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Mathematical modelling and harmonic analysis of SISFCL 

INTRODUCTION 

In present times, the size of power system networks has increased by many folds to meet the growing 

power demand of the modern world. As a consequence of the continuous growth of power generation, 

the power system networks approach or even exceed their limits with respect to their short circuit 

withstand capability (Morandi, 2013). The necessity of changing the protective equipment in order to 

operate at higher fault level has increased further with the inclusion of distributed generators and 

increasing power of the feeder loads (Duggan, 2006; Morandi, 2013; Fajoni, et al., 2015). Countering 

the problem of excessive short circuit current has become an important issue for the power system 

operators both at transmission as well as distribution levels. Reliance on traditional means of 

remedying the adverse effects of fault current to satisfy reliable and safe power distribution, especially 

in the context of rapidly growing electricity demand, is not sustainable. Therefore, the use of 

advanced and innovative current limiting devices is necessary for future developments of the modern 

power system. Interest in SISFCL is gaining momentum nowadays owing to its fast response to a fault 

and quick subsequent recovery. In recent years, it is gradually finding its way into both power system 

transmission and distribution applications (Moriconi, et al., 2011; Xiao, et al., 2011; Kazemia & 

Lehtonenb, 2013). 

High temperature superconductors such as BSCCO, YBCO etc. require an efficient cooling to sustain 

the superconducting state. The HTS coil is required to be maintained in the cryogenic system (Hong, 

et al., 2014; Xiao, et al., 2011). The open cryogenic system, where there is a continuous refilling of 

the liquid nitrogen is favoured for its economic aspects. 

The SISFCL utilizes the ability to change the magnetic state of the ferromagnetic core from saturation 

to unsaturation to provide low impedance during normal operation and high impedance during fault. 

Needless to say, this change in magnetic state is dependent significantly on the relation between flux 

density (B) and magnetic field intensity (H) of the core. Previous mathematical models (He, et al., 

2014; Li, et al., 2015) describing the working of the SISFCL, have considered a simple B-H curve. 

However, this relationship could be more realistically addressed when hysteresis is considered in its 

place. This paper presents a mathematical model of the SISFCL considering the Jiles Atherton 

hysteresis model (Jiles, et al., 1992; Iványi, 1997). Moreover different hysteresis loops have been 

utilized and the transient responses of the limiter are compared to investigate its performance with 

variation in hysteresis characteristics. Simulations are carried out using both MATLAB and ANSYS 

MAXWELL software. 

WORKING PRINCIPLE 

The structure of the SISFCL consists of two ferromagnetic cores biased by a common 

superconducting coil (Fig. 1) carrying DC current. The opposite limbs of the cores support the 

windings which are in series with the circuit. The AC coils are wound in opposition to one another. 

During normal operation the DC biasing current is adjusted such that both the cores remain in 

saturation. The flux produced by the AC current during normal operation is small and cause 

insignificant change in saturation of the core. Since during this state the permeability µ is very low, 

the effective impedance of the device is very small. Hence the device offers negligible impedance to 

the circuit under normal operation. During fault the AC current increases drastically, producing high 

value of AC ampere-turns which is now comparable to the DC ampere-turns. The core where the AC 

flux opposes the DC flux reduces the effective flux distribution and the core comes out of saturation 

and reaches the unsaturation zone. The other core reaches a more saturated state as the AC flux adds 

to the DC biasing flux. The situation persists during one half-cycle and it reverses in the other half 

cycles. As the permeability in the unsaturated state is high the effective value of the impedance of the 
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device increases significantly and fault current is thus suppressed. The reaction time of the device for 

limiting the fault current and its subsequent recovery is almost instantaneous as the operation solely 

depends on the change of the magnetic state of the core.   

 

Fig. 1.  Schematic diagram of SISFCL 

JILES-ATHERTON’S HYSTERESIS MODEL 

Since the change of the magnetic state of the core plays a very important role in operation of the 

device, inclusion of the effects of hysteresis in the model will give a more accurate result. Of the 

various mathematical models describing hysteresis, the Preisach’s model and the Jiles-Atherton’s (J-

A) hysteresis model are more popular. For the current analysis the Jiles- Atherton model is 

considered. The basis of the J-A model is the anhysteretic magnetization (Man) curve which represents 

the ideal lossless magnetization of a material. The mathematical representation is given by the 

equation considering a as the shaping coefficient, 

( )( )e
an sat

e

H a
M M coth

a H
= −  (1) 

The saturation magnetisation is denoted by Msat and He is the effective field intensity. According to 

the model, the magnetization of the material is the sum of the reversible (Mrev) and the irreversible 

(Mirr) components. The irreversible component is describe as, 

( )

irr an irr

an irr

dM M M

dH k M Mδ α
−

=
− −

 (2) 

Where δ= sign(dH/dt) is a directional parameter, +1 for dH/dt > 0 and -1 for dH/dt < 0, k is a 

parameter that defines the pinning site density of domain walls and is the scaling factor for He. The 

reversible component is considered as the difference between the anhysteretic and the irreversible 

component of the magnetization, given by the equation, 

( )rev an irrM c M M= −  (3) 

Where c is a domain flexing parameter, defining the amount of reversible magnetization due to wall 

bowing and reversal rotation, included in the magnetization process. Considering the above equations 

and rearranging the terms, the J-A model is described as, 

(1 )

( ) (1 ) ( )

1

an an

e
an

an

e

M M dM
c c

dH dH
sign k c M M

dM dt
dMdH

c
dH

α

α

−
− +

− − −
=

−
 (4) 

The above equation describing the hysteresis is utilized in the mathematical model of the SISFCL. 
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MATHEMATICAL MODEL 

The mathematical model is developed taking the schematic diagram (Fig.1) of the circuit in 

consideration. The SISFCL is shown to be in series in between the voltage source (Vs) and the load 

(RL) along with a fault resistance Rf. The fault is simulated by bypassing the load RL. The source 

resistance and inductance is denoted by Rs and Ls respectively, whereas R1 representing the total coil 

resistance. The variables wd and wc represent the number of turns of the DC and AC current carrying 

windings respectively. The mean magnetic path of each core and the DC biasing current is 

represented by l and Id respectively. Following Ampere’s Law, it can be written, 

1d d cw I w i H l− =  (5) 

2d d cw I w i H l+ =  (6) 

The induced voltage drop across two coils (u1 and u2) are obtained after subsequent calculation and 

are expressed as, 

1 1 1
1 0

1 1

(1 ) (1 )c

dH dM dMdi
u w A L

dt dH dt dH
µ= − + = +  (7) 

2 2 2
2 0

2 2

( (1 )) (1 )c

dH dM dMdi
u w A L

dt dH dt dH
µ= − − + = +  (8) 

Where
2

0 cw A
L

l

µ
= . Now following Kirchhoff’s Law, 

1 2 1 2 1( ) ( )s R L s f L s

di
V t u u u u u u i R R R R L

dt
= + + + = + + + + + +  (9) 

Where uR is the voltage drop across total resistance and uL is the voltage drop across the source 

inductance. Hence after substitution and rearrangement the differential equation describing the 

working of the SISFCL is obtained. The developed equation is as follows, 

1

1 2

1 2

( ) ( )

(2 )

s s f L

s

V t i R R R Rdi

dM dMdt
L L

dH dH

− + + +
=

+ + +
 (10) 

SIMULATION 

As the change in the magnetic state is vital for the performance of the device, it is obvious that 

different core materials with varying hysteresis characteristics will have significant effect in the 

responses of the device. In order to explore this variation, three hysteresis characteristics are 

employed (Jiles, et al., 1992) in the simulation (Table I). The comparative plots of the characteristics 

are shown in Fig. 2. 

 

Fig. 2.  Hysteresis plot of the sample cores 
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MATLAB simulation 

Simulations are executed using the parameter values shown in Table II at 50 Hz, the fault being 

simulated at 0.02 sec. Although the simulation is carried for 0.14s, in order to provide a better 

comparison with FEM output, discussed in the next section, the responses are shown for 0.06s except 

for the B vs. H plot. 

The transient response of the current waveforms, shown in Fig. 3, demonstrates the effect of the 

variation of hysteresis loops on the current limiting capability of the FCL and the prospective fault 

condition. It is observed that the presence of FCL do not affect the normal current as it presents a low 

impedance close to twice the value of an air core inductor (Moscrop, 2013). The simulation results 

reveal that the fault current has been suppressed in presence of SISFCL. It may also be noted that 

wider is the hysteresis loop of the core, lesser is the fault suppression, although the waveform remains 

identical during normal operation. The small mmfs developed in the AC coils are unable to bring the 

core to unsaturated state overcoming the DC biasing. As a result, the core remains in the saturated 

state, providing negligible permeability (µ). Hence the current in the normal condition remains 

unaltered even with the variation of hysteresis characteristics of the core.  

 

Fig. 3.  Comparative circuit current plot 

But during a fault instant, the high value of mmf developed in the AC coil brings the core to 

unsaturated condition. As different hysteresis loops present different values of permeability for a 

given field intensity, the impedance offered by the limiter during fault varies. Moreover, the shape of 

the hysteresis loop plays an important role in developing the shape of the suppressed current as the 

rate of change of flux density varies against the same change in field intensity for different hysteresis 

loops. There has also been a noticeable phase shift in the suppressed current from the prospective 

current signifying the increase in reactance of the limiter. It can be also observed that change in the 

suppressed current is more profound in the positive half of the cycle. This happens due to the presence 

of dc offset component during the fault event. The higher magnitude of the positive half of the current 

brings the core more in the unsaturated zone than the negative half. This phenomenon disappears after 

3 to 4 cycles as the dc offset decreases to zero. 

Fig. 4 shows the voltage across the FCL under normal and fault conditions. During the normal 

operation, the voltage across the limiter is negligible, indicating a low impedance of the device. 

Changes in the hysteresis characteristics have insignificant effect on the voltage across the SISFCL 

during the normal operation. It is only during the fault instances that the effect of the core 

characteristics can be perceived. The FCL with the highest suppression has the highest voltage across 

the limiter and vice versa. It is observed that the voltage waveform during the fault attains a 

characteristic double peak pattern (Zhang & Dougal, 2012; Xiao, et al., 2011). This double peak 

occurs when the current decreases to zero completing the positive half of the cycle and enters the 
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negative half. During this period, the unsaturated core moves to saturation reducing the voltage 

magnitude momentarily. With the commencement of the next half of the cycle the other core becomes 

unsaturated and the voltage magnitude increases thus creating the double peak. The presence of the dc 

offset component also has its effect on the waveform making the double peaks uneven. Equal sized 

peaks can be realized only after decay of the dc offset. 

 

Fig. 4.  Comparative plot of the voltage across SISFCL 

The voltage across the DC bias coils (Fig. 5) shows that the value remains very small in the normal 

condition and increases significantly following a fault. The reason for this behaviour is that in normal 

operation, the DC m.m.f. is very high compared to the AC m.m.f. and hence there is a very small 

change in the flux density inside the DC limb. However during fault the AC m.m.f. increases 

significantly so that its interaction with the DC m.m.f. produces a significant change in the flux 

density. The voltage across the DC biasing coil is seen to be maximum when fault current suppression 

is highest. The development of a high voltage across the DC biasing coil is of great concern as high 

induced voltage is capable of damaging the DC source. Various methods have been put forward in 

mitigating this issue (Cui, et al., 2014). 

 

Fig. 5. Comparative plot of the voltage across the DC bias coil of the SISFCL 

Fig. 6 and Fig. 7 show the flux density versus field intensity plot in both core 1 and core 2, 

respectively, for the entire period of 0.14s. During normal operation, the field intensity of the DC bias 

remains at about 18 kA/m. But during fault, the value of flux density reduces following the hysteresis 

pattern of the core.  
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Fig. 6. Comparative plot of the B-H characteristics for Core 1 

As there is a marked difference in the slope of the plots in the unsaturated region, the impedance 

imposed by the limiter differs to provide different limiting. It is also observed that since the initial 

cycles after fault occurrence have a higher current magnitude in the positive half of the cycle than the 

negative half, the flux density reaches a more negative value in core 1 as it gets unsaturated in the 

positive half of the cycle. With the disappearance of the dc offset, the flux densities of both the cores 

change in a similar manner. 

 

Fig. 7. Comparative plot of the B-H characteristics for Core 2 

FEM simulation 

The finite element method has been a popular choice for simulations concerning electromagnetics. It 

has become an important tool for research and has produced results that has successfully reached 

close agreement to the experimental outcome (Kurt, et al., 2014; Kurt, et al., 2016; Uzun & Kurt, 

2013; Uzun, et al., 2015).As the response of the SISFCL is very much dependent on the change in the 

magnetic state, simulation of the limiter using FEM becomes essential. Moreover, the mathematical 

models of the SISFCL developed have all been based on the approximation of a constant flux density 

distribution throughout the entire core. Hence for a proper investigation of this electromagnetic device 

the FEM analysis is required. For these simulations, the Transient Solver of Ansoft Maxwell 2D is 

employed. The later versions of the software allows hysteresis to be included in the core loss property 

of the material. It requires the B-H curve data and the corresponding values of the coercive force and 

remanence to develop the hysteresis loop. It needs to be mentioned here that ANSYS Maxwell always 
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consider the magnetization as isotropic magnetization if the hysteresis model is included. The 

hysteresis data is fed into the material properties of the core and hence, three independent simulations 

were run. For the simulations, the parameter values were kept the same as in Table II and it is run for 

0.06s with a fault occurring at 0.02s. The simulation time is reduced to just 3 cycles to shorten the 

computation time. 

The field analyses shown in Fig. 8 show the normal and faulted states of the FCL. The normal 

condition shown in Fig. 8(a) illustrates deep saturation in the entire core region. Fig. 8(b) 

demonstrates the faulted state where the left side core comes out of saturation due to high fault 

current. The right side core reaches a more saturated zone as the flux in the AC winding adds to the 

DC winding flux. This condition persists for one half of the cycle while the phenomenon is just 

reversed in the next half cycle. Core sample 1 is considered for the field distribution plot. 

 

Fig. 8. Plot of flux distribution in the cores (a) Normal condition (b) Fault condition 

The comparative current plot shown in Fig. 9 produces a similar result as in the case of the previous 

simulation. The presence of the DC offset at the fault occurrence has produced a variation in current 

magnitude in the first half of the cycle whereas in the negative half cycle the difference becomes very 

small. The core sample with narrower hysteresis loop offers more suppression than the one with wider 

hysteresis loop. 

 

Fig. 9. Comparative plot of circuit current 

The plots of the voltage across the limiter is shown in Fig. 10. As it is observed from the simulation 

shown in the previous section, the voltage is desirably very low in the normal condition. With the 

fault occurrence, the magnitude of the voltage increases significantly. Although the FEM simulation 

shows a similar result compared to the MATLAB simulation, the double peak is less profound in the 

FEM solution. It has been previously discussed that the double peak occurs with the change of core 

magnetic state. But unlike in the mathematical model, the flux density distribution is not uniform 

throughout the core and the rate of change of the flux distribution is lesser, causing a shallow dip in 

the voltage waveform. 
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Fig. 10. Comparative plot of voltage across the SISFCL 

The voltage across DC bias coils (Fig. 11) have also produced similar results to the previous 

simulation although the voltage peaks after fault occurrence, adjacent to zero crossing, is found to be 

a little less in the FEM simulation. While the MATLAB model is built on an approximation of 

constant flux throughout the core, the FEM simulation reveals a difference in the flux values in the 

AC and the DC core limb. This difference in the flux density can be attributed for voltage 

shortcomings. 

 

Fig. 11. Comparative plot of voltage across DC bias coil of the SISFCL 

The above discussions have revealed a reasonable closeness to the results obtained in both the 

methods. The minor discrepancies between the results are accredited to the approximations made in 

the mathematical model. Nevertheless, a fair agreement of the outputs undoubtedly supports the 

validity of the mathematical model of the SISFCL. 

HARMONIC ANALYSIS 

The current responses of the SISFCL have not only shown that the degree of suppression changes 

with the core material but also that the shape of the responses indicates a varied level of harmonics 

being injected in the system. Hence to study the variation a harmonic analysis is necessary. This paper 

demonstrates harmonic analysis of the limiter current waveform using the Fast Fourier Transform 

(FFT) and Continuous Wavelet Transform (CWT). 

Fast Fourier Transform 

FFT has been a popular method for harmonic analysis. The FFT analysis of the current waveform was 

performed in MATLAB. The signal was split into two parts, separating the normal and the fault 

signal, which were analyzed separately. The comparative FFT plot of the circuit current in the normal 

condition is given in Fig. 12. It can be seen that for all 3 sample cores, there are no other harmonic 

contents in the signal aside from the fundamental. However, in the comparative FFT plot of the 

faulted circuit current, as given in Fig. 13, presence of higher order harmonics can be observed. 

Moreover the sample core with the narrower hysteresis loop is found to inject a higher magnitude of 

harmonics in the faulted condition and the core with the wider hysteresis loop is found to inject the 

least magnitude of harmonics in the faulted situation. 
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Fig. 12. FFT of the current signal during normal operation 

 

Fig. 13. FFT of the current signal during fault condition 

Continuous Wavelet Transform 

As the interharmonic estimation obtained from FFT is erroneous due to spectral leakage, the 

Continuous Wavelet Transform (CWT) is used for a more accurate time and frequency resolution of 

the current signal. For any given signal f (t), the continuous wavelet transform is defined as, 

1
( , ) ( )

| |
( )

t

t b
W a b f t dt

aa

−
= Ψ∫  (11) 

And the wavelet is given as, 

,

1
( )

| |
( )a b

t

t b
t dt

aa

−
Ψ = Ψ∫  (12) 

Where a is the dilation or scaling parameter and b is the translation or location parameter. Similar to 

the FFT analysis, the CWT has been performed on the current signal after isolating the normal and 

fault signal. For the present analysis the Morlet Wavelet is taken as the mother wavelet. Fig. 14 shows 

the normal current with its CWT. As expected, there are no harmonics present other than the 
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fundamental. The CWT analysis of the circuit current in the faulted condition, given in Fig. 15, shows 

the presence of higher order harmonics. Similar to the results obtained from FFT, it is observed that 

the sample core with the narrower hysteresis loop contains the highest magnitude of harmonics and 

the core with the wider hysteresis loop contains the least. Thus the results obtained from CWT 

analysis support the results obtained from FFT analysis. 

 

Fig. 14. CWT of the current signal during normal condition 

 

Fig. 15. CWT of the current signal during fault condition 

CONCLUSION 

This paper successfully illustrates the development of a mathematical model of the SISFCL. As the 

operation of the device relies solely on the change of the magnetic state of saturation and unsaturation 

of the ferromagnetic core, the effects of magnetic hysteresis is included using the Jiles-Atherton 

model of hysteresis. Moreover, to analyze the operation of the SISFCL in further detail, three cores of 

different hysteresis loops were considered. The model was numerically solved and the solutions were 

obtained using MATLAB. It was shown that the fault current suppression considering the core with a 

narrower hysteresis loop will provide a better suppression than a core with wider hysteresis loop. It is 

Page 10 of 14

http://mc.manuscriptcentral.com/compel

COMPEL

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CO
M

PEL

observed that the voltage across the limiter under fault condition is highest when the fault current 

suppression is maximum. The voltage across the DC coil reveals the fact that better the suppression, 

higher is the voltage appearing across the DC coil. Hence a wider hysteresis curve helps in reducing 

the induced voltage developed across DC bias circuit. In support of the numerical analysis, FEM 

analyses with the same parameters were performed using Ansoft Maxwell 2D software. The flux 

distributions across the core were shown for both normal and faulted conditions. The solutions 

obtained in the FEM simulation are in close agreement to the responses obtained from the numerical 

method. Comparisons were made on the harmonic content of the current signal using both FFT and 

CWT (using Morlet Wavelet). The harmonic analysis has demonstrated negligible harmonic content 

in the current signal during normal condition for all core samples. However during fault condition, the 

presence of higher order harmonics is observed. The percentage amplitude of higher order harmonics 

in the fault current is observed to be more in the core with narrower hysteresis loop. 
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Table I: J-A constants of the sample core 

 Ms c k α a 

Sample 1 1.7×10
6
 0.1 500 1 ×10

-3
 1000 

Sample 2 1.5×10
6
 0.14

 
1800

 
1.4 ×10

-3 
1800

 

Sample 3 1.5×106 0.1 4000 1 ×10-3 2000 
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Table II: System parameters in the simulation model 

Name Symbol Value 

Source Voltage Vs 220V 

Source Resistance Rs 6.56mΩ 

Source Inductance Ls 0.215mH 

Sum total of Cabling Resistances and the Resistance of the two AC coils R1 27.84mΩ 

Load Resistance RL 7.2Ω 

Fault Resistance Rf 67.9mΩ 

Effective cross-section Area of each limb A 0.01254m
2
 

Mean Magnetic Path length l 1.36m 

Number of DC windings wd 102 

Number of AC windings wc 20 

DC bias current Id 240A 
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