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Abstract

In this paper, we consider the attainability of a maximizing problem

D := sup
∥u∥

H
1,N
γ

=1

(
∥u∥NN + α∥u∥pp

)
,

where N ≥ 2, N < p < ∞, α > 0, 0 < γ ≤ N and ∥u∥
H

1,N
γ

= (∥u∥γN + ∥∇u∥γN )
1
γ . The existence of a

maximizer for D is closely related to the exponent γ. In fact, we show that the value

α = α∗ := inf
∥u∥

H
1,N
γ

=1

(
1− ∥u∥NN

∥u∥pp

)
is a threshold in terms of the attainability of D.

2010 Mathematics Subject Classification. 47J30; 46E35; 26D10.
Key words : attainability of maximizing problem, critical Sobolev space, Sobolev’s embedding theo-
rem, normalized vanishing sequence

1 Introduction and main results

The following standard Sobolev inequality is well-known:

∥u∥pq ≤ S(∥∇u∥pp + ∥u∥pp), u ∈ H1,p(RN ), (1.1)

where N ≥ 2, 1 ≤ p < N , p ≤ q ≤ p∗ := Np
N−p and S is a constant which depends only on N and p. We

can consider the associated variational problem, namely, the attainability of the value

S := sup
u∈H1,p(RN ), ∥∇u∥p

p+∥u∥p
p=1

∥u∥pq (1.2)

and now the existence of a maximizer associated with S is a standard fact.

In the case where p = N , the situation is changed. For bounded domains, Trudinger introduced
the so-called Trudinger inequality in [17] (see also [15, 19]) and later Moser found its best-constant in
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[9]. For unbounded domain case, (1.1) holds for every q ∈ [p,∞) and the limiting inequality is the

following Trudinger-Moser type one. Let βN := Nω
1

N−1

N−1, where ωN−1 denotes the surface area of the
(N − 1)-dimensional unit sphere. Then the following generalization of the Trudinger-Moser inequality to
the whole space case is known:

dN,β := sup
u∈H1,N (RN ), ∥∇u∥N

N+∥u∥N
N=1

∫
RN

ΦN,β(u) <∞, β ∈ (0, βN ], (1.3)

where ΦN,β(t) := eβ|t|
N

N−1 −
∑N−2
j=0

βj

j! |t|
N

N−1 j , see Cao [2], Ruf [16]. For another generalization, see e.g.

[1, 6, 10, 11, 12, 13, 14] and references therein.

For bounded domains, the attainability of the supremum is discussed e.g. in [3, 4, 8]. As for the
attainability of the supremum dN,β in unbounded domains, the first author proved the following fact [5].

Proposition 1.1.
(a) Let N ≥ 3. Then dN,β is attained for any β ∈ (0, βN ).
(b) Let N = 2. Then dN,β is attained for β ∈ ( 2

B2
, 4π] and never attained for sufficiently small β, where

B2 := supu∈H1(R2)\{0}
∥u∥4

4

∥∇u∥2
2∥u∥2

2
.

Also for the case (a), the attainability of dN,βN
is proved by Li-Ruf [7].

Proposition 1.1 is rather strange since, different from the usual Sobolev case (1.2), the situation for
the attainability of dN,β heavily depends on the dimension. Moreover, in the two dimensional case, dN,β
is attained if β is nearly critical and never attained if β is sufficiently subcritical, which is against, in
a sense, with the natural expectation for the existence and nonexistence of maximizers. The method
of the proof for Proposition 1.1 relies on the careful analysis using the concentration-compactness type
argument together with the behavior of the functional

JN,β(u) := ∥u∥NN +
β

N
∥u∥

N2

N−1

N2

N−1

, (1.4)

which corresponds to the first two terms of the original functional
∫
RN ΦN,β(u).

Just after the publication of the paper [5], the second author pointed out that, even in the higher
dimensional case, the attainability of dN,β heavily depends on the value β if one replaces the normalizing
condition ∥∇u∥NN + ∥u∥NN = 1 by ∥∇u∥N + ∥u∥N = 1. This result suggests that the attainability of
the supremum value depends delicately on the choice of normalizing conditions even if conditions are
equivalent.

In this paper, we consider the following model problem to clarify the effect of the dimension, α and the
equivalent normalizing condition on the solvability of the associated maximizing problem. Throughout
this paper, we assume N ≥ 2, N < p <∞ and 0 < γ ≤ N . We consider the attainability of D defined by

D = D(N, p, γ, α) := sup
u∈H1,N (RN ),
∥u∥

H
1,N
γ

=1

(
∥u∥NN + α∥u∥pp

)
,

where α > 0 and ∥u∥H1,N
γ

= (∥u∥γN + ∥∇u∥γN )
1
γ . When we are mainly concerned with the relationship

between α and D, sometimes we denote D by Dα. We need

α∗ = α∗(N, p, γ) := inf
u∈H1,N (RN ),
∥u∥

H
1,N
γ

=1

(
1− ∥u∥NN

∥u∥pp

)
.
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It is easy to see

α > α∗ is equivalent to Dα > 1. (1.5)

Also let

B(v) :=
∥v∥pp

∥∇v∥p−NN ∥v∥NN

for any v ∈ H1,N (RN ) \ {0} and

B := sup
H1,N (RN )\{0}

∥v∥pp
∥∇v∥p−NN ∥v∥NN

.

The critical Gagliardo-Nirenberg-Sobolev inequality implies that B <∞. Moreover, it is somewhat well-
known that for any N ≥ 2, B is attained. This fact is proved by Weinstein [18] for N = 2 and we give
a proof for the case N ≥ 3 in the appendix A for the sake of the completeness. Here and henceforth, a
maximizer associated with B which is normalized in ∥ · ∥H1,N

γ
is denoted by V (see Proposition A.1 for

the existence).

Let us recall our assumption N ≥ 2, N < p <∞ and 0 < γ ≤ N . Our main results are the following:

Theorem 1.2.
Let γ > p−N . Then α∗ = 0 and D is attained for any α > 0.

Theorem 1.3.
Let γ = p − N . Then α∗ = N

B(p−N) and D is attained for any α > N
B(p−N) while never attained for

α ≤ N
B(p−N) .

Theorem 1.4.
Let γ < p − N . Then D is attained for any α ≥ α∗ and never attained for α < α∗. Moreover,

α∗ = α∗(γ) satisfies the following:

N

Bγ

(
p

p−N − γ

) p−N
γ −1

< α∗(γ) <

[( p
N

)N
γ − 1

]
1

B

(
p

p−N − γ

) p−N
γ

, (1.6)

lim
γ↓0

α∗(γ) = ∞, (1.7)

lim
γ↑p−N

α∗(γ) =
N

B(p−N)
. (1.8)

By putting γ = N , we have an immediate corollary of Theorem 1.2 to Theorem 1.4.

Corollary 1.5.
(a) Let 2N > p. Then D is attained for all α > 0.
(b) Let 2N = p. Then D is attained for α > 1

B and not attained for α ≤ 1
B .

(c) Let 2N < p. Then D is attained for α ≥ α∗ = α∗(N) and not attained for α < α∗.

As is mentioned above, the attainability of the supremum value dN,β associated with the Trudinger-
Moser type inequality defined by (1.3) is closely related with the behavior of the functional JN,β given

in (1.4). If N ≥ 3, then the balance between the first and the second term of JN,β satisfies 2N > N2

N−1 ,
thus Corollary 1.5 yields the existence of the maximizer for JN,β for any β > 0. On the other hand,

since 2N = N2

N−1 holds for N = 2, thus JN,β possesses a maximizer for β > 2
B and does not possess any
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maximizer for β ≤ 2
B . These results suggest the close relationship between Proposition 1.1 and Corollary

1.5.

This paper is organized as follows. Section 2 is devoted to preliminary facts for proofs of Theorem
1.2–Theorem 1.4. We show Theorem 1.2, Theorem 1.3 and Theorem 1.4 in Section 3, 4 and 5, respectively.
In the appendix, we prove some auxiliary facts used throughout the paper.

Throughout the paper, ∥·∥p,Ω denotes the standard Lp(Ω)-norm. We occasionally use the abbreviation
∥ · ∥p. We write BR and BcR as the ball in RN with radius R centered at the origin and its complement,
respectively. ωN−1 denotes the surface area of the (N − 1)-dimensional unit sphere in RN . We pass to
subsequences freely.

2 Preliminaries

The proofs of Theorem 1.2–Theorem 1.4 are based on the fundamental existence theorem together
with the careful estimates of D in terms of suitable family of comparison functions. We introduce these
facts in this section. Let Iα(u) := ∥u∥NN + α∥u∥pp.

2.1 Existence and nonexistence

The following proposition is a key fact for the proof of Theorem 1.2 to Theorem 1.4.

Proposition 2.1.
Let γ ≤ N and α > α∗, where

α∗ = α(N, p, γ) := inf
u∈H1,N (RN ),
∥u∥

H
1,N
γ

=1

(
1− ∥u∥NN

∥u∥pp

)
.

Then D is attained.

In the rest of this subsection, we are devoted to the proof of Proposition 2.1.

Let (un)n∈N ⊂ H1,N (RN ) be a sequence satisfying ∥un∥H1,N
γ

= 1 and un ⇀ u weakly in H1,N (RN ) as

n→ ∞. Let us introduce values defined by

ν0 := lim
R→∞

lim
n→∞

(
∥un∥NN,BR

+ α∥un∥pp,BR

)
,

ν∞ := lim
R→∞

lim
n→∞

(
∥un∥NN,Bc

R
+ α∥un∥pp,Bc

R

)
,

η0 := lim
R→∞

lim
n→∞

∥un∥NN,BR
, η∞ := lim

R→∞
lim
n→∞

∥un∥NN,Bc
R
,

µ0 := lim
R→∞

lim
n→∞

∥∇un∥NN,BR
, µ∞ := lim

R→∞
lim
n→∞

∥∇un∥NN,Bc
R

by taking subsequences if necessary. For R > 0, take hR ∈ C∞([0,∞)) satisfying
hR(r) = 1 for 0 ≤ r ≤ R,

0 ≤ hR(r) ≤ 1 for R ≤ r ≤ R+ 1,

hR(r) = 0 for r ≥ R+ 1,

|h′R(r)| ≤ 2 for r ≥ 0.
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We define cut-off functions ϕ0R and ϕ∞R by

ϕ0R(x) := hR(|x|) and ϕ∞R (x) := 1− hR(|x|),

and let u∗n,R := unϕ
∗
R, where ∗ = 0 or ∞.

Lemma 2.2. Let ∗ = 0 or ∞. Then there hold

(i) ν∗ = lim
R→∞

lim
n→∞

(
∥u∗n,R∥NN + α∥u∗n,R∥pp

)
,

(ii) η∗ = lim
R→∞

lim
n→∞

∥u∗n,R∥NN ,

(iii) µ∗ = lim
R→∞

lim
n→∞

∥∇u∗n,R∥NN .

Proof. We first show (ii). By the definition of ϕ0R, we see∫
BR

|un|Ndx ≤
∫
RN

|u0n,R|Ndx ≤
∫
BR+1

|un|Ndx.

Hence, taking lim
R→∞

lim
n→∞

, we obtain η0 = lim
R→∞

lim
n→∞

∥u0n,R∥NN . Similarly, we have∫
Bc

R+1

|un|Ndx ≤
∫
RN

|u∞n,R|Ndx ≤
∫
Bc

R

|un|Ndx,

and then passing to the limits lim
R→∞

lim
n→∞

yields η∞ = lim
R→∞

lim
n→∞

∥u∞n,R∥NN . Since we can verify (i) in the

same way as above, we omit its proof. Finally, we prove (iii). By the definition of ϕ∞R , we have∫
Bc

R+1

|∇un|Ndx ≤
∫
RN

|ϕ∞R |N |∇un|Ndx ≤
∫
Bc

R

|∇un|Ndx,

and then

lim
R→∞

lim
n→∞

∫
Bc

R

|∇un|Ndx = lim
R→∞

lim
n→∞

∫
RN

|ϕ∞R |N |∇un|Ndx.

On the other hand, by the mean value theorem, we see

∥∇u∞n,R∥NN =

∫
RN

|ϕ∞R∇un + un∇ϕ∞R |Ndx =

∫
RN

|ϕ∞R |N |∇un|Ndx+Rn,R,

where

Rn,R := N

∫
RN

|ϕ∞R∇un + θun∇ϕ∞R |N−2(ϕ∞R∇un + θun∇ϕ∞R ) · un∇ϕ∞R dx

with some 0 < θ < 1. From Hölder’s inequality and ∥∇ϕ∞R ∥∞ ≤ 2, we obtain

|Rn,R| ≤ N

∫
RN

(|ϕ∞R∇un|+ |un∇ϕ∞R |)N−1 |un∇ϕ∞R |dx

≤ N

(∫
RN

(|ϕ∞R∇un|+ |un∇ϕ∞R |)N dx
)N−1

N
(∫

RN

|un∇ϕ∞R |Ndx
) 1

N

≤ N (∥∇un∥N + ∥∇ϕ∞R ∥∞∥un∥N )
N−1 ∥∇ϕ∞R ∥∞∥un∥N,A(R,R+1) ≤ 2 · 3N−1N∥un∥N,A(R,R+1),

where A(R,R+ 1) := {x ∈ RN |R < |x| < R+ 1}. Since ∥un∥N,A(R,R+1) → ∥u∥N,A(R,R+1) as n→ ∞ by

the compactness, we see that lim
R→∞

lim
n→∞

Rn,R = 0. As a result, we have µ∞ = lim
R→∞

lim
n→∞

∥∇u∞n,R∥NN . In

a same way as above, we can show µ0 = lim
R→∞

lim
n→∞

∥∇u0n,R∥NN . Thus Lemma 2.2 is proved.
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Let (un)n∈N ⊂ H1,N (RN ) be a sequence satisfying un ⇀ u weakly in H1,N (RN ) as n → ∞. We call
(un)n∈N a normalized vanishing sequence (NVS) if (un)n∈N satisfies ∥un∥H1,N

γ
= 1, u = 0 in H1,N (RN )

and ν0 = 0. A (NVS) consisting of functions to be non-negative, radially symmetric and non-increasing
in the radial direction is called a radially symmetric normalized vanishing sequence (RNVS). Let us also
introduce a value dNV L called a normalized vanishing limit defined by

dNV L = dNV L(N, p, γ, α) := sup
(un)n∈N : (RNV S)

lim
n→∞

(
∥un∥NN + α∥un∥pp

)
.

The following Lemma is a key for the proof of Proposition 2.1. In fact, we can calculate dNV L = 1 which
is a threshold so that the vanishing phenomenon for (un)n∈N occurs.

Lemma 2.3.
There holds dNV L = 1.

Proof. Let (un)n∈N be a (RNVS). We first claim that lim
R→∞

lim
n→∞

∥un∥pp,Bc
R
= 0. To show this, we need

a decay estimate of un. Indeed, since un is non-negative, radially symmetric and non-increasing in the
radial direction, by notating ũn(|x|) := un(x), we see for any r > 0,

1 ≥ ∥un∥NN = ωN−1

∫ ∞

0

ũn(s)
NsN−1ds ≥ ωN−1ũn(r)

N

∫ r

0

sN−1ds =
ωN−1

N
ũn(r)

NrN ,

and then ũn(r) ≤ ( N
ωN−1

)
1
N r−1. Hence, we obtain

∥un∥pp,Bc
R
= ωN−1

∫ ∞

R

ũn(r)
prN−1dr

≤ ωN−1

(
N

ωN−1

) p
N
∫ ∞

R

r−p+N−1dr =
ωN−1

p−N

(
N

ωN−1

) p
N

R−(p−N),

which implies lim
R→∞

lim
n→∞

∥un∥pp,Bc
R
= 0. Hence, it holds ν∞ = lim

R→∞
lim
n→∞

∥un∥NN,Bc
R
. Then since ν0 = 0

and ∥un∥N ≤ 1, we have

lim
n→∞

(
∥un∥NN + α∥un∥pp

)
= ν0 + ν∞ = ν∞ = lim

R→∞
lim
n→∞

∥un∥NN,Bc
R
≤ 1,

which gives dNV L ≤ 1.

Next, we show the converse inequality. Take ϕ ∈ H1,N (RN ) to be non-negative, radially symmetric
and non-increasing in the radial direction, and assume ϕ satisfies ∥ϕ∥N = ∥∇ϕ∥N = 1. By scaling, let
ψn(x) := 1

nϕ(
x
n ) for n ∈ N. Then we see ∥ψn∥N = ∥ϕ∥N = 1 and ∥∇ψn∥N = 1

n , and then ψn ⇀ ψ
weakly in H1,N (RN ) as n → ∞ for some ψ ∈ H1,N (RN ). It turns out that ψ = 0 in H1,N (RN ) since
∥∇ψ∥N ≤ lim

n→∞
∥∇ψn∥N = 0. Moreover, defining wn := ψn

∥ψn∥
H

1,N
γ

, we have ∥wn∥H1,N
γ

= 1 and

wn =
ψn(

1 +
(
1
n

)γ) 1
γ

⇀ 0 weakly in H1,N (RN )

as n→ ∞. From the compactness, we obtain for any R > 0,

lim
n→∞

(
∥wn∥NN,BR

+ α∥wn∥pp,BR

)
= 0,
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and then it holds ν0 = 0. Thus (wn)n∈N is a (RNVS). Since ∥ψn∥N = 1 and ψn ⇀ 0 weakly in H1,N (RN )
as n→ ∞, by the compactness again, we see for any R > 0,

1 = lim
n→∞

∫
BR

|ψn|Ndx+ lim
n→∞

∫
Bc

R

|ψn|Ndx = lim
n→∞

∫
Bc

R

|ψn|Ndx,

and then

1 = lim
R→∞

lim
n→∞

∫
Bc

R

|ψn|Ndx.

On the other hand, we have

lim
n→∞

∥ψn∥H1,N
γ

= lim
n→∞

(
1 +

(
1

n

)γ) 1
γ

= 1.

To sum-up, we see

lim
n→∞

(
∥wn∥NN + α∥wn∥pp

)
= ν0 + ν∞ = ν∞ ≥ lim

R→∞
lim
n→∞

∥wn∥NN,Bc
R
= lim
R→∞

lim
n→∞

∥ψn∥NN,Bc
R

∥ψn∥NH1,N
γ

= 1,

which gives dNV L ≥ 1. Thus Lemma 2.3 is proved.

In what follows, let (un)n∈N ⊂ H1,N (RN ) be a maximizing sequence for D, and assume γ ≤ N and
α > α∗. Note that α > α∗ is equivalent to D > 1. Moreover, by virtue of the radially symmetric
rearrangement, we can assume that (un)n∈N are non-negative, radially symmetric and non-increasing in
the radial direction.

Lemma 2.4. There hold

(i) D = ν0 + ν∞ ,

(ii) 1 = (η0 + η∞)
γ
N + (µ0 + µ∞)

γ
N .

Proof. (i) For any R > 0, we see

∥un∥NN + α∥un∥pp =
(
∥un∥NN,BR

+ α∥un∥pp,BR

)
+
(
∥un∥NN,Bc

R
+ α∥un∥pp,Bc

R

)
,

and then taking lim
R→∞

lim
n→∞

yields D = ν0 + ν∞.

(ii) Since ∥un∥H1,N
γ

= 1, we see

1 =

(∫
BR

|un|Ndx+

∫
Bc

R

|un|Ndx

) γ
N

+

(∫
BR

|∇un|Ndx+

∫
Bc

R

|∇un|Ndx

) γ
N

,

and then passing to the limits lim
R→∞

lim
n→∞

yields

1 = (η0 + η∞)
γ
N + (µ0 + µ∞)

γ
N .

Lemma 2.5. It holds

(η
γ
N
0 + µ

γ
N
0 , ν0) = (1, D) and (η

γ
N∞ + µ

γ
N∞ , ν∞) = (0, 0).
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Proof. First we show η
γ
N
0 +µ

γ
N
0 = 0 or = 1. We argue by the contradiction. Assume on the contrary, we

have

0 < η
γ
N
0 + µ

γ
N
0 < 1. (2.1)

Now we show, under (2.1),

0 < η
γ
N∞ + µ

γ
N∞ < 1 (2.2)

holds. Indeed, if η
γ
N∞ + µ

γ
N∞ = 0, then we have η∞ = µ∞ = 0 and 1 = η

γ
N
0 + µ

γ
N
0 in view of (ii) of Lemma

2.4, which contradicts (2.1). On the other hand, if η
γ
N∞ +µ

γ
N∞ = 1, then again together with (ii) of Lemma

2.4,

1 = (η0 + η∞)
γ
N + (µ0 + µ∞)

γ
N ≥ η

γ
N∞ + µ

γ
N∞ = 1,

thus we obtain η0 = µ0 = 0, which implies

η
γ
N
0 + µ

γ
N
0 = 0,

a contradiction to (2.1).

By the definition of D, we see

D ≥
∥u∗n,R∥NN

∥u∗n,R∥NH1,N
γ

+ α
∥u∗n,R∥pp

∥u∗n,R∥
p

H1,N
γ

=
1

∥u∗n,R∥NH1,N
γ

∥u∗n,R∥NN + α∥u∗n,R∥pp + α

 1

∥u∗n,R∥
p−N
H1,N

γ

− 1

 ∥u∗n,R∥pp

 , (2.3)

and then taking lim
R→∞

lim
n→∞

yields

D(η
γ
N
∗ + µ

γ
N
∗ )

N
γ ≥ ν∗ +

(
1

(η
γ
N
∗ + µ

γ
N
∗ )

p−N
γ

− 1

)
(ν∗ − η∗), (2.4)

where we have used Lemma 2.2. Then since ν∗ ≥ η∗ to be seen by the definition of ν∗ and η∗, and

0 < η
γ
N
∗ + µ

γ
N
∗ < 1, we obtain

D(η
γ
N
∗ + µ

γ
N
∗ )

N
γ ≥ ν∗. (2.5)

Moreover, using (2.5), γ
N ≤ 1 and Lemma 2.4, we have

D = D
(
(η0 + η∞)

γ
N + (µ0 + µ∞)

γ
N

)N
γ ≥ D

(
(η

γ
N
0 + µ

γ
N
0 )

N
γ + (η

γ
N∞ + µ

γ
N∞)

N
γ

)
≥ ν0 + ν∞ = D, (2.6)

which implies D(η
γ
N
∗ + µ

γ
N
∗ )

N
γ = ν∗.

Then since 0 < η
γ
N
∗ + µ

γ
N
∗ < 1, from (2.4), we obtain ν∗ ≤ η∗, and then D = ν0 + ν∞ ≤ η0 + η∞ ≤ 1.

This is a contradiction to D > 1. As a result, it holds either η
γ
N
0 + µ

γ
N
0 = 0 or 1.

Now we assume

η
γ
N
0 + µ

γ
N
0 = 0 (2.7)
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and derive a contradiction. Under (2.7), we see

1 = (η0 + η∞)
γ
N + (µ0 + µ∞)

γ
N = η

γ
N∞ + µ

γ
N∞ .

Moreover, since η
γ
N
0 + µ

γ
N
0 = 0, we have 1

∥u0
n,R∥p−N

H
1,N
γ

− 1 > 1
2 for large R > 0 and n ∈ N. For such R and

n, it follows from (2.3) that

D∥u0n,R∥NH1,N
γ

≥ ∥u0n,R∥NN + α∥u0n,R∥pp +
α

2
∥u0n,R∥pp.

Passing to the limits lim
R→∞

lim
n→∞

to this relation, we obtain

D(η
γ
N
0 + µ

γ
N
0 )

N
γ ≥ ν0 +

1

2
(ν0 − η0) ≥ ν0,

which implies ν0 = 0 since η
γ
N
0 + µ

γ
N
0 = 0. Then we see D = ν0 + ν∞ = ν∞ and (un)n∈N is a (RNVS)

since ν0 = 0. Hence, from Lemma 2.3, we obtain

D = lim
n→∞

(
∥un∥NN + α∥un∥pp

)
≤ dNV L = 1,

which is a contradiction to D > 1.

Thus it holds

η
γ
N
0 + µ

γ
N
0 = 1. (2.8)

First we show

η
γ
N∞ + µ

γ
N∞ = 0 (2.9)

irrelevant to γ
N ≤ 1 or > 1. Indeed, if γ

N ≤ 1, then we have

1 =
(
(η0 + η∞)

γ
N + (µ0 + µ∞)

γ
N

)N
γ ≥ (η

γ
N
0 + µ

γ
N
0 )

N
γ + (η

γ
N∞ + µ

γ
N∞)

N
γ = 1 + (η

γ
N∞ + µ

γ
N∞)

N
γ ,

which implies (2.9). If γ
N > 1, then we have

1 = (η0 + η∞)
γ
N + (µ0 + µ∞)

γ
N ≥ η

γ
N
0 + η

γ
N∞ + µ

γ
N
0 + µ

γ
N∞ = 1 + η

γ
N∞ + µ

γ
N∞ ,

again (2.9).

Then we see 1

∥u∞
n,R∥p−N

H
1,N
γ

− 1 > 1
2 for large R > 0 and n ∈ N. For such R and n, by (2.3), we have

D∥u∞n,R∥NH1,N
γ

≥ ∥u∞n,R∥NN + α∥u∞n,R∥pp +
α

2
∥u∞n,R∥pp.

Taking lim
R→∞

lim
n→∞

to this relation yields

D(η
γ
N∞ + µ

γ
N∞)

N
γ ≥ ν∞ +

1

2
(ν∞ − η∞) ≥ ν∞,

which implies ν∞ = 0 since η
γ
N∞ + µ

γ
N∞ = 0. Then we obtain D = ν0 + ν∞ = ν0. Thus Lemma 2.5 is

proved.
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We are now in the position to complete the proof of Proposition 2.1.

Proof of Proposition 2.1. We claim that D = ∥u∥NN + α∥u∥pp. To show this, we need to prove

lim
n→∞

∥un∥NN = ∥u∥NN . Indeed, for any R > 0, we have∣∣∣∣∫
RN

(
|un|N − |u|N

)
dx

∣∣∣∣ ≤ ∣∣∣∣∫
BR

(
|un|N − |u|N

)
dx

∣∣∣∣+ ∫
Bc

R

|un|Ndx+

∫
Bc

R

|u|Ndx

=: (A) + (B) + (C).

It is obvious that lim
R→∞

(C) = 0. Moreover, we have lim
n→∞

(A) = 0 since the embedding H1,N (BR) ↪→

LN (BR) is compact. Finally, we obtain lim
R→∞

lim
n→∞

(B) = η∞ = 0 by Lemma 2.5. Thus lim
n→∞

∥un∥NN =

∥u∥NN is obtained. Then we see

D − (∥u∥NN + α∥u∥pp) = ∥un∥NN + α∥un∥pp − (∥u∥NN + α∥u∥pp) + o(1)

= ∥un∥NN − ∥u∥NN + α(∥un∥pp − ∥u∥pp) + o(1) = o(1),

where we have used the compactness of {u ∈ H1,N (RN ) |u is radial} ↪→ Lp(RN ) with p > N . As a result,
we obtain D = ∥u∥NN+α∥u∥pp. Thus it remains to prove ∥u∥H1,N

γ
= 1, which implies that u is a maximizer

for D. Since 0 < ∥u∥H1,N
γ

≤ lim
n→∞

∥un∥H1,N
γ

= 1, we see

D ≥ Iα

(
u

∥u∥H1,N
γ

)
=

∥u∥NN
∥u∥N

H1,N
γ

+ α
∥u∥pp

∥u∥p
H1,N

γ

=
1

∥u∥N
H1,N

γ

∥u∥NN + α
∥u∥pp

∥u∥p−N
H1,N

γ


≥ 1

∥u∥N
H1,N

γ

(
∥u∥NN + α∥u∥pp

)
=

1

∥u∥N
H1,N

γ

D,

which gives ∥u∥H1,N
γ

≥ 1, and then it holds ∥u∥H1,N
γ

= 1. Thus Proposition 2.1 is proved.

We end with the following assertion which claims a converse of Proposition 2.1.

Proposition 2.6.
D is not achieved if α < α∗.

Proof. First note that

α < α∗ = inf
u∈H1,N (RN ),
∥u∥

H
1,N
γ

=1

(
1− ∥u∥NN

∥u∥pp

)
≤
(
1− ∥u∥NN

∥u∥pp

)

for all u ∈ H1,N (RN ) with ∥u∥H1,N
γ

= 1, hence we have 1 > ∥u∥NN + α∥u∥pp for all u ∈ H1,N (RN ) with

∥u∥H1,N
γ

= 1. On the other hand, D ≥ dNV L = 1 holds in view of Lemma 2.3. These facts show that no

admissible u achieves D.

2.2 A family of comparison functions

Let uλ(x) := λu(λx) for λ > 0 and u ∈ H1,N (RN ). It is easy to see that

∥uλ∥pp = λp−N∥u∥pp, ∥∇uλ∥NN = λN∥∇u∥NN . (2.10)

Now take any v ∈ H1,N (RN ) with ∥v∥H1,N
γ

= 1 and t ∈ (0, 1). We define a curve vt passing v in the

following way:
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(1) First, for v and t above, let

wt := t
1
γ

v

∥v∥N
. (2.11)

It is easy to see that

∥wt∥γN = t ∈ (0, 1).

(2) Next, for L(λ) := ∥∇wλt ∥
γ
N + ∥wλt ∥

γ
N = λγ∥∇wt∥γN + ∥wt∥γN , note that L(0) = ∥wt∥γN = t < 1 and

L(λ) → ∞ as λ ↑ ∞. Hence there exists λ = λ(t) satisfying L(λ(t)) = 1, namely,

∥∇wλ(t)t ∥γN + ∥wλ(t)t ∥γN = 1.

Particularly, (2.10) and (2.11) yield

1 = ∥∇wλ(t)t ∥γN + ∥wλ(t)t ∥γN = λ(t)γt
∥∇v∥γN
∥v∥γN

+ t,

which implies

λ(t) =

(
1− t

t

) 1
γ ∥v∥N
∥∇v∥N

.

(3) Finally, we put

vt(x) := w
λ(t)
t (x) = λ(t)wt(λ(t)x)

=
(1− t)

1
γ

∥∇v∥N
v

((
1− t

t

) 1
γ ∥v∥N
∥∇v∥N

x

)
. (2.12)

Then we see that

∥vt∥γN = t ∈ (0, 1), ∥vt∥H1,N
γ

= 1, (2.13)

∥vt∥pp = t
N
γ (1− t)

p−N
γ

∥v∥pp
∥∇v∥p−NN ∥v∥NN

=: t
N
γ (1− t)

p−N
γ B(v). (2.14)

Moreover, noting the fact that ∥∇v∥γN = 1− t since t = ∥v∥γN (∈ (0, 1)) and ∥v∥H1,N
γ

= 1, we have, from

(2.12),

v∥v∥γ
N
(x) = v(x). (2.15)

Consequently, vt is a curve in H1,N (RN ) passing v satisfying (2.13) and (2.14). We denote vt simply
by v if no confusion occurs. Moreover, we have

Iα(vt) = ∥vt∥NN + α∥vt∥pp = t
N
γ + αB(v)t

N
γ (1− t)

p−N
γ =: fα(t; v) (2.16)

and

f ′α(t; v) =
N

γ
t
N
γ −1

[
1 + αB(v)(1− t)

p−N
γ −1

(
1− p

N
t
)]

=:
N

γ
t
N
γ −1 [1 + αB(v)h(t)] , (2.17)

where

h(t) := (1− t)
p−N

γ −1
(
1− p

N
t
)
.
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3 Proof of Theorem 1.2

Let γ > p−N and α > 0. Take any v ∈ H1,N (RN ) with ∥v∥H1,N
γ

= 1. Then from (2.17), we have

f ′α(t; v) =
N

γ
t
N
γ −1

[
1 + αB(v)

1

(1− t)1−
p−N

γ

(
1− p

N
t
)]

↓ −∞

as t ↑ 1, thus obtain

Dα ≥ fα(t; v) > fα(1; v) = 1 (3.1)

for t sufficiently close to 1. This fact together with (1.5) yields α > α∗, hence α∗ = 0 follows. Proposition
2.1 together with (3.1) leads the existence of a maximizer associated with Dα.

4 Proof of Theorem 1.3

Let γ = p−N and α > N
B(p−N) . This assumption together with the definition of B implies that there

exists v such that

B(v) ∈
(

N

α(p−N)
, B

)
, ∥v∥H1,N

γ
= 1.

Then by (2.17), we find that

f ′α(1; v) =
N

p−N

[
1 + αB(v)

(
1− p

N

)]
< 0.

Hence we obtain Dα ≥ fα(t; v) > fα(1; v) = 1 for t sufficiently close to 1. This fact together with (1.5)
yields

α > α∗, (4.1)

hence

α∗ ≤ N

B(p−N)
(4.2)

follows. Proposition 2.1 together with (4.1) leads the existence of the maximizer associated with Dα.

Next let α = N
B(p−N) . We will derive a contradiction by assuming that Dα is attained by a function

v0 with v0 ∈ H1,N (RN ) satisfying ∥v0∥H1,N
γ

= 1. Then by noting the fact that t 7→ fα(t; v0) takes its

maximum at t = ∥v0∥γN in view of (2.15), we get

f ′α(∥v0∥
γ
N ; v0) = 0. (4.3)

We next show that the function v0 becomes a maximizer for B. To this end, we use the scaling

vλ0 (x) := λv0(λx) for λ > 0. Note that
vλ0

∥vλ0 ∥H
1,N
γ

is a curve passing v0 (for λ = 1) and there holds

0 =
d

dλ
Iα

(
vλ0

∥vλ0 ∥H1,N
γ

)∣∣∣∣∣
λ=1

(4.4)

since v0 attains a supremum value Dα.

12



By the scaling, we see ∥vλ0 ∥p = λ1−
N
p ∥v0∥p, ∥vλ0 ∥N = ∥v0∥N and ∥∇vλ0 ∥N = λ∥∇v0∥N , and then we

have

Iα

(
vλ0

∥vλ0 ∥H1,N
γ

)
=

∥v0∥NN
(∥v0∥γN + λγ∥∇v0∥γN )

N
γ

+ α
λp−N∥v0∥pp

(∥v0∥γN + λγ∥∇v0∥γN )
p
γ

.

Thus a direct computation yields

d

dλ
Iα

(
vλ0

∥vλ0 ∥H1,N
γ

)
= −Nλγ−1∥v0∥NN∥∇v0∥γN (∥v0∥γN + λγ∥∇v0∥γN )−

N
γ −1

+ α(p−N)λp−N−1∥v0∥pp(∥v0∥
γ
N + λγ∥∇v0∥γN )−

p
γ

− αpλp−N+γ−1∥v0∥pp∥∇v0∥
γ
N (∥v0∥γN + λγ∥∇v0∥γN )−

p
γ −1.

Hence, recalling ∥v0∥H1,N
γ

= 1, we obtain

d

dλ
Iα

(
vλ0

∥vλ0 ∥H1,N
γ

)∣∣∣∣∣
λ=1

= −N∥v0∥NN∥∇v0∥γN + α(p−N)∥v0∥pp − αp∥v0∥pp∥∇v0∥
γ
N

≤ −N∥v0∥NN∥∇v0∥γN + α(p−N)∥v0∥pp = N∥v0∥NN∥∇v0∥γN
(
−1 +

α(p−N)∥v0∥pp
N∥∇v0∥γN∥v0∥NN

)
.

Then this relation together with (4.4) and the definition of B implies

1 ≤
α(p−N)∥v0∥pp
N∥∇v0∥γN∥v0∥NN

≤
α(p−N)B∥v0∥NN∥∇v0∥p−NN

N∥∇v0∥γN∥v0∥NN
= 1 (4.5)

since γ = p−N and α = N
B(p−N) . Thus the second equality in (4.5) shows that the value B is attained

by v0. Therefore, since α = N
B(p−N) and B = B(v0), we have, by (2.17),

f ′α(∥v0∥
γ
N ; v0) =

N

p−N
∥v0∥2N−p

N

[
1 +

N

p−N

(
1− p

N
∥v0∥p−NN

)]
=

pN

(p−N)2
∥v0∥2N−p

N (1− ∥v0∥p−NN ) > 0,

which contradicts (4.3). This fact together with (4.2) implies α∗ = N
B(p−N) , since otherwise D N

B(p−N)
is

achieved in view of Proposition 2.1. Therefore Proposition 2.6 yields the nonexistence of maximizers for
α < N

B(p−N) .

5 Proof of Theorem 1.4

Let V be a Gagliardo-Nirenberg-Sobolev (GNS) maximizer with ∥V ∥H1,N
γ

= 1 (see Proposition A.1 for

the existence) and, for t ∈ [0, 1], let Vt be a curve defined by (2.12) with v = V . The scale invariance ofB(·)
yields B(V ) = B(Vt). We denote B(V ) simply by B. Let fα(V ) := maxt∈[0,1] fα(t;V ) = maxt∈[0,1] Iα(Vt),
where fα(t;V ) is defined in (2.16).

We need more facts on the behavior of a function fα(t;V ) to prove Theorem 1.4. In appendix B, we

will prove that, for any α > α0 := N
Bγ

(
p

p−N−γ

) p−N
γ −1

, there exists a smallest solution t1,α of f ′α(t;V ) = 0,

namely,

1 + αB(1− t)
p−N

γ −1
(
1− p

N
t
)
= 0,
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see (B.5). Moreover, fα(t;V ) takes a local maximum at t1,α (see (B.7)) and there holds

t1,α ∈
(
N

p
,
N + γ

p

)
, (5.1)

see (B.9).

Also we shall show in the appendix B that there exists α† > α0 such that

fα(t1,α;V ) = 1 holds for α = α† (5.2)

(see Proposition B.2) and the following:

Lemma 5.1.
(a) It holds that fα(V ) = 1 if α ≤ α† and fα(V ) = fα(t1,α;V ) > 1 if α > α†.
(b) There holds fα(t;V ) < 1 for t ∈ [0, 1) if α < α†.

Proposition 5.2. There holds

N

Bγ

(
p

p−N − γ

) p−N
γ −1

< α† <

[( p
N

)N
γ − 1

]
1

B

(
p

p−N − γ

) p−N
γ

. (5.3)

We start with the following fact:

Lemma 5.3. For α > 0, Dα = 1 is equivalent to fα(V ) ≤ 1.

Proof. It is easy to see that fα(V ) = maxt∈[0,1] fα(t;V ) = maxt∈[0,1] Iα(Vt) ≤ Dα = 1 if Dα = 1. We
show the converse. Let

fα(V ) ≤ 1. (5.4)

Let u ∈ H1,N (RN ) be a function satisfying ∥u∥H1,N
γ

= 1 and let tu := ∥u∥γN . Then since V is a maximizer

for the functional B(·), we obtain

Iα(u) = fα(tu;u) = t
N
γ
u + αB(u)t

N
γ
u (1− tu)

p−N
γ

≤ t
N
γ
u + αB(V )t

N
γ
u (1− tu)

p−N
γ = fα(tu;V ) ≤ fα(V ) ≤ 1

in view of (5.4), hence Dα = supu∈H1,N (RN ), ∥u∥
H

1,N
γ

=1 Iα(u) ≤ 1. On the other hand, Dα ≥ dNV L = 1

holds by Lemma 2.3, thus we obtain Dα = 1.

Proposition 5.4.
(a) There holds Dα = 1 and Dα is not achieved if α < α†.
(b) There holds Dα = 1 and Dα is achieved by Vt1,α if α = α†.
(c) There holds Dα > 1 and Dα is achieved if α > α†.

Proof. (a) Let α < α†. Lemma 5.1 (a) yields fα(V ) = maxt∈[0,1] fα(t;V ) = 1, thus Dα = 1 holds by
virtue of Lemma 5.3. For any w ∈ H1,N (RN ) with ∥w∥H1,N

γ
= 1, let tw := ∥w∥γN . Then we see that

Iα(w) = fα(tw;w) < 1

in view of Lemma 5.1 (b). Hence no w can achieve Dα = 1.
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(b) Let α = α†. Then by Lemma 5.1 (a), we have

fα(V ) = 1. (5.5)

Now note that for any u with ∥u∥H1,N
γ

= 1 and tu := ∥u∥γN , we see that

Iα(u) = fα(tu;u) = t
N
γ
u + αB(u)t

N
γ
u (1− tu)

p−N
γ

≤ t
N
γ
u + αB(V )t

N
γ
u (1− tu)

p−N
γ = fα(tu;V ) ≤ fα(V ).

This together with (5.5) yields Iα(u) ≤ 1, and thus Dα† ≤ 1. This fact together with (5.2) implies that
Dα† = 1. Moreover, (5.2) shows that Dα† = 1 is achieved by Vt1,α†

(see (2.12) for definition).

(c) Let α > α†. Then Lemma 5.1 (a) yields fα(V ) > 1. This fact together with Dα ≥ fα(V ), (1.5) and
Proposition 2.1 yield the conclusion.

Now we clarify the relationship between critical numbers α† and α∗.

Proposition 5.5.
There holds α† = α∗.

Proof. Let α < α†. By Proposition 5.4 (a), we have Dα = 1. Hence for every u ∈ H1,N (RN ) with

∥u∥H1,N
γ

= 1, there holds 1 ≥ ∥u∥NN + α∥u∥pp, thus
1−∥u∥N

N

∥u∥p
p

≥ α. This fact together with the definition

α∗ = inf∥u∥
H

1,N
γ

=1
1−∥u∥N

N

∥u∥p
p

yields α† ≤ α∗.

Next let α > α†. Note that Proposition 5.4 (c) implies Dα > 1, thus there exists u ∈ H1,N (RN ) with

∥u∥H1,N
γ

= 1 such that 1 < ∥u∥NN+α∥u∥pp, namely,
1−∥u∥N

N

∥u∥p
p

< α. This implies α∗ = inf∥u∥
H

1,N
γ

=1
1−∥u∥N

N

∥u∥p
p

<

α, hence α† ≥ α∗ follows.

We are now in the position to prove Theorem 1.4.

Proof of Theorem 1.4. The first assertion follows from Proposition 5.4 and Proposition 5.5. Proposi-
tion 5.2 and Proposition 5.5 yield (1.6). Also it is easy to see that (1.7) follows from the first inequality
of (1.6). Now we will prove (1.8).

In the following, we regard α∗ as a function of γ and denote it by α∗(γ). Proposition 5.2 yields

lim inf
γ↑p−N

α∗(γ) ≥ lim
γ↑p−N

N

Bγ

(
p

p−N − γ

) p−N
γ −1

=
N

B(p−N)
. (5.6)

First we note that

α := lim sup
γ↑p−N

α∗(γ) <∞. (5.7)

Indeed, for any γ ∈ ( 12 (p−N), p−N), we see

fα

(
1

2
;V

)
=

(
1

2

)N
γ

[
1 + αB

(
1

2

) p−N
γ

]
≥
(
1

2

) 2N
p−N

(
1 +

1

4
αB

)
. (5.8)

This allows us to give Dα0 ≥ fα0

(
1
2 ;V

)
> 1 for α0 := 5

B (2
2N

p−N − 1). Then since α > α∗(γ) is equivalent
to Dα > 1 in view of (1.5), we have α0 > α∗(γ) for all γ ∈ ( 12 (p−N), p−N), and hence (5.7) follows.
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Now we are in the position to give a proof of (1.8). It follows from (5.6) and (5.7) that for any
γn ↑ p−N , there exists α̂ such that

αn := α∗(γn) → α̂ ≥ N

B(p−N)
. (5.9)

Let us denote the smallest solution of

0 = 1 + αnB(1− t)
p−N
γn

−1
(
1− p

N
t
)

by tn(:= t1,αn) (see (B.5)). From this relation, we have

tn =
N

p

(
1 +

1

αnB(1− tn)
p−N
γn

−1

)
. (5.10)

Now by noting tn <
N+γn
p by virtue of (5.1), we obtain

(
γn
p

) p−N
γn

−1(
p−N

γn
− 1

) p−N
γn

−1

< (1− tn)
p−N
γn

−1(< 1).

This relation yields

lim
n→∞

(1− tn)
p−N
γn

−1 = 1,

which together with (5.10) and (5.9) implies

tn =
N

p

(
1 +

1

α̂B

)
+ o(1)

as n→ ∞. Note that αn satisfies

1 = fαn(tn;V ) = t
N
γn
n

(
1 + αnB(1− tn)

p−N
γn

)
(see (5.2)). Then by taking n→ ∞ to this relation, we obtain α̂ satisfies

1 =

[
N

p

(
1 +

1

αB

)] N
p−N

[
1 + αB

{
1− N

p

(
1 +

1

αB

)}]
. (5.11)

Now we show the uniqueness of the solution α of (5.11). From (5.11), we have

1 =

(
N

p

) N
p−N p−N

p

(
1 +

1

αB

) N
p−N

(1 + αB) =:

(
N

p

) N
p−N p−N

p
f(x), (5.12)

where we put x = 1
αB and f(x) = (1 + x)

N
p−N

(
1 + 1

x

)
. It is easy to see that f(x) takes a minimum

at x0 = p−N
N and f

(
p−N
N

)
=
(
p
N

) N
p−N p

p−N . This implies that the minimum of the right-hand side of

(5.12) is 1. Hence (5.11) has a unique solution α = 1
Bx0

= N
B(p−N) , and thus α̂ = N

B(p−N) holds. These

arguments show that αn + o(1) = α̂ = N
B(p−N) , which implies limγ↑p−N α∗(γ) =

N
B(p−N) . This completes

the proof.
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A Attainability of B

In this section, we give a proof of the following fact used throughout the paper. The proof is es-
sentially the same one as in Weinstein [18] (in [18], the case N = 2 is treated). Let N ≥ 2 and

B := supH1,N (RN )\{0}
∥v∥p

p

∥∇v∥p−N
N ∥v∥N

N

.

Proposition A.1.
There exists a maximizer V associated with B satisfying ∥V ∥H1,N

γ
= 1 for any N ≥ 2.

Proof. For any w ∈ H1,N (RN ), µ > 0 and λ > 0, let wµ,λ(x) := µw(λx). Then there hold

∥wµ,λ∥NN =
µN

λN
∥w∥NN , ∥∇wµ,λ∥NN = µN∥∇w∥NN , B(wµ,λ) = B(w). (A.1)

Let (un) be a maximizing sequence associated with B. Without loss of generality, we can assume

that un is a radially symmetric function. By choosing µn := 1
∥∇un∥N

and λn := ∥un∥N

∥∇un∥N
and by letting

vn := uµn,λn
n , we see that, from (A.1),

(vn) is a maximizing sequence associated with B and ∥∇vn∥N = ∥vn∥N = 1. (A.2)

Then there exists v ∈ H1,N (RN ) such that vn ⇀ v weakly in H1,N (RN ), especially,

∥v∥N ≤ lim inf
n→∞

∥vn∥N = 1, ∥∇v∥N ≤ lim inf
n→∞

∥∇vn∥N = 1 (A.3)

in view of (A.2). Again (A.2) and the compact embedding H1,N
rad (RN ) ↪→ Lp(RN ) yield

B =
∥vn∥pp

∥∇vn∥p−NN ∥vn∥NN
+ o(1) = ∥vn∥pp + o(1) = ∥v∥pp,

thus v ̸= 0. Then since

B

∥∇v∥p−NN ∥v∥NN
=

∥v∥pp
∥∇v∥p−NN ∥v∥NN

≤ B,

we obtain ∥∇v∥p−NN ∥v∥NN ≥ 1 and finally

∥∇v∥N = ∥v∥N = 1 (A.4)

follows from (A.3). Hence we get vn → v strongly in H1,N (RN ) and v is a maximizer. Let V (·) :=(
1
2

) 1
γ v(·). Then (A.1) together with (A.4) implies that V is a maximizer associated with B satisfying

∥V ∥H1,N
γ

= 1.

B Proof of Lemma 5.1 and Proposition 5.2

Throughout this section, we use notation in §2.2.
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B.1 The sign-changing condition for f ′
α(t; v)

Recall that f ′α(t; v) = 0 is equivalent to

1 + αB(v)h(t) = 0, (B.1)

where h(t) = (1− t)
p−N

γ −1
(
1− p

N t
)
, see (2.17).

First we consider the condition for α under which (B.1) has a solution t. By noting

h′(t) = −(1− t)
p−N

γ −2 p−N

γN
[(N + γ)− pt]

and

t0 :=
N + γ

p
∈ (0, 1)

we have, under γ < p−N , h(t) is strictly decreasing for t ∈ (0, t0), takes global minimum at t = t0 and
is strictly increasing for t ∈ (t0, 1). Particularly, since

min
t∈[0,1]

h(t) = h(t0) = − γ

N

(
p−N − γ

p

) p−N
γ −1

,

the condition for the existence of the solution for (B.1), αB(v)h(t0) ≤ −1, is given by

α ≥ N

B(v)γ

(
p

p−N − γ

) p−N
γ −1

=: α0(v). (B.2)

From now on, we assume the condition (B.2). As is stated above, αB(v)h(t) = −1 has a unique
solution t = t0 = N+γ

p if α = α0(v) and exactly two solutions t1,α(v), t2,α(v) satisfying

0 < t1,α(v) < t0 < t2,α(v) < 1 (B.3)

if α > α0(v).

First assume that α = α0(v) =
N

B(v)γ

(
p

p−N−γ

) p−N
γ −1

. Then we know that f ′α(t; v) = 0 has a unique

solution t = N+γ
p and fα(t; v) is strictly increasing for t ∈ (0, 1) with t ̸= N+γ

p . Particularly, we obtain

fα(t; v) < fα(1; v) = 1 for all t ∈ (0, 1). (B.4)

Next we assume α > α0(v). Then the above analysis shows that f ′α(t; v) = 0, namely,

1 + αB(v)(1− t)
p−N

γ −1
(
1− p

N
t
)
= 0 (B.5)

possesses exactly two solutions t1,α(v) and t2,α(v) satisfying 0 < t1,α(v) < t0 < t2,α(v) < 1. Moreover,
fα(t; v) is

strictly increasing for t ∈ (0, t1,α(v)), strictly decreasing for t ∈ (t1,α(v), t2,α(v))
and strictly increasing for t ∈ (t2,α(v), 1).

(B.6)

Particularly, we obtain that

fα(t; v) takes local maximum at t = t1,α(v). (B.7)
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Since t1,α(v) satisfies f
′
α(t1,α(v); v) = 0, i.e.,

−1 = αB(v)(1− t1,α(v))
p−N

γ −1
(
1− p

N
t1,α(v)

)
, (B.8)

we have t1,α(v) >
N
p ∈ (0, 1) and, since t1,α(v) < t0 = N+γ

p ∈ (0, 1) by (B.3), we have

t1,α(v) ∈
(
N

p
,
N + γ

p

)
⊂ (0, 1). (B.9)

This relation yields

Dα ≥ max
t∈[0,1]

fα(t; v) ≥ fα(t1,α(v); v) = t1,α(v)
N
γ + αB(v)t1,α(v)

N
γ (1− t1,α(v))

p−N
γ

>

(
N

p

)N
γ

[
1 + αB(v)

(
p−N − γ

p

) p−N
γ

]
. (B.10)

Lemma B.1.
There holds ∂

∂α t1,α(v) < 0 for α > α0(v).

Proof. By (B.8), we see that t1,α(v) satisfies

0 = 1 + αB(v)(1− t1,α(v))
p−N

γ −1
(
1− p

N
t1,α(v)

)
.

By using the implicit function theorem and by differentiating both sides by α, we obtain

0 = B(v)(1− t1,α(v))
p−N

γ −2

[
(1− t1,α(v))

(
1− p

N
t1,α(v)

)
− α

∂t1,α(v)

∂α

p−N

Nγ
(N + γ − pt1,α(v))

]
,

which implies

∂t1,α(v)

∂α
=

γN

p−N

1

α
(1− t1,α(v))

(
1− p

N
t1,α(v)

) 1

N + γ − pt1,α(v)
.

Now by noting t1,α(v) ∈ (0, 1) and (B.9), we see that the above relation yields
∂t1,α(v)
∂α < 0.

Proposition B.2.
For any v ∈ H1,N (RN ) with ∥v∥H1,N

γ
= 1, there exists α†(v) > α0(v) such that

fα(t1,α(v); v) < 1 if α0(v) < α < α†(v), fα(t1,α(v); v) = 1 if α = α†(v),

fα(t1,α(v); v) > 1 if α > α†(v).

Proof. Take any v ∈ H1,N (RN ) with ∥v∥H1,N
γ

= 1. First we show

α 7→ fα(t1,α(v); v) is monotone increasing for α > α0(v). (B.11)

Recalling that t1,α(v) is a solution of (B.5), we see

αB(v)(1− t1,α(v))
p−N

γ =
1− t1,α(v)
p
N t1,α(v)− 1

.

This yields

fα(t1,α(v); v) =
p−N

p

t1,α(v)
N
γ +1

t1,α(v)− N
p

,
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which implies

∂

∂α
fα(t1,α(v); v) =

p−N

p

t1,α(v)
N
γ(

t1,α(v)− N
p

)2 Nγ ∂t1,α(v)

∂α

(
t1,α(v)−

N + γ

p

)
.

Then (B.9) and Lemma B.1 imply that ∂
∂αfα(t1,α(v); v) > 0, hence α 7→ fα(t1,α(v); v) is monotone

increasing for α > α0(v).

Also since t 7→ fα(t; v) is monotone increasing for t < t1,α(v) and N
p < t1,α(v) in view of (B.6) and

(B.9) respectively, we obtain

fα(t1,α(v); v) ≥ fα

(
N

p
; v

)
= ∥uN

p
∥NN + α∥uN

p
∥pp → ∞

as α ↑ ∞. Also we see that fα(t1,α(v); v) < 1 for any α close to α0(v) in view of (B.4). To sum-up the
above facts, we have the desired conclusion.

For v ∈ H1,N (RN ) with ∥v∥H1,N
γ

= 1, let

fα(v) := max
t∈[0,1]

fα(t; v).

Proof of Lemma 5.1. (a) The relation (B.6) yields

fα(v) = max(fα(1; v), fα(t1,α(v); v)) = max(1, fα(t1,α(v); v))

and this together with Proposition B.2 yield the conclusion when α > α0(v). Also for α ≤ α0(v), since
f ′α(t; v) ≥ 0 for t ∈ (0, 1), we obtain fα(v) = fα(1; v) = 1.

(b) First let α0(v) < α < α†(v). For t ∈ [0, t2,α(v)], by (B.6), we have fα(t; v) ≤ fα(t1,α(v); v). This
relation and the assumption α < α†(v) together with Proposition B.2 imply fα(t; v) < 1 for t ∈ [0, t2,α(v)].
For t ∈ [t2,α(v), 1), (B.6) directly leads fα(t; v) < fα(1; v) = 1. Next when α ≤ α0, we see

f ′α(t; v)

{
> 0 for t ∈ (0, 1) if α < α0,

> 0 for t ∈ (0, 1) \ {t0} if α = α0,

which implies fα(v) < fα(1; v) = 1.

Proof of Proposition 5.2. Let us denote α†(V ) and t1,α(V ) by α† and t1,α, respectively. The first
inequality in (5.3), namely,

α0 :=
N

Bγ

(
p

p−N − γ

) p−N
γ −1

< α†

is a part of the statement of Proposition B.2 with v = V .

Next we show the second inequality in (5.3), namely,

α† < α♯ :=

[( p
N

)N
γ − 1

]
1

B

(
p

p−N − γ

) p−N
γ

.
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Note that there holds

fα♯
(V ) ≥ fα♯

(
N

p
;V

)
=

(
N

p

)N
γ

[
1 + α♯B

(
p−N

p

) p−N
γ

]

>

(
N

p

)N
γ

[
1 + α♯B

(
p−N − γ

p

) p−N
γ

]
= 1, (B.12)

where the last equality in (B.12) is obtained from the definition of α♯. Thus Lemma 5.1 (a) yields α♯ > α†.
This completes the proof.
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