e ( = 2 oIVl ol + XTI 9wol3) =

e
—N— _P
+alp — NN w2 (ol % + X[ Vwoll)
— — _P_
— apA NI a2 Tl (ol + X[ Vel )75

Hence, recalling |lvgl| ;1.5 = 1, we obtain
ol

A, (v
"\ Tl

< —Nllwo[ ¥ [IVvoll X + alp — N)llvolls = Nvol ¥ Vol & <1 +

= —NlJvo|[¥[Veolly + alp — N) w5 — apllvo 5] Vvoll %
A=1

a(p — N)llvoll? )
N Vuoll X llvoll ¥

Then this relation together with (4.4) and the definition of B implies

alp = Nllvolly _ alp = N)Bllwoll ¥ Vuolli ™ _

< < (4.5)
N[Vl §llvoll i N[Vvollyllvoll i
since y =p— N and a = B(p]\i - Thus the second equality in (4.5) shows that the value B is attained
by vg. Therefore, since o = B(pl\iN) and B = B(vg), we have, by (2.17),
N 2N — N p —N
ol = ol |1+ 2 (1= 2l ™)
pN 2N—p p—N
= ———lvo 1—||vg > 0,
S Il ol ™)
which contradicts (4.3). This fact together with (4.2) implies a,, = %, since otherwise Ds(pl\im is

achieved in view of Proposition 2.1. Therefore Proposition 2.6 yields the nonexistence of maximizers for
N
a < B(T—N) ]

5 Proof of Theorem 1.4

Let V be a Gagliardo-Nirenberg-Sobolev (GNS) maximizer with || V|| oy =1 (see Proposition A.1 for

the existence) and, for ¢ € [0, 1], let V; be a curve defined by (2.12) with v = V. The scale invariance of B(+)
yields B(V) = B(V;). We denote B(V') simply by B. Let fo (V) := maxc(o,1) fa(t; V) = maxic(o,1) Lo (VE),
where fo(t;V) is defined in (2.16).

We need more facts on the behavior of a function f,(¢; V) to prove Theorem 1.4. In appendix B, we
p—N -1

will prove that, for any o > g := % (p—ll\)f—v) " there exists a smallest solution t1,q of fL(5; V) =0,

namely,

p—N p
1+aB(1—t 1(1——15):0,
FaB(1-1)" ?

13



see (B.5). Moreover, fo(t; V') takes a local maximum at t1 4 (see (B.7)) and there holds

N N
tl,a S <7 +7> ’ (51)
p p

see (B.9).
Also we shall show in the appendix B that there exists ot > a such that
fa(t1,4;V) =1 holds for o = o4 (5.2)
(see Proposition B.2) and the following:

Lemma 5.1.
(a) It holds that fo(V) =1 if a < ay and fo(V) = fa(ti,a; V) > 1 if o > ay.
(b) There holds fo(t;V) <1 fort e [0,1) if a < as.

Proposition 5.2. There holds

pP—N _q p—N

BG=) e @ G e

We start with the following fact:

Lemma 5.3. For a >0, D, =1 is equivalent to fo(V) < 1.

Proof. It is easy to see that fo (V) = max,eo,1] fa(t; V) = maxsep1) Ia(Vi) < Do = 1if D, = 1. We
show the converse. Let

fa(V) < 1. (5.4)
Let u € HYY(RY) be a function satisfying ||u|| ;;1.v = 1 and let ¢, := [|u||},. Then since V is a maximizer
for the functional B(-), we obtain
N N p—N
In(u) = folty;u) =ts +aBu)ty (1 —1t,) 7

p—N

<t B (10" = faltirV) < fulV) <1

in view of (5.4), hence Dy = Sup,ep1.v®y) lull 1. =1 I,(u) < 1. On the other hand, D, > dyyp =1
el gz,
holds by Lemma 2.3, thus we obtain D, = 1. O

Proposition 5.4.

(a) There holds Do =1 and D, is not achieved if o < ot.

(b) There holds Do, =1 and Dy, is achieved by Vi, . if @ = oy
(c) There holds Do > 1 and D, is achieved if o > o.

Proof. (a) Let o < ay. Lemma 5.1 (a) yields fo(V) = max,ejo,1) fa(t;V) = 1, thus D, = 1 holds by
virtue of Lemma 5.3. For any w € HLY (RY) with HU}HH%,N =1, let t,, := ||w||}. Then we see that

Io(w) = faltw;w) <1

in view of Lemma 5.1 (b). Hence no w can achieve D, = 1.

14



(b) Let o = 3. Then by Lemma 5.1 (a), we have
falV) = 1. (5.5)

Now note that for any u with ||ul|;1.v =1 and ¢, := |lu||};, we see that
Y

La(w) = faltuiu) = ti +aB(u)ty (1—t.)"
p;N = foz(tuav) < fa(v)

This together with (5.5) yields I,(u) < 1, and thus D,, < 1. This fact together with (5.2) implies that
D, = 1. Moreover, (5.2) shows that D,, = 1 is achieved by Vit (see (2.12) for definition).

<ty +aB(V)ty (1—t,)

(c) Let & > 4. Then Lemma 5.1 (a) yields fo(V) > 1. This fact together with D, > f(V'), (1.5) and
Proposition 2.1 yield the conclusion. O

Now we clarify the relationship between critical numbers o4 and .

Proposition 5.5.
There holds at = au.
Proof. Let o < 4. By Proposition 5.4 (a), we have D, = 1. Hence for every u € HVN(RY) with

Hu||H1 ~ =1, there holds 1 > ||ul|} + a|ul|?, thus ! ”%L‘N > «. This fact together with the definition
p

Oy = 1Hf||u\| L= 1 H””HN yields o < .

Next let o > 4. Note that Proposition 5.4 (c) implies D, > 1, thus there exists u € H»V (RY) wit
u

1— N .. . . 1 N
HUHH%,N = 1 such that 1 < [Jul|§ +«/|ul|B, namely, “l’ﬁgN < a. This implies a, = mfIIuHH%,N 1 H””HN <

p
a, hence a4 > a, follows. O
We are now in the position to prove Theorem 1.4.

Proof of Theorem 1.4. The first assertion follows from Proposition 5.4 and Proposition 5.5. Proposi-
tion 5.2 and Proposition 5.5 yield (1.6). Also it is easy to see that (1.7) follows from the first inequality
of (1.6). Now we will prove (1.8).

In the following, we regard . as a function of v and denote it by a. (7). Proposition 5.2 yields

N P =l N
hmmfa* > lim — [ ——— = . 5.6
vtp—N ™ vtp—N By (p—N—7> B(p—N) (5:6)
First we note that
o = limsup a.(y) < co. (5.7)
ytp—N

Indeed, for any v € (3(p — N),p — N), we see

fa (;;V) = (;)N 1+aB (;) WN] > (;) o (1+ iaB). (5.8)

This allows us to give Dy > fa, (3:V) > 1 for ag := (2 »°N —1). Then since a > a,(7) is equivalent
to D, > 1 in view of (1.5), we have g > av(y) for all v € (2(p — N),p — N), and hence (5.7) follows.

¥
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Now we are in the position to give a proof of (1.8). It follows from (5.6) and (5.7) that for any
Yo T p — N, there exists & such that

n i= Ol — > —. 5.9
Let us denote the smallest solution of
— p
—14+a,B(1—t (1—4)
0 + a, B( ) N

by tn(:=t1,a, ) (see (B.5)). From this relation, we have

N 1
th=— 1+ —— . (5.10)
p oanB(1 —t,) 5t

by virtue of (5.1), we obtain

T N T

n — n _N

<%> (p - 1) <(L—t,) 5 TH< ).
p Tn

. -N_1
lim (1—t,)5 =1,

n—oo

Now by noting ¢,, < %

This relation yields

which together with (5.10) and (5.9) implies

=N 1+ L) o)
"= aB) "’

as n — 0o. Note that «,, satisfies

N .
1= fo (tn:V) =ta" (1 tanB(1-t,) mN)

(see (5.2)). Then by taking n — oo to this relation, we obtain & satisfies

R R I CE L]

Now we show the uniqueness of the solution « of (5.11). From (5.11), we have

1=<]Z>mp_N(1+O;)m(1+aB):; (J;[)Mp_Nf(x), (5.12)

where we put z = = and f(z) = (1+ x)P—LN (1+1). It is easy to see that f(z) takes a minimum
N

at g = _— and f (p ) = (&)~ prN' This implies that the minimum of the right—hand side of

(5.12) is 1. Hence (5.11) has a unique solution o = B%CO = ﬁ, and thus & = B(p 7y holds. These

arguments show that a,, +o(1) = & = ﬁ, which implies lim 4, n s (7) = B(p_N) This completes

the proof. O
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A Attainability of B

In this section, we give a proof of the following fact used throughout the paper. The proof is es-
sentially the same one as in Weinstein [18] (in [18], the case N = 2 is treated). Let N > 2 and

P
llvllp

B = supH1,N(RN)\{O} 7”V’UH?\;NH’UH% .

Proposition A.1.
There exists a mazimizer V associated with B satisfying ||V || y1.v =1 for any N > 2.
Y

Proof. For any w € HYM(RN), 1> 0 and A > 0, let w**(x) := pw(\z). Then there hold
N N AN N N A
lw* [y = SFllwlly,  [IVe™y = p7Vely,  Bw"?) = B(w). (A1)

Let (u,) be a maximizing sequence associated with B. Without loss of generality, we can assume

that u,, is a radially symmetric function. By choosing pu,, = m and \, := ””V“;JI’P’N and by letting
vy 1= ulnAn | we see that, from (A.1),
(vp) is a maximizing sequence associated with B and |Vu,||n = |lvn||n = 1. (A.2)

Then there exists v € HYY(RY) such that v, — v weakly in HYV(RY), especially,
[[v]l v <liminf [|o,||y =1, ||Vv||x < liminf [|[Vo, ||y =1 (A.3)
n—oo n—oo
in view of (A.2). Again (A.2) and the compact embedding Hrl,;éV(RN) < LP(RYN) yield

oI5
e ||p*N7|v I +o(1) = [vallf + o(1) = [[v]lg,
nilN nilN

thus v # 0. Then since

B _ [oll3

-N -N =
Vol M lolly IVl Tl

)

we obtain ||[Vo|% N ||v||¥ > 1 and finally
[Volly = [lvllv =1 (A4)

follows from (A.3). Hence we get v, — v strongly in HUN(RY) and v is a maximizer. Let V() :=

1
(3) v(-). Then (A.1) together with (A.4) implies that V is a maximizer associated with B satisfying

Vv =1. O

B Proof of Lemma 5.1 and Proposition 5.2

Throughout this section, we use notation in §2.2.
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B.1 The sign-changing condition for f/(t;v)
Recall that f/(¢;v) = 0 is equivalent to
1+ aB(w)h(t) =0, (B.1)

ya

where h(t) = (1—)"5 ' (1 = £t), see (2.17).

First we consider the condition for o under which (B.1) has a solution ¢. By noting

WO === 2 (V) =

and

N+~
p

to =

€(0,1)

we have, under v < p — N, h(t) is strictly decreasing for t € (0,%¢), takes global minimum at ¢t = ¢, and
is strictly increasing for t € (¢o,1). Particularly, since

,N_l

D
. vy (p—N-—7)\ "
h(t) = h(ty) = —— [ ——L
tﬁﬁ() (to) N< » ) :

the condition for the existence of the solution for (B.1), aB(v)h(to) < —1, is given by

N ol
p vy
a > =: ag(v). (B.2
B@M(p—N—v) ) )
From now on, we assume the condition (B.2). As is stated above, aB(v)h(t) = —1 has a unique
solution t =ty = % if o = ap(v) and exactly two solutions ¢ (v), t2,(v) satisfying
0 <t1,a(v) <ty <taa(v) <l (B.3)
it o > ap(v).
p—=N
First assume that o = ag(v) = % (ﬁ) " . Then we know that f’(t;v) = 0 has a unique

solution ¢t = % and fq(t;v) is strictly increasing for ¢ € (0,1) with ¢ # %. Particularly, we obtain
fa(t;v) < fa(l;v) =1 for all ¢ € (0,1). (B.4)

Next we assume « > ag(v). Then the above analysis shows that f/ (¢;v) = 0, namely,

1+ammu—ﬂff4(yf%0:0 (B.5)

possesses exactly two solutions t1 ,(v) and ts o (v) satisfying 0 < t1 o(v) < to < t2,4(v) < 1. Moreover,

fa(t;v) is

strictly increasing for ¢ € (0,1 o(v)), strictly decreasing for ¢ € (£1,4(v), t2,o(v))

and strictly increasing for ¢ € (¢2,4(v), 1). (B.6)

Particularly, we obtain that

fa(t;v) takes local maximum at t = t1 4 (v). (B.7)

18



Since t1 o(v) satisfies f/,(t1,o(v);v) =0, i.e.,

—1=aB()(1 - tl,oz(“))p;N_l (1 - %tl’“(m ’

we have t1 o(v) > % € (0,1) and, since t1,4(v) < to = % € (0,1) by (B.3), we have

t1a(v) € (JZ N;7> c (0,1).

This relation yields

N p—N
P

D, > max fo(t;v) > falti,a(v);v) = tLa(v)% + aB(v)t1 (V)7 (1 —t1,4(v))

te0,1]
N\ N =
Y j— — ad
> <) 1+ozB(v)<M> ]
p p
Lemma B.1.

There holds a%tl,a(v) <0 for a > ap(v).

Proof. By (B.8), we see that ¢ ,(v) satisfies

0=1+aB()(1—t1q(v)F (1 - %tl,a(v)) .

By using the implicit function theorem and by differentiating both sides by «, we obtain

Ot1,a(v) p— N

b

0 = B)(l -t )

which implies

Ot1o(v) N 1 P 1
o = poWall e (1= ¥he) ym

Now by noting t1 o(v) € (0,1) and (B.9), we see that the above relation yields W < 0.

Proposition B.2.
For any v € H"N(RN) with |[v]| j1.x = 1, there exists o (v) > ag(v) such that
il

fa(t1,a(v);v) < 1if ag(v) < a < a;(v), falt1,a(v);v) =11if o= a;(v),
fa(tia(v);v) > 1if o> ai(v).

Proof. Take any v € H"(R") with |Jv[|;1.~ = 1. First we show

a— fo(t1,o(v);v) is monotone increasing for a > agp(v).
Recalling that t1 o(v) is a solution of (B.5), we see

aB()(1 —t14(1))5 = m
N1«

This yields

_P—N tl,a(”)%-H

fa(tl,a(v);v) » tl,a(v) — %

)
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0= 00 (1= Bota(0)) - 25T (s ().

(B.11)



which implies

ifa(tLa(U);U) _ p— N tl,oz(/v)7

oo p (tl,a(U) _ %)

Then (B.9) and Lemma B.1 imply that 6%foé(tlya(v);v) > 0, hence a — fo(t1,4(v);v) is monotone
increasing for a > ag(v).

N O0t1,a(v) N+~+
3 ~ aa (tl,a(v) D .

Also since t — fo(t;v) is monotone increasing for ¢ < t1 o(v) and % < t1,o(v) in view of (B.6) and
(B.9) respectively, we obtain

N
Jultra0)0) 2 o (i) = g 15 + alluy - oc

as a 1 oco. Also we see that fo(t1,(v);v) < 1 for any « close to ag(v) in view of (B.4). To sum-up the
above facts, we have the desired conclusion. O

For v € HMN(RY) with H’U”H}{‘N =1, let

fa(v) == max fq(t;v).

t€0,1]

Proof of Lemma 5.1. (a) The relation (B.6) yields

fo(v) = max(fa(1;0), fo(tr,a(v);v)) = max(1, fo(t1,a(v);v))

and this together with Proposition B.2 yield the conclusion when «a > ag(v). Also for o < ag(v), since
fL(t;v) >0 for ¢ € (0,1), we obtain f,(v) = fo(1;v) = 1.

(b) First let ap(v) < o < a4(v). For t € [0,t2,4(v)], by (B.6), we have fo(t;v) < fa(t1,o(v);v). This
relation and the assumption a < ay(v) together with Proposition B.2 imply f,(¢;v) < 1fort € [0,t2 o(v)].
For t € [t2,4(v),1), (B.6) directly leads f,(t;v) < fo(l;v) = 1. Next when a < ap, we see

(8 0) >0 for t€(0,1) if a< ay,
’ >0 for t€(0,1)\ {to} if a=ay,

which implies fo(v) < fo(1;v) = 1. O

Proof of Proposition 5.2. Let us denote a4(V) and t14(V) by a4 and t1 4, respectively. The first
inequality in (5.3), namely,

p—N -1

w )
ag = = | ————— «
T By\p-N—~ f

is a part of the statement of Proposition B.2 with v = V.
Next we show the second inequality in (5.3), namely,

e |() 5 (=)
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Note that there holds

= ()= (2)
)

where the last equality in (B.12) is obtained from the definition of oy. Thus Lemma 5.1 (a) yields oy > ay.
This completes the proof. O

p—N
— N\

1+%B(p) ]
p

p—N

p—N—v)V

1+%B< =1, (B.12)
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