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Abstract. We consider certain Littlewood-Paley operators and prove
characterization of some function spaces in terms of those operators.
When treating weighted Lebesgue spaces, a generalization to weighted
spaces will be made for Hérmander’s theorem on the invertibility of
homogeneous Fourier multipliers. Also, applications to the theory of
Sobolev spaces will be given.
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1. Introduction

Let ¢ be a function in L'(R™) such that

Y(z)dx = 0. (1.1)
Rn

We consider the Littlewood-Paley function on R™ defined by

0@ = ([T1rowr )" (12)

where 1;(z) = t~™)(t~x). The following result of Benedek, Calderén and
Panzone [2] on the LP boundedness, 1 < p < oo, of gy is well-known.

Theorem A. We assume (1.1) for ¢ and
()] < C(A+fz) ", (1.3)

[ 1wt =9~ vl de < (1.4
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for some positive constant €. Then gy is bounded on LP(R™) for all p €
(1,00) :

g (Nl < Coll £llp, (1.5)

1/p
11l = 11lze = (/R |f(:c)|”d:c> .

By the Plancherel theorem, it follows that g, is bounded on L?(R™) if
and only if m € L>(R"), where m(¢) = [;7 [{(€)|? dt/t, which is a homo-
geneous function of degree 0. Here the Fourier transform is defined as

where

¥(E) = [ @7 e, (a6) = ) k.
" k=1

Let
t

Cn (|£IJ|Z + t2)(n+1)/2
be the Poisson kernel on the upper half space R* x (0,00) and Q(z) =
[(0/0t)Pi(x)]t=1. Then, we can see that the function @ satisfies the con-
ditions (1.1), (1.3) and (1.4). Thus by Theorem A g¢ is bounded on L?(R™)
for all p € (1, 00).

Let H(x) = sgn(z)x(-11)(z) = Xjo.1)(*) — X[-1,0/(z) on R (the Haar
function), where y g denotes the characteristic function of a set E and sgn(x)
the signum function. Then gy (f) is the Marcinkiewicz integral

Pt(x) =

oo 1/2
uN@ = ([P +Fe-n-2r@Pg)

where F(z) = fow f(y)dy. Also, we can easily see that Theorem A implies
that gy is bounded on LP(R), 1 < p < oo.

Further, we can consider the generalized Marcinkiewicz integral p,(f)
(a > 0) on R defined by

e = ([Tiseowe )",

where

SA(f)(@) =5 /Ot (1- 9)&_1 (f(z—u) = flz+u)) du.

t t
We observe that pio(f) = gy (f) with

¢ (z) = all - |2||* " sgn(z)x (1,1 (@). (1.6)

The square function pq coincides with the ordinary Marcinkiewicz integral

. When 1 is compactly supported, relevant sharp results for the LP bound-
edness of gy can be found in [6, 8, 20].

We can also consider Littlewood-Paley operators on the Hardy space

HP(R™), 0 < p < oco. We consider a dense subspace So(R™) of H?(R™) con-

sisting of those functions f in S(R™) which satisfy f = 0 near the origin,
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where $(R™) denotes the Schwartz class of rapidly decreasing smooth func-
tions. Let f € 8¢(R). Then, if 2/(2a+ 1) < p < 0o and a > 0, we have
I (F)llp = (I fll 7, which means

pllfllae < NpalHllp < Cpll fllae (L.7)

with some positive constants c,, C, independent of f (see [27], [19]).
To state results about the reverse inequality of (1.5), we first recall a
theorem of Hérmander [12]. Let m € L*°(R") and define

T,(Ha) = [ m(©F O . (19

We say that m is a Fourier multiplier for L? and write m € MP? if there exists
a constant C' > 0 such that

1T (N)llp < Cll Sl

for all f € L? N LP. Then the result of Hérmander [12] can be stated as
follows.

Theorem B. Let m be a bounded function on R™ which is homogeneous of
degree 0. Suppose that m € MP for all p € (1,00). Suppose further that m
is continuous and does not vanish on S"' = {z € R" : |z| = 1}. Then,
m~t € MP for every p € (1,00).

See [5, 2] for related results. Applying Theorem B, we can deduce the
following (see [12, Theorem 3.8]).

Theorem C. Suppose that gy is bounded on LP for every p € (1,00). Let
m(€) = [7 [(t)|? dt/t. If m is continuous and strictly positive on S™!,
then we have

1£1l> < cpllgu (Hllp,
and hence ||flly = llgu(Dlp: £ € L7, for all p € (1,00).

In this note we shall generalize Theorems B and C to weighted LP spaces
with A, weights of Muckenhoupt (see Theorems 2.5, 2.9 and Corollaries 2.6,
2.11). Our proof of Theorem 2.5 has some features in common with the proof
of Wiener-Lévy theorem in [30, vol. I, Chap. VI]. We also consider a discrete
parameter version of gy:

o 1/2
Au(f)() = ( ) |fw2k<x>|2> . (L9)
k=—oc0

We shall have Ay, analogues of results for g, (see Theorem 3.5 and Corollary
3.7). We formulate Theorems 2.9 and 3.5 in general forms so that they include
unweighted cases as special cases, while Corollaries 2.11 and 3.7 may be more
convenient for some applications.

In the unweighted case, we shall prove some results on H? analogous
to Corollaries 2.11 and 3.7 for p close to 1, p < 1, in Section 4 under a
certain regularity condition for ¢ (Theorems 4.7 and 4.8). We shall consider
functions 1 including those which cannot be treated directly by the theory of
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[28]. As a result, in particular, we shall be able to give a proof of the second
inequality of (1.7) for 1/2 < a@ < 3/2 and 2/(2a+ 1) < p < 1 by methods of
real analysis which does not depend on the Poisson kernel.

Here we recall some more background materials on p. When p < 1
and 1/2 < a < 1, we know proofs for the first and the second inequality of
(1.7) which use pointwise relations pa(f) > cgo(f) and pa(f) ~ gx(f) with
A = 14 2aq, respectively, and apply appropriate properties of go and g5. Also,
we note that a proof of the inequality ||u(f)||l1 < C||f||m: using a theory of
vector valued singular integrals can be found in [10, Chap. V] (see also [17]).
We have assumed that supp(f) C [0, 00) in stating ps(f) ~ g%(f) and go(f),
g1 (f) are the Littlewood-Paley functions defined by

golf) () = ( | |<a/aw>u<a:,t>|2tdt) -

R = ( oo () (w0 dt) N

with u(y,t) denoting the Poisson integral of f: u(y,t) = P, * f(y) (see [27],
[19] and references therein, and also [13], [15] for related results).

In [28], a proof of ||f||m» < Cllgo(f)||, on R™ is given without the use
of harmonicity (see [9] for the original proof using properties of harmonic
functions). Also, when n = 1, a similar result is shown for go. It is to be
noted that, combining this with the pointwise relation between gy and g
mentioned above, we can give a proof of the first inequality of (1.7) for the
whole range of p, a in such a manner that a special property of the Poisson
kernel is used only to prove the pointwise relation.

In Section 5, we shall apply Corollaries 2.11 and 3.7 to the theory of
Sobolev spaces. In [1], the operator

fa) - ]{9 S

was studied, where fB(I y f(y) dy is defined as |B(x, )=t fB(I y f(y) dy with
|B(z,t)| denoting the Lebesgue measure of a ball B(z,t) in R" of radius ¢

centered at z. The operator U; was used to characterize the Sobolev space
Whe(R®).

1/2
dt
t1+20< ’

Ua(f)(z) = /OOO a>0, (1.10)

Theorem D. Let1 < p < oo. Then, the following two statements are equivalent:

(1) f belongs to Whr(R"),
(2) f € LP(R") and Uy(f) € LP(R").

Furthermore, from either of the two conditions (1), (2) it follows that
UL (Dllp = IV Flp-
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This may be used to define a Sobolev space analogous to W1?(R") in

metric measure spaces. We shall also consider a discrete parameter version
of Ug:

9 1/2

2—2ka

(oo

Ef)@) = | 3

k=—oc0

. a>0, (1.11)

f(z) —]{B(mk) f(y)dy

and prove an analogue of Theorem D for E,. Further, we shall consider
operators generalizing U,, E, and show that they can be used to characterize
the weighted Sobolev spaces, focusing on the case 0 < a < n.

2. Invertibility of homogeneous Fourier multipliers and
Littlewood-Paley operators

We say that a weight function w belongs to the weight class 4,, 1 < p < oo,
of Muckenhoupt on R" if

-1

s, =sw (187 [ w@ac) (1817 [ wlo00ar) <o,

where the supremum is taken over all balls B in R™. Also, we say that w € A;
if M(w) < Cw almost everywhere, with M denoting the Hardy-Littlewood
maximal operator

M(f)(@) = sup |BI* /B 1F)l dy,

where the supremum is taken over all balls B in R" containing x; we denote
by [w]4, the infimum of all such C.

Let m € L>®(R") and w € Ap, 1 < p < oo. Let T, be as in (1.8). We
say that m is a Fourier multiplier for L? and write m € MP(w) if there exists
a constant C' > 0 such that

1T (Dlpw < CllSllpw (2.1)
for all f € L?* N LP,, where

1/p
1 llpw = 1712, = ( /R F@)Pw(e) da:) .
We also write LP(w) for LE . Define
||m||Mp(w) = infC,

where the infimum is taken over all the constants C satisfying (2.1). Since
L? N L% is dense in LP, T, uniquely extends to a bounded linear operator
on L if m € MP(w). In this note we shall confine our attention to the case
of L? boundedness of T}, with w € A,. We note that MP(w) = M? (& *'/?)
by duality, where 1/p+ 1/p' =1 and w(z) = w(—z).
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Ifwe A,, 1 <p < oo, then w® € A, for some s > 1 and r < p (see
[10]). In applying interpolation arguments it is useful if sets of those (r, s) are
specially notated.

Definition 2.1. Let w € 4,, 1 < p < o0. If 0 <o < p—1,7 > 0 and if
w® € A, forallr € (p—o,p+o0)and all s € [1,1+7), we define a set U(w, p)
by

U(w,p) =U(w,p,0,7)=(p—o0,p+0) x[1,1+71).
Let F(w,p) be the family of all such U(w,p). We write m € M (U(w,p)) if
m € M"(w®) for all (r,s) € U(w,p).

We need a relation of ||m/||y»(w) and ||m||« in the following.

Proposition 2.2. Let w € A4,, 1 < p < oo. Suppose that m € M(U(w,p)) for
some U(w,p) € F(w,p). Then

| are @y < NImllEC(lmllorsive, @ +6,1+€) €Uw,p), ifp>2;
lmllarew) < NImllssllmllim it 0, 1+€) € Ulw,p), ifp=2;
Il aze () < NImllas?[lmllyp-sitey, P =6,1+€) € Ulw,p), ifl<p<2,
for some 6 € (0,1) and some small numbers d,e > 0.

Proof. Let 1 < p < 2 and w € A,. Then, there exist €y,dp > 0 such that
(p—96,14¢€) € U(w,p) for all € € (0,¢0] and § € (0,60]. Let 1/p = (1 —
0)/2+6/(p—46), 6 € (0,5). Then, since m € MP~9(w'*), by interpolation
with change of measures of Stein-Weiss (see [3]) between L? and LP—° (w!*€)
boundedness, we have

Il are (wrea+orsw-ay < ImlIEIml|G s ite)-

Note that pd/(p —6) = (2 —p)/(2 — p+ J). Thus we can choose €, > 0 so
that pf(1+ €)/(p — §) = 1. This completes the proof for p € (1,2).

Suppose that 2 < p < co and w € A,. Then there exist ¢ > 0 69 > 0
such that (p + ,1 4+ ¢€) € U(w,p) for all € € (0,&] and § € (0,do]- So,
m € MPH(wite) for all € € (0,¢] and & € (0,dp]. Similarly to the case
1 < p < 2, applying interpolation, we have

2| g (wroarerraeary < |ImlISS llmll§pmes rse)
with pd/(p+6) = (p—2)/(p+ 6 — 2). Taking ¢, § so that pf(1+¢€)/(p+J) =

1, we conclude the proof for p € (2,00). The case p = 2 can be handled
similarly. |

To treat Fourier multipliers arising from Littlewood-Paley functions in
(1.2) and (1.9) simultaneously, we slightly generalize the usual notion of ho-
mogeneity.

Definition 2.3. Let f be a function on R". We say that f is dyadically ho-
mogeneous of degree 7, 7 € R, if f(2Fz) = 2*7 f(z) for all z € R™ \ {0} and
all k € Z (the set of integers).
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For m € ME, 1 < p < oo, w € Ap, we consider the spectral radius
operator

K| hn

Pp,w(m) = kli)rgo |l MP(w)*

To prove a weighted version of Theorem B, we need an approximation result
for Fourier multipliers in M?(w).

Proposition 2.4. Let 1 < p < oo, w € A, and m € L>(R"). We assume that
m is dyadically homogeneous of degree 0 and continuous on the closed annulus
By ={¢ € R" : 1 < |{| < 2}. We further assume that there ezists U(w,p) €
F(w,p) such that m € M(U(w,p)). Then, for any € > 0, there exists { €
MP(w) which is dyadically homogeneous of degree 0 and in C(R" \ {0})
such that ||m — {||e < € and pp,(m —£) < e.

Proof. Let {¢;}32, be a sequence of functions on the orthogonal group O(n)
such that
e each ¢; is infinitely differentiable and non-negative,
e for any neighborhood U of the identity in O(n), there exists a positive
integer N such that supp(p;) CU if j > N,
. fO(n) @;(A)dA =1, where dA is the Haar measure on O(n).

Also, let {¢;}32, be a sequence of non-negative functions in C*°(R) such
that supp(¢;) C [1—2 i1+ 2 7] and [, 4;(t) dt/t = 1. Define

f—/ /O(n) m(tAL) o (A)e; (1) A &

Then m; is dyadically homogeneous of degree 0, infinitely differentiable and
mj — m uniformly in R™ \ {0} by the continuity of m on By. This can be
shown similarly to [12, pp. 123-124], where we can find the case when m is
homogeneous of degree 0. Also, for a positive integer k, the derivatives of m?
satisfy

|0¢m; ()] < CiamlimliS|e17, 87 = (9/06)™ ... (8/0&) ™ (2:2)

for all multi-indices vy with |y| < M, where M is any positive integer, v =
(Y155 m)s Y =74+ -+, 75 € Z,7; > 0 and we have Cj e, < Cj k™
with a constant C; »r independent of k. By (2.2), if M is sufficiently large, it
follows that

M5 llare ) < CChemelimllss,  w € Ap, 1 <p< oo

with a constant C independent of k, which is well-known (see [4, 14] for
related results). Thus, by the evaluation of C; ; ar we have

Ppoo(m;) < lIml|oc- (2.3)

Since m,m; € M(U(w,p)), by Proposition 2.2, we can find r close to p,
s> 1 with (r,s) € U(w,p) and 6 € (0,1) such that

1m = m5)Hlagn oy < lm = m) 1 m = ) [ -
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It follows that
Ppvw(m —m;) < [lm =m0 prws (m —my)°.
Thus, by (2.3) we have
ppw(m —m;) < [[m =m0 (prws (M) + prows (m;)°)
< lm =150 (prws (m)” + [Iml|).
This completes the proof since ||m — mj||lcoc — 0 as j — oc. O

Applying Proposition 2.4, we can generalize Theorem B as follows.

Theorem 2.5. Suppose that 1 < p < co,w € A, and that m € L>(R™) fulfills
the hypotheses of Proposition 2.4. Also, suppose that m(§) # 0 for every
&#0. Let ¢(z) be holomorphic in C\ {0}. Then we have p(m(§)) € MP(w).

Proof. Define €9 > 0 by

deg = cemin Im(&)| = \in Im(&)]-
By Proposition 2.4, there is £ € MP?(w) which is dyadically homogeneous of
degree 0 and infinitely differentiable in R™ \ {0} such that ||m — {||c < €
and pp.(m — £) < €o. If we consider a curve C : £(§) + 2€0e'?,0 < 6 < 2,
Cauchy’s formula can be applied to represent p(m(§)) by a contour integral
as follows:

€ 2m € e,’g )
ptn@) = o [ A ae- @ [T O _coap g0

T 2e0e?? +£(£) —m(§)
Note that
619 _ L i k
2e0e’? + £(€) —m(€)  2eo —~ 260619

the series converges uniformly in 6 € [0, 27] since |m(§) — £(¢)| < €. Thus

oo k
pm(©) = =3 (M) Mi(€)

27 P 260

uniformly in R™ \ {0}, where

27 ) )
Mi(€) = / P(U(E) + 2ee®)e 7 df.

Since |€(€) + 2epet?| > €9, we can see that My (€) is dyadically homoge-
neous of degree 0 and infinitely differentiable in R™ \ {0}; also the derivative
satisfies

|07 My, (&)] < C, ¢~

for every multi-index v with a constant C., independent of k, which follows
from homogeneity. This implies that ||Mg|lar(w) < C with a constant C
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independent of k, similarly to the estimate for ||mf||Mp(w) in the proof of
Proposition 2.4. Thus we have ¢(m) € MP(w) and

[e]

1 _
> (2¢0) *ll(m = 0" llago () | Ml g )

lo(m)||are (w) < o
k=0

since the series converges, for ||(m — €)*|| pe(w) < €§ if k is sufficiently large.
This completes the proof.
(I

Theorem 2.5 in particular implies the following.

Corollary 2.6. Let 1 < p < co and w € A,. Let m be a dyadically homoge-
neous function of degree 0 such that m € M"(v) for all r € (1,00) and all
v € A,. We assume that m is continuous on By and does not vanish there.
Then m~t € MP(w).

We have applications of Theorem 2.5 and Corollary 2.6 to the theory of
Littlewood-Paley operators. Let w € A,, 1 < p < co. We say that g, of (1.2)
is bounded on LZ, if there exists a constant C such that ||gy (f)llp.0 < Cll fllp,w
for f € L2 N L2. The unique sublinear extension on LP?, is also denoted by
gy- The L boundedness for Ay of (1.9) is considered similarly.

Let H be the Hilbert space of functions u(t) on (0, oc) such that ||ul|s¢ =

(f57 Tu(t)? dt/t)l/2 < 00. We consider weighted spaces L7, ;. of functions
h(y,t) with the norm

1/p
||h||p,w,o{=(/R ||hy||’;cw<y>dy) ,

where h¥(t) = h(y,t). If w = 1 identically, the spaces L} , will be written
simply as L.
Define

Bw@ = [ [ v -mhowd . (24

where h € L3 and h(¢)(y,t) = h(y,t)X(c,c-1)(t), 0 < € < 1, and we assume
that ¢ € L'(R") with (1.1).
Then we have the following.

Lemma 2.7. Let 1 <7 < oo and v € A,. We assume that
gy (E s vt 1 < Co(rs O Fllpr v -
Then, if h € L}, 4 N L3, we have

sup ||E=(h)][r,0 < Co(r,v)||Rllrv,9¢,
01) ¥

€c

where 1) denotes the complex conjugate.
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Proof. For f € §(R"), we see that

/ ( [ [ e pnnd %) f(z)do
Rn € Rn

/ Yo fy)h(y,t) dy %
€ R~

B () (2)f(2) da

Rn

< [ o D@Inlscdy

Thus, by Holder’s inequality, we have

_ 1/r
< g6 (Pl arr ( [ 1w dy)

B (h)(2)f (2) do

Rn
1/r
< Colr,0) |l oot sr ( / 17 50(v) dy) .

Taking the supremum over f with ||f||.. ,-/» <1, we get the desired result.
(Il

By applying Lemma 2.7, we have the following.

Proposition 2.8. Suppose that g, satisfies the hypothesis of Lemma 2.7 with
r € (1,00) and v € A,.. Also, we assume that

gy (Hllre < Crlr, )| flro-
Put
N’ 13
m© = [ P,
0

Then ||m||M’(v) < CO (Ta U)Cl (Ta U)'
Proof. We first note that an interpolation with change of measures between
the L"(v) and L" (v=""/") boundedness of g, implies the L? boundedness of

gy Thus we have m € L*(R"™).
Let F(y,t) = f x4 (y), f € LE, N L%, Then

-1

B = [ [ weswi-na S = [ ¥06-a5e
where

O - [ ; dt

¥I@ = [ [ i
We see that

-1

¥o© = [ i G = worg,
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Thus

T bt
/ V(@ = 2)f(2) dz = Topeo f(2), ml9(€) = / [ (E)[* —
From Lemma 2.7 and the L} boundedness of gy it follows that
1T flleo = I1ES (E)llro < Co(r,0)llgy (F)llre < Colr, 0)Cr(r, 0)l[flr,o-
(2.5)

Letting € — 0 and noting m(9) — m, we see that m € M"(v) and ||m||p- (o)
can be evaluated by (2.5). O

Now we can state a weighted version of Theorem C.

Theorem 2.9. Let gy be as in (1.2). Let w € A,, 1 < p < c0. Suppose that
there exists U(w,p) € F(w,p) such that gy fulfills the hypotheses of Propo-
sition 2.8 on the weighted boundedness for all v, v = w*®, (r,s) € U(w,p).

Further, suppose that m(€) = [;° [ (tE)|? dt/t is continuous and does not
vanish on S71. Then we have

1£1lp.w < Cp,wllgy (Fllp.w
for f e L.

Obviously, this implies Theorem C when w = 1.

Proof of Theorem 2.9. We first note that by Proposition 2.8 m € M (U (w, p)).
Thus from Theorem 2.5 with ¢(z) = 1/z and our assumptions, we see that
m~t € MP(w). Since f = Ty,—1 T f, f € LP, N L?, we have

1£1lp,w < CNTmflp, -
Also, by (2.5) it follows that
1T fllp,w < Cllgy (H)lp,uw-

Combining results we have the desired inequality. |
From Theorem 2.9 the next result follows.

Theorem 2.10. Suppose the following.

(D) 196/l < Crllflleo for all v € (1,00) and all v € A,

(2) m(¢) = f;° [ (tE)|? dt/t is continuous and strictly positive on S™~.
Then, if f € LP, we have

[ £llpw < Cpawll g (F)lp,w
for allp € (1,00) and w € A,.
The following result is known (see [18]).

Theorem E. Suppose that
(1) B.(¢) < oo for some € > 0, where B.(¢)) = f\z\>1 [(z)| || dx;
(2) Cu(¥) < oo for some u > 1 with Cy, () = f\w\<1 [t (z)|* da;
(3) Hy € L'(R™),  where Hy(x) = supj, >, [¥(y)]-
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Then
||gw(f)||p7w < Cp7w||f||p7w
for allp € (1,00) and w € A,.

By Theorem 2.10 and Theorem E we have the following result, which is
useful in some applications.

Corollary 2.11. Suppose that 1 satisfies the conditions (1),(2),(3) of Theo-
rem E and the non-degeneracy condition: sup,q [ (t§)| > 0 for all & # 0.
Then || fllpw = 19w (Hllpw, f € LE, for all p € (1,00) and w € A,.

Proof. Let m(§) = fooo |LZAJ(t§)|2 dt/t. Then by our assumption m(§) # 0 for
& # 0. Thus by Theorem E and Theorem 2.10, it suffices to show that m is
continuous on S™!. From [18] we have

2k+1

5 dt ke ke
[t — < Cmin (2, 275)

with some ¢ > 0 for £ € S™ ! and k € Z. Thus it can be seen that
-1 . -1 ~

[ 1(t8)|? dt/t — m(€) uniformly on S™ ! ase — 0. Since [° [ (2€)|? dt/t

is continuous on S™~? for each fixed € > 0, the continuity of m follows. O

Remark 2.12. Let 1 < p < oo, w € A,. Suppose that gy is bounded on L?,
and 1 is a radial function with [ [1)(t€)|* dt/t = 1 for every £ # 0. Then

we have ||f|lpw < Cllgy(f)llp,w if gy is also bounded on L’Z;_p,/p. This is
well-known and follows from the proofs of Lemma 2.7 and Proposition 2.8.
Also, this can be proved by applying arguments of [10, Chap. V, 5.6 (b)].

3. Discrete parameter Littlewood-Paley functions

Let ¢ € L'(R™) with (1.1) and let A, be as in (1.9). We first give a criterion
for the boundedness of Ay, on LZ analogous to Theorem E.

Theorem 3.1. Let B.(v), Hy be as in Theorem E. Suppose that

(1) B(¢) < o0 for some € > 0;
(2) [9(E)| < ClE|™®  for all £ € R™ \ {0} with some § > 0;
(3) Hy € L'(R").

Let1 < p < oo. Then
||A¢(f)||p7w < Cp7w||f||p7w

for every w € A,.

We assume the pointwise estimate of 1@ in (2), which is not required in
Theorem E.
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Proof of Theorem 3.1. We apply methods of [7]. Define

—

D;(f)(&) =W(2¢)f(6)  for jeL,

where U € O satisfies that supp(¥) C {1/2 < |¢| < 2} and

i T(27¢) =1  for ¢#0.

j=—o0

We write
Frtpor(@) = Y Djyn(f * o) (@),

where we initially assume that f € S(R™). Let

. 1/2
Li(f)(z) = < > IDj+k(f*¢zk)(x)l2> :

k=—oc0
Then

Ay(f)(@) <Y Li(f)(@).

JEZ

We note that the condition (1) and (1.1) imply that |¢(€)] < C|¢[<, € =
min(1,e) (see [18, Lemma 1]). So, since the Fourier transform of D;(f * 1)or)
is supported in E; = {27177 < |¢| < 2'77}, the Plancherel theorem and the
conditions (1), (2) imply that

IILj(f)H%:Z/ 1Djik (f % o) ()| da (3.1)
kez ’R™
2
<) C min (|2°¢|, |2%¢|7¢) | f(€)| d¢
e, |
2
<2l fo)| de
> MG
< 27l £13

for some € > 0, where to get the last inequality we also use the fact that the
sets E; are finitely overlapping.

By the condition (3), we see that sup,~q |f * 1| < CM(f) (see [24, pp.
63-64]). Thus, if w € Ay, by the Hardy-Littlewood maximal theorem and the
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Littlewood-Paley inequality for L2, we see that

1L (F)IB.w = Z/ Dy f) * o (@) w(z) de (3.2)

keZ

<0 [ MDu)E) v de

kEZ

<Zc/ D (f) (@) w(z) dz

keZ
< ClIFI3 -

Interpolation with change of measures between (3.1) and (3.2) implies
that 4
1L (2w < €272 |3

1/u

for u € (0,1). Choosing u, close to 1, so that w'/* € Ay, we have

1L ()2 < C27 W2 f]ls,

and hence
184 (Dl < DL (D2 < Cll I,
JEL
Thus the conclusion follows from the extrapolation theorem of Rubio de
Francia [16]. O

Remark 3.2. Under the hypotheses of Theorem 3.1, gy, is also bounded on L%,
for all p € (1,00) and w € A,. This can be seen from the proof of Theorem
E in [18].

Let X be the Hilbert space of functions v(k) on Z such that

lollsc = ( S otk )1/2 < oo,

k=—o0
We define spaces L . similarly to L? ,. Also, we use notation similar to
the one used when Ej (h) is considered. We define

Z/ o (& — )l (1, B) g, (3.3)

kEZ

where [ € L3, l(n)(z, k) = (2, k)x;_n,n(k) for a positive integer N.
Then, we have the following result.

Lemma 3.3. Suppose that 1 < r < oo, v € A, and that

1A (s om0 < Colr, )| fll s vy
Then, we have sup x>, ||Lg( iro < Co(r,v)|[U]] 0,5, that is,

sup (/ |Lg(l)(x)|rv(:c) d:c) v < Co(r,v) / < PORUERD] )T/zv(x) dz

Nz1 k=—o0
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forle Ly 4 N L.
This is used to prove the following.

Proposition 3.4. We assume that Ay satisfies the hypothesis of Lemma 3.3
with r € (1,00) and v € A,. Further, we assume that

Ay (e < Crlr, 0)|| fllrw-
Set -
m&) = > [Pk
k=—o00

Then, we have ||m||pr(v) < Co(r,v)Ci(r,v).
Proposition 3.4 and Theorem 2.5 are applied to prove the following.

Theorem 3.5. We assume thatw € Ay, 1 < p < 0o. Suppose that there exists
U(w,p) € F(w,p) such that Ay fulfills the hypotheses of Proposition 3.4 on
the weighted boundedness for all v, v = w*, (r,s) € U(w,p). Then if the
function m(€) =Y ,2 [ (2%€)[2 is continuous and does not vanish on By,
we have
1£llp.w < Cpwll Ay (F)llp.w

for f e Lt

We note that m is dyadically homogeneous of degree 0 and that, under
the assumptions of Theorem 3.5, m € M(U(w, p)).

Theorem 3.5 implies the next result.

Theorem 3.6. We assume the following.

(1) 1A (lrw < Crollfllro for all r € (1,00) and all v € A,;
(2) m is continuous and strictly positive on By, where m is defined as in
Theorem 3.5.

Letw € A,, 1 < p < oo. Then we have
1 llpw < Cpwll Ay (Hllpw,  f € LE

Lemma 3.3, Proposition 3.4, Theorem 3.5 and Theorem 3.6 are analo-
gous to and can be proved similarly to Lemma 2.7, Proposition 2.8, Theorem
2.9 and Theorem 2.10, respectively. We omit their proofs.

We also have an analogue of Corollary 2.11.

Corollary 3.7. Suppose that 1 satisfies the conditions (1), (2),(3) of Theorem
3.1 and the non-degeneracy condition: supycy |1(27€)] > 0 for all £ # 0.
Then || fllp.w = |1 A¢(f)llpw, f € LY, for allp € (1,00) and w € Ap.

Proof. By the assumption m(€) = Y72 ___[(2F€)[> > 0 for £ # 0. There-
fore, by Theorem 3.6, to prove a reverse inequality of the conclusion of The-
orem 3.1 it suffices to show that m is continuous on By. From the estimate
[ih(€)] < C'min(|¢]¢, |€]€) for some e > 0, which follows from (1) and (2) of
Theorem 3.1 (see [18, Lemma 1]), it can be seen that Y0\ [(2K6)|2 —

m(§) uniformly on By as N — oo. Since chv:_N [1h(2%€)|2 is continuous on
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By for each fixed N, we can conclude that m is also continuous on By. This
completes the proof. O

4. Littlewood-Paley operators on H”, 0 < p < 1, with p close
to 1

Let 0 < p < 1. We consider the Hardy space of functions on R™ with values

in 3, which is denoted by HY (R™). Choose ¢ € §(R") with [ ¢(z)dz = 1.

Let h € Lj (R"). We say h € Hi (R") if ||h||gz_ = [|h*[|Ls < 00 with

o0 dt\ *?
w@ =swp ([Cleosn@r )
0

s>0
where we write hi(z) = h(z,t). Similarly, we consider the Hardy space
HY.(R™) of functions { in L3 (R") such that [|I|[¥,, = [|I*]|z» < co, where
X

1/2

I"(x) = sup Z los x UV (@)* ), V() =1z, ).

s>0
Let v € L'(R™) with (1.1) and let E;,(h) be defined as in (2.4).

Theorem 4.1. Suppose that

(1) [5° [(t)|? dt/t < C with a constant C;
(2) there exists T € (0,1] such that if |z| > 2|y|,

oo di\ 12 |
([t —n-wtr &) <ol

sup ||Ey(h)|lme < CllAllaz,

e€(0,1)
ifn/(n+71) <p <1, where H? = HP(R™) is the ordinary Hardy space on
R™.

Then

Recall that we say f € 8'(R™) (the space of tempered distributions)
belongs to HP(R™) if || flli» = [|*|l, < o0 , where f*(2) = sup,sg | f(2)]
with ¢ € $(R") satisfying [ ¢(z)dz =1 (see [9]).

We also have a similar result for Lg ).

Theorem 4.2. Let Lg(l) be defined as in (3.3). We assume the following
conditions:

(1) > o [h(2%€)[2 < C with a constant C;
(2) if |z| > 2|y|, we have

oo 1/2 .
< Z |thar (z — y) — ¢2k($)|2> < C|JZ|Un|+T

k=—oc0

with some T € (0,1].
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Then
Sup ILY Dl < Clllllgz. for n/(n+7) <p < 1.

To prove these theorems we apply atomic decompositions.
Let a be a (p,o0) atom in Hf (R™). Thus

) (Jfy7 lala, t)]? dt/t)l/z < |Q|~'/P, where Q is a cube in R" with sides
parallel to the coordinate axes;
() supp( (,t)) C Q uniformly in ¢ > 0, where @ is the same as in (i);
(iii) fRn a(z,t)x?dx = 0 for all t > 0 and |y| < [n(1/p — 1)], where 7 =
x]! ac'Y" and [a] denotes the largest integer not exceeding a.

To prove Theorem 4.1 we use the following.

Lemma 4.3. Let h € L3 (R™). Suppose that h € HY.(R™). Then there exist
a sequence {ax} of (p,00) atoms in HY.(R™) and a sequence {\r} of pos-
itive numbers such that h = ;- | Apay in HY (R™) and in L3 (R™), and
Yo AR < C’||h||1;15{, where C is a constant independent of h.

See [10, 26] for the case of H?(R™); the vector valued case can be proved
similarly. We apply Lemma 4.3 for p € (n/(n + 1),1]. We also need the
following.

Lemma 4.4. Let ¢ be a non-negative C* function on R™ supported in {|z| <
1} which satisfies [ o(z) dx = 1. Suppose that 1 € L*(R™) satisfies the condi-
tions (1), (2) of Theorem 41. Let U,y = @y x4, s,t > 0. Then, if |z| > 3y|,

we have
oo , di\Y? ly|™
U, (z—y)— U, 2= <
([ 1wse—n-vawr§) <ot

with a constant C independent of s > 0.

Proof. We note that
U (2 —y) — Uy y(z) = / (We(e — y — 2) — (2 — 2))pa(2) dz.
‘z‘<s

Let 0 < s < |z|/4. Then, if || > 3|y| and |z| < s, we have |z —z| > (3/4)|z| >
2|y|. Thus by the Minkowski inequality and (2) of Theorem 4.1 we see that

([ 1nite - womp )" (@)

lyl”
|x|n+r'

< Clielh
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To deal with the case s > |z|/4, we write

Uiz —y) — Uoula) = / B(sE)p(te)er (=) (em2mite) 1) de.

Applying Minkowski’s inequality again and using (1) of Theorem 4.1, we see

that
o= ) - o ) (4.2)
o t

o 1/2
< [1eworasiel ([ weor )

< Clyl / B(s6)l€] de
< Clyls ! / 6(6)1e] de

T

lyl
= |zt

By (4.1) and (4.2) we get the desired estimates. O

Proof of Theorem 4.1. Let a be a (p,00) atom in H (R™) supported on the
cube @ of the definition of the atom. Let yo be the center of (). Let @ be
a concentric enlargement of @) such that 3|y — yo| < |z — yo| if y € @ and
reR” \@ Let ¢ be as in Lemma 4.4. Then, using Lemma 4.4, the properties
of an atom and the Schwarz inequality, for z € R"® \ @ we have

oo L] = ‘// (Wsu(z —y) — ¥su(z —yo)) a(y, 1) dy %‘

o0 , dt\Y? [ e dt\*/?
s/(/ Woa(e =) = Woao = yo) —) (/ |a<y,t>|2—) dy
Q \Jo t 0 t

o0 , dt\?
s0|Q|-1/P/(/ Wi — ) = o s( — o) —) dy
0

o ¢
SC|Q|1/p/Q|y—yo|T|x—yo|"Tdy
S C|Q|71/p+1+‘r/n|x _ y0|7nfr'

Since p > n/(n + 7), we thus have

/ _sup |<ps * E;(a)(m)|p dz
R\G s>0

< CIQI’”"*’”/"/R “ |z — yo| P < C. (4.3)
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The condition (1) implies the L? boundedness of g, and hence by
Lemma 2.7 we can see that

sup ||Ey(P)|l2 < Cllhlls,, b€ L (R™).
e€(0,1)

So, by Hoélder’s inequality and the properties (i), (ii) of a, we get

Lswle. s Bs@@]” d < clar ( /Q MBS (@) ) d "

Q
= Sdt \P?
< clQ-r"? (/ / |a<y,t>|2—dy)
QJo t
<(C

Combining (4.3) and (4.4), we have
/ sup | * Efp(a)(m)|p dx < C. (4.5)
R™ s>0

Let h € HY.(R™) and the decomposition h = > rey Akay be as in Lemma
4.3. We easily see that |, * () (z)| < Ccl[¢ll1llesll2llRl| Lz, - Thus, since

h =371, Aag is in L3 (R™), we have
0o x By (h)(2) = > Mo * By (ar) ().
k=1

By this and (4.5) we can prove

[ suplec s Bs)@)” da < Clnlty,.

n s>0

This completes the proof.

Theorem 4.2 can be shown similarly.
Also, we can prove the following mapping properties of g, and A, on
HP(R™) in the same way.

Theorem 4.5. Suppose that ¢ fulfills the hypotheses of Theorem 4.1. We de-
fine F(¢, f)(z,t) = fxt(x). Then if n/(n+7) <p <1,

1E(, Ollaz, < Cllfllme
for f € HP(R™) N L?(R™).

Theorem 4.6. We assume that 1) fulfills the hypotheses of Theorem 4.2. Let
G, f)(@, k) = f *1por(2). Then

1GW, Az, < Cllfllue,  f € HP(R") N L*(R"),

ifn/(n+71)<p<1.
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Proof of Theorem 4.5. The proof is similar to that of Theorem 4.1. By the
atomic decomposition, it suffices to show that [|F'(¢,a)||gz < C, where a is
a (p,00) atom in HP(R") such that ||a|lee < |Q| /7, supp(a) C Q with a
cube ) and fa = 0. Let yo be the center of @) and let Cj, s, ¥st be as in
the proof of Theorem 4.1. Then, using Minkowski’s inequality and Lemma
4.4, for z € R \ Q we have

oo 1/2
(/ (oo % # ale)? ﬂ)
o ¢

_ ( [ ‘ [ st =) = Werle — o)) alo) dy

o , dt\M?
<clo [ (/ (& — ) = Wos( — o)) —) dy
o \Jo

S C«|62|—1/13—‘,—1—‘,—‘1'/n|aj _ y0|—n—‘r'

Therefore, as in (4.3), for p > n/(n + 1), we have

o A
/ _sup </ |ps * 1)y * a(x)|2 —> <C.
R™\Q >0 \Jo t

Since by the Minkowski inequality we easily see that
00 , dt 1/2
sup ([Tl evra@l §) < s gul@)@) < OM(a0@)a)
s>0 0 t s>0

as in (4.4) we have

o0 , dt\ "/
/~ sup (/ lps * Yy * a(z)] —> <C.
Q s>0 0 t

Collecting results, we have the desired estimates.
O

The proof of Theorem 4.6 is similar. Using Theorems 4.1, 4.5 and Theorems
4.2, 4.6, we can show analogues of Corollaries 2.11 and 3.7 for p < 1.

Theorem 4.7. Suppose that ¢ fulfills the hypotheses of Theorem 4.1. Put
m(&) =[5~ [ (t€)|2 dt/t. We assume that m does not vanish in R \ {0} and
m € CH(R™ \ {0}), where k is a positive integer satisfying k/n > 1/p —1/2,
with n/(n+ 1) < p < 1. Then we have

IE (s llaz, ~ N F Nl
for f € HP(R") N L2(R™), where F (1, f) is as in Theorem 4.5.

Theorem 4.8. We assume that ¥ fulfills the hypotheses of Theorem 4.2. Set
m(&) =300 (27, Let n/(n+7) <p < 1. We assume that m(€) # 0
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for all € € R \ {0} and m € C*(R™ \ {0}) with a positive integer k as in
Theorem 4.7. Let G(v, f) be as in Theorem 4.6. Then we have

1G>, Ollaz. = Ifllm»,  f € H(R") NL*(R").

Proof of Theorem 4.7. By Theorem 4.5 we have ||[F'(¢), f)l[gz. < C||f[[ae.

To prove the reverse inequality we note that f = T,,-1T},f. Since m™! €
Ck(R™ \ {0}) and it is homogeneous of degree 0, m ! is a Fourier multiplier
for H? by [10, pp. 347-348]. Thus

1fllr < ClTon fllze < Climing [T fll e, (4.6)

and by the proof of Proposition 2.8 we see that
T f = E5(F),

where m(€)| F are defined as in the proof of Proposition 2.8. Thus by Theorem
4.1 we have

[ Toncer flle = N ES (F)lleze < ClE W, F)ll bz,
which combined with (4.6) implies the reverse inequality. O

Theorem 4.8 can be proved similarly.

We note that Theorems 4.5 and 4.6 imply that ||g,(f)|l, < C||fll#e,
[[Aw(Hllp < C|lf]lge. Under the assumptions of Theorems 4.7 and 4.8, the
reverse inequalities, which would improve results, are not available at present
stage of the research. For related results which can handle Littlewood-Paley
operators like g, we refer to [28].

Let ¢(® on R' be as in (1.6). Then we can show that

(@) (@), 10 At ly|”
[ e -n-ewr ) see o —ea-n @
0 t ||

if 2|y| < |z|, where 1/2 < a < 3/2. Also, it is not difficult to see that
the condition (1) of Theorem 4.1 is valid for p(®). Thus, from Theorem 4.5
we in particular have the second inequality of (1.7) for 1/2 < a < 3/2,
2/(2a+ 1) < p < 1. We shall give a proof of the estimate (4.7) in Section 6
for completeness.

5. Applications to the theory of Sobolev spaces

Let 0 < a < n and
1/2
dt

To(f)(x) = / () - ]{9 L W

where I, is the Riesz potential operator defined by
L(£)(€) = 2nle)~*£(©)- (5.2)

Then, from [1] we can see the following result.
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Theorem F. Suppose that 1 < p < co and n > 2. Let T,, be as in (5.1). Then
1T (Dl > N fllpy € S(R™).

In [1] this was used to prove Theorem D in Section 1 when n > 2.
Theorem F is generalized to the weighted LP spaces (see [11, 21]).

We consider square functions generalizing U, and T, in (1.10) and (5.1).
Let

oo 1/2
@ = ([ @ - e s F) L az0. 63

with ® € M®, where we say ® € M*, a > 0, if ® is a bounded function on
R™ with compact support satisfying [, ®(z)dx = 1; if a > 1, we further
assume that

/ ®(z)z” de =0 for all v with 1 < |y| < [a]. (5.4)
When 1 < a < 2, (5.4) is satisfied if ® is even; in particular, we note that
Xo = XB(0,1)/|B(0,1)] € M* for 0 < a < 2 and if & = xg in (5.3), we have

U, of (1.10).
We also consider

3] 1/2
0@ = ([0 - L@ ) 69)

where 0 < a < n and ® € M. If we set & = xo in (5.5), we get T, of (5.1).
We prove the following.

Theorem 5.1. Suppose that Ty is as in (5.5) and 0 < a <n, 1 < p < oo. Let
w € A,. Then

1Ta(Pllpw = 1 fllpws € 8(R").

By Theorem 5.1 we see that U, can be used to characterize the weighted
Sobolev spaces.
Let J, be the Bessel potential operator defined as J,(g) = K, % g with

Ko(6) = (L +4m?|gf?)—/

(see [24]). Let 1 < p < o0, @ > 0 and w € A,. The weighted Sobolev space
WaP(R™) is defined to be the collection of all the functions f which can be ex-
pressed as f = Ju(g) with g € L2 (R™) and its norm is defined by || f||p,a,w =
[|19]lp,w- The weighted LP norm inequality for the Hardy-Littlewood maximal
operator with A, weights (see [10]) implies that J.(g) € L%, if g € L?, since
it is known that |J4(g9)] < CM(g) (see [24, 25]). We also note that .J, is
injective on L% . So, the norm || f||p.a,w is well-defined.
Applying Theorem 5.1, we have the following.

Corollary 5.2. Let 1 < p < oo, w € A, and 0 < a < n. Let U, be as in (5.3).
Then f € W2P(R™) if and only if f € LY, and U,(f) € LE; furthermore,

1 f1lp,cw = 1 llp,w + [1Ua(f)lp,uw-
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For the case n = 1 and a = 1, see Remark 5.7 below. We refer to
[22, 23, 25, 29] for relevant results. See [11] for characterization of the weighted
Sobolev space WP using square functions.

Also, we consider discrete parameter versions of T, and Uy:

oo 1/2
Dao(f)(x) = ( > Ma(f)(@) — Bo *Ia(f)(w)|222k°‘> ; (5.6)

k=—o0

with 0 < a < n;

o 1/2
Ea(f)(x)=<2 If(w)—%k*f(w)l222’““> , a>0, (5.7

k=—o0
where ® € M2. If we put ® = xo in (5.7), we have E, of (1.11). We have
discrete parameter analogues of Theorem 5.1 and Corollary 5.2.
Theorem 5.3. Let 0 < a <n and 1 < p < co. Let D, be as in (5.6). Then

1Da(P)llpw = [ fllpw:  f€8(R"),

where w is any weight in A,.

Corollary 5.4. Let E, be as in (5.7). Suppose that 1 < p < oo, w € 4, and
0<a<n. Then f € W*P(R™) if and only if f € LY, and E,(f) € LP; also,

1£1lp,00 = [ fllp,w + [ Ea(f)lp,w-

A version of Theorem 5.1 for 0 < o < 2 and n > 2 is shown in [21], where
® is assumed to be radial. Combining the arguments of [21] with Corollary
2.11, we can relax the assumption that @ is radial.

Here we give proofs of Theorem 5.3 and Corollary 5.4; Theorem 5.1 and
Corollary 5.2 can be shown similarly.

Proof of Theorem 5.3. Recall that Lo (¢) = @2r|E]) ", 0 < a<n,if Ly(z) =
T(a)|z|*~™ with
(a) = F'(n/2—-a/2) ‘
/2207 (o /2)

Let

Y(x) = Lo(x) — @ % Ly(z).
Then, we have D (f) = Ay (f), f € 8(R™), by homogeneity of L, where D,,
is as in (5.6). We observe that ¢ can be written as

0(2) = [ (Lala) = Lol =) 2(0) . (5.8)
Because ® is bounded and compactly supported and L, is locally integrable,
we see that

sup

|| <1 /L“(m_y)q’(y)dy <C

for some constant C. Using this inequality in the definition of ), we have
|(z)| < Cle|*™ for |z| < 1. (5.9)
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By applying Taylor’s formula and (5.4), we can easily deduce from (5.8) that

[h(x)| < Clz|* =1 for |z| > 1. (5.10)
Taking the Fourier transform, we see that
$(e) = (2rlg) ™ (1- (&) - (5.11)

By (5.4) this implies [¢)(€)| < C|¢|l*+1-2 from which the condition (1.1)
follows, since [a] +1—a > 0. It is easy to see that the conditions (1), (2) and
(3) of Theorem 3.1 follow from the estimates (5.9), (5.10) and (5.11). Also,

obviously we have sup,cy [ih(2%€)| > 0 for all £ # 0. (This can be easily seen

by noting that @(5) — 0 as || = o00.) Thus we can apply Corollary 3.7 to
get the equivalence of the L? norms claimed. O

Proof of Corollary 5.4. Riesz potentials and Bessel potentials are related as
follows.
Lemma 5.5. Let >0, 1 <p < oo and w € A,.
(1) We have
(27[€)™ = L)1 + 4n*|g*)*/
with a Fourier multiplier ¢ for L.
(2) There ezists a Fourier multiplier m for LP such that

(1+4a°[€)*/2 = m(€) + m(€) (2mlE))°.
To prove this we note that
82 6(©) < CHeI71, € e R\ {0},

for all multi-indices v and similar estimates for m(§). So, by a theorem on

Fourier multipliers for L? we can get the conclusion, as in the case of the

estimate for || M| ar» (w) in the proof of Theorem 2.5. See also [23, Lemma 4].
When g € L?, w € A,, 1 <p < oo and 0 < a < n, we show that

1Ea(Ja(9)lp.w + 1 a(9)llp,w = [19llp.w- (5.12)

We first prove (5.12) for g € 8¢(R™). Since E,(Jo(g9)) = Da(I—aJa(g)) and
I_,J.(g) € 8(R™), when g € 8¢(R™), by Theorem 5.3 we have

1Ea(Ja(@)llpw = H-ada(9)llpws (5.13)

where I_, is defined by (5.2) with —a in place of a. Part (1) of Lemma 5.5
implies that

H=-aJa(9)llpw < Cllgllp,w
and hence
1 Ea(Ja(g)lpw < Cllgllp,uw- (5.14)
On the other hand, by part (2) of Lemma 5.5 and (5.13) we have
19llp.w = 1T =ada(@)lp.w < CllTa(9)llp.w + CliT-ada(g)llp,w (5.15)
< CllJa(9)llpw + CllEa(Ja(9)lpw,
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where we recall that the Bessel potential operator Js is defined on S(R™) for
any 8 € R by Js(f)(€) = (1+4x2[¢[*) /2 f(£). Also we have

170 (@)llp.w < ClIM(9)llpw < Cllgllp,- (5.16)

Combining (5.14), (5.15) and (5.16), we have (5.12) for g € So(R").
Now we show that (5.12) holds for any g € L. For a positive integer
N, let

N 1/2
EM(f)(z) = < Z |f (@) — Bor * f(z)]? 2—2ka> '
k=—N

Then EXY) (f) < CxM(f), which implies that ESY is bounded on L?,. We
can take a sequence {gi} in S8o(R") such that g, — g in L and J,(gr) —
Jo(g) in L2 as k — oco. By (5.12) for 8(R™) we see that

IES (Ja(gi)llpw < Cllgillp,o-

@

Letting k — oo, by L? boundedness and sublinearity of E5 "’ we have

IES) (Ja(@)llpiw < Cllgllp.w-

Thus, letting N — oo, we get

1Ea(Ja(g)lpw < Cllgllp,w-

Therefore, we have

A [[Ba(Ja(9)) = Ea(Ja(go)lly < Hm [|Ba(Ja(g = g1))llp,0
— 00 k—o0

< C lim |lg = gill,,,, = O
Consequently, letting £ — oo in the relation

1o (Ja (gr)lp.w + 1 Ta(gi)llp.w = llgkllp,w,

which we have already proved, we can obtain (5.12) for any g € LP.

To complete the proof of Corollary 5.4, it thus only remains to show
that f € W3P(R™) if f € L?, and E,(f) € L%,. To prove this it is convenient
to note the following.

Lemma 5.6. Suppose that f € LY, w € Ay, 1 < p < 00, g € $(R") and

w?r

a > 0. Then we have the following.

(1) Ko*(f+9)(@) = (Ka * f) ¥ 9(x) = (Ko ) * f(z) for every z € R";
(2) Jon(Kax HW)g(y) dy = [ (Ko *9)(y) f(y) dy.

Proof. To prove part (1), by Fubini’s theorem it suffices to show that

z://mw—z—y>|f<y>||g<z)|dydz< 0.
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This is obvious, for
r<c [ u(e -2l = ¢ [ MOEle- ) iz
, , 1/p’
< CIM (Dl ( [ 19tz =P iz v dz)

/ , 1/p'
< Ol fllpe ( [ 19t~ P iz dz) |

where the last integral is finite since g € $(R"), w™?'/? € A, and $(R") C L
forve A, 1 <r < oo (see [10, p. 412] for a related result).
Part (2) follows from part (1) by putting « = 0 since K, is radial. O

Let f € L? and E,(f) € L. We take p € 8(R") satisfying [ ¢(z)dz =
1. Let f(z) = o * f(:c) and g( () = J_a(pe) * f(z). Then, note that
g9 € LP and f) = J,(g'°)) by part (1) of Lemma 5.6.

By (5.12) we have

IEa(FDllpw + 1 llpw = g llpyw- (5.17)

We note that

sup 17 pw < CUM (llpw < Cllf lpyu- (5.18)

Also, Minkowski’s inequality implies that

- 1/2
T) = ( Z |pe * f(z) — ®or * e * f(:c)|2 2—2ka>

k=—oc0

1/2
/ lpe(y <Z |f(z—y) = Do * flz — )I222’“‘) dy

k=—o0

< CM(Ea(f))(@).
Thus
ig}gllEa(f(e))llp,w < CM(Ea(f)lpw < CllE()lp,w,

which combined with (5.17) and (5.18) implies that sup,.- ||g‘“||p,. < 0.

Therefore we can choose a sequence {g(**)}, €, — 0, which converges
weakly in LP. Let g{*) — g weakly in LP,. Then, since {f(¢*)} converges
to f in L{’U, we can conclude that f = J,(g). To show this, let Ap(f) =
J f(x)h(z) dz for h € §(R™). Then it is easy to see that Ay, is a bounded linear
funct1onal on LE, for every h € 8(R™), since |An(f)| < || fllp,wllbll, w-s/0 bY

Holder’s inequality. Thus, for any h € S(R™), applying part (2) of Lemma 5.6
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and noting J, (h) € §(R™), we have

/f cn_hm/f% dx—mn/ (9"*)) (@) h(z) d

= lim / ¢V (@) T (h) () dir = / 9(2) T (h) () de

:/hwummm

This implies that f = J,(g) and hence f € WP(R™). This completes the
proof of Corollary 5.4. |

Remark 5.7. Let ¢ = sgn — sgn *® on R, where ® € M!. We note that ¢)(¢) =
—im~re1(1 — &(€)). We have results analogous to Theorems 5.1 and 5.3 for
gy and Ay, respectively, with similar proofs. They can be applied to prove
results generalizing Corollaries 5.2 and 5.4 to the case n = 1 and a = 1 by
arguments similar to those used for the corollaries.

6. Proof of (4.7)

In this section we give a proof of the estimate (4.7) for completeness. Put
¢ = (). To prove (4.7), assuming |y| < |z|/2, we write

L= [Tl - - P T
We first assume z > 0 and y > 0. By the change of variables z/t = u we have
L=x"2 /00 |Y(u —uy/z) — Y(u)Pudu =1+ 11,
where 0

=2 [ ot = uyfo) = o) Pud
IrT=z7? /100 [v(u —uy/z) — Y (u)|*udu.

We estimate I and I1 separately. We see that

Il =x272 /00 |¢(u — uy/z)|*u du
1

z/(z—y)
= onx_Q/ (1 —|u(l —y/))**Vudu.
1

Thus, by the change of variables w = u(z — y)/z, we have

1
II=o’(x — y)fz/ (1 —w)* Yy dw
(z—y)/x

1
<aa-y) [ @-wpPe e,
(z—y)/=
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which implies that
IT<a*(z—y) 2(2a—1) Y (y/z)** 1 < Cuy?* o172 (6.1)
To deal with I, we write
—azxﬁ/ (1 —u(l—y/z)* = (1 —w)* udu =1, + I,
where

1-2y/x
I =a’z? / (1 —u(l—y/z)* ' — (1 —uw)* udu,
0

1
b = oﬂ;ﬂ/l B R A
y/x

We observe that

1
/ (1= u(l = y/a)2@ D gy (6.2)
1-2y/z
(a—v)/e A
=z(z—y)* / (1 —w)? @Y duw
(1—2y/z)(z—y)/=

< Co (1= (= 2y/a)(@ = y)/2)* ™" = (1= (@ = y)/2)** )
< Caly/a)™ .

Also, we have

1
/ (1= )2 du < O (y/)>". (6.3)
1-2y/x

By (6.2) and (6.3) we see that
I < Coz™2(y/z)** ™t = Coy®* L1722, (6.4)

To estimate I; we recall that 1/2 < a < 3/2. By the mean value theorem,
we have

1-2y/x
L < Ca=2(y/x)’ / (1= u)2e=2) gy (6.5)
0
S Cx_Q(y/m)2(2y/m)2a_3 — Cy2a—1m—2a—1.

The estimate I < Cpy?* 1z7172% follows from (6.4) and (6.5), which com-
bined with (6.1) implies

L S CayQQ—lx—1—2a7
when z > 0,y > 0.

Next we deal with the case z > 0, y < 0. In this case we also consider
the analogous decomposition L = I + II. Since 1) is supported in [—1, 1] and
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x>0,y <0, we see that IT = 0. Also, I = I; + I, where

1-2]y|/x
L= an_Q/ (1= u(l = y/2))°"! = (1 - w)*=Pudu,
0

B=a [ = yfo) ~ o) Pudu

—2|yl|/=
To estimate I», we see that

! A re/(e—y) A
/ [ (u(l = y/2))fudu < o / 11— u(l - y/2)P Y du
1

—2lyl/= 1-2|y|/=
1
=a’z(z —y)* / (1 —w)?@=Y dw
(z—y)(a+2y) />
= a’z(z —y) 7 (20 = )7 (lyl/x + 2(y/x)*)**
< Caly/=** .

Similarly,

1

/ (1 —u)2 @Dy du < Cyly /x>~
1-2Jy|/z

Thus

L < Clyf** a2t (6.6)

On the other hand, by the mean value theorem,

1yl L
I < a2 / (Iyle Mo — 1|1 — u(l - y/2))[* 2)> du  (6.7)

(z+2y)(v—y)/=*
<Cytatate -9 | (1 = w2 qy
0
=Oy*z *(x —y) 1 (3 —2a) " ((Jyl/= + 2(y/=)?)** % = 1)
S Ca|y|2a—1x—2a—1'

The estimates (6.6) and (6.7) imply that I < C|y[?*~tz=22~ for > 0,y <
0.
Since 1 is odd, we observe that

L= [T H e+ - (g
0

Thus, the results for the cases x < 0,y > 0 and z < 0, y < 0 will follow from
the results for the cases x > 0, y < 0 and z > 0, y > 0, respectively.

o dt
-
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