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ABSTRACT
We consider dynamical semigroups with unbounded Kossakowski-Lindblad-Davies gen-

erators which are related to evolution of an open system with a tuned repeated harmonic
perturbation. Our main result is the proof of existence of uniquely determined minimal
trace-preserving strongly continuous dynamical semigroups on the space of density matri-
ces. The corresponding dual W ∗-dynamical system is shown to be unital quasi-free and
completely positive automorphisms of the CCR-algebra. We also comment on the action
of dynamical semigroups on quasi-free states.
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1 Introduction: Repeated Perturbation

A quantum Hamiltonian system with repeated harmonic interaction was considered in
[TZ] as a model of a physical phenomenon known as ”one-atom maser” [?]. The model
consists of one mode cavity and the chain of atoms. Aiming elastic cavity-atom interac-
tion, soft structure for the atoms and making the model soluble, the harmonic structure
for the atoms has been adapted. In this paper, we consider the corresponding open system
which allow the leaky phenomena from the cavity. Such a model can be defined mathemat-
ically through the Kossakowski-Lindblad-Davies dissipative extension of the Hamiltonian
dynamics.

Since repeated perturbation of Hamiltonian dynamics is piecewise constant, its analy-
sis reduces to study of Quantum Dynamical Semigroups (QDS) on the space of states and
of their generators. A similar reduction is also valid for repeated perturbation of open
quantum dynamical systems, which are described by dissipative extensions of Hamiltonian
generators à la Kossakowski-Lindblad-Davies (KLD) [AJP3, BJM] in Markov approxima-
tion [AJP2]. The theory of QDS is quite satisfactory for bounded generators and for their
bounded KLD extensions [Da1]. A generalisation of this theory to the case of unbounded
dissipative generators was initiated in [Da2, Da3] and developed in [Fa, EL, DVV, Pu] for
completely positive maps on CCR-algebras. The progress in construction of the minimal
dynamical semigroups for unbounded dissipative generators is essentially due to ideas
that come back to T.Kato [Ka1]. These ideas were developed first in [Da2]. Later they
inspired the construction and the abstract analysis of uniqueness and trace-preserving
(or Markovian) property of the minimal QDS with KLD generators, see [ChF], [AJP3]
Lecture 3. They were followed by important works in the study of QDS (see, e.g. [FR]),
including some recent analysis of singular (relative bound equals to one) perturbations of
positive and substochastic semigroups on the normal states [M-K] and abstract spaces of
states. [ALM-K]

This paper is addressed to these problems for unbounded generators by a concrete
quantum dynamics which needs different approach from the works mentioned above. Our
model is a dissipative KLD extension of Hamiltonian dynamical system [TZ], which gives
an open system for boson reservoir. And its generator is unbounded with the relative
bound equals to one.

Our main results are the following:
We construct the generator of the minimal QDS corresponding to the standard KLD
extension of Hamiltonian dynamical system [TZ], in Section 2. We prove in Theorem
2.7 that it generates strongly continuous, positive, contraction and trace-preserving semi-
groups, i.e. the Markov Dynamical Semigroup (MDS) on the space of trace-class opera-
tors. In Section 3, we establish the explicit formulae for the action of its dual MDS on the
Weyl CCR-algebra (Theorem 3.1). This allows to prove that the dual MDS is completely
positive (Theorem 3.6). Finally we prove that the MDS maps the space of quasi-free
states into itself, see Proposition 3.9. The repeated perturbation is given by the iterated
composition of quantum dynamical semigroups. Mathematically, the main results of the
paper concern with individual semigroups rather than their composition. However, we
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aware about their application to repeated perturbation throughout the article, since our
original motivation rests there. The argument of physical effect of the “composition” is
presented in the sequel publication.

In the rest of this section, we briefly review the model of Hamiltonian dynamics of [TZ]
and recall the standard KLD extension to the open system with a linear boson reservoir.
Then we give a formal definition of the generator for our model for the open system with
repeated interaction.

Let a and a∗ be the annihilation and the creation operators defined in the Fock space
F generated by a cyclic vector Ω. That is, the Hilbert space F contains the algebraic span
Ffin of vectors {(a∗)mΩ}m≥0 as a dense subset and a, a∗ satisfy the Canonical Commutation
Relations (CCR)

[a, a∗] = 1l, [a, a] = 0, [a∗, a∗] = 0 on Ffin.

We denote by {Hk}N
k=0 the copies of F for an arbitrary but finite N ∈ N and by H (N)

the Hilbert space tensor product of these copies:

H (N) =
N⊗

k=0

Hk (1.1)

and by ΩF := Ω⊗(N+1), its cyclic vector.
In this space, we define the annihilation and the creation operators

bk := 1l ⊗ . . . ⊗ 1l ⊗ a ⊗ 1l ⊗ . . . ⊗ 1l , b∗k := 1l ⊗ . . . ⊗ 1l ⊗ a∗ ⊗ 1l ⊗ . . . ⊗ 1l (1.2)

for k = 0, 1, 2, . . . , N , where the operator a, or a∗, is the (k + 1)-th factor. On algebraic

tensor product H (N)
fin := F⊗(N+1)

fin , these unbounded operators satisfy the CCR:

[bk, b
∗
k′ ] = δk,k′1l, [bk, bk′ ] = [b∗k, b

∗
k′ ] = 0 (k, k′ = 0, 1, 2, . . . , N) . (1.3)

We consider the Hamiltonian of the system with time-dependent repeated harmonic
perturbation [TZ]:

HN(t) = E b∗0b0 + ε

N∑
k=1

b∗kbk + η

N∑
k=1

χ[(k−1)τ,kτ)(t) (b∗0bk + b∗kb0) , (1.4)

for t ∈ [0, Nτ), where τ, E, ε, η > 0 and χ[x,y)(·) is the characteristic function of semi-open
intervals [x, y) ⊂ R. Here (1.4) denotes the self-adjoint operator on the dense domain

D0 :=
N∩

k=0

dom(b∗kbk) ⊂ H (N) . (1.5)

The model (1.4) describes the system S + CN , where subsystem S corresponding to
the kinetic term E b∗0b0 of the Hamiltonian is repeatedly interacting with a long time-
equidistant chain CN = S1+S2+· · ·+SN of subsystems corresponding to the kinetic terms
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ε
∑N

k=1 b∗kbk. The Hilbert space H0 corresponds to the subsystem S and the Huberto space
Hk to the subsystem Sk (k = 1, · · · , N). This visualisation is motivated by a number of
physical models, see [BJM], [NVZ].

For t ∈ [(n − 1)τ, nτ), only subsystem Sn interacts with S and the system S + CN is
autonomous on this time-interval with the self-adjoint Hamiltonian

Hn = E b∗0b0 + ε

N∑
k=1

b∗kbk + η (b∗0bn + b∗nb0) (1.6)

on domain D0. To keep the operator (1.6) lower semi-bounded, we assume that parameters
E, ε, η satisfy the condition

(H1) η2 6 E ε . (1.7)

We denote by C1(H (N)) the Banach space of trace-class operators on H (N) with trace
norm ‖ · ‖1. Its dual space is isometrically isomorphic to the space of bounded operators
on H (N): C∗

1(H
(N)) ' L(H (N)). We consider the dual pair corresponding to the bilinear

functional

〈φ |A〉H (N) = TrH (N)(φA) , for (φ,A) ∈ C1(H
(N)) × L(H (N)) . (1.8)

Positive operators in C1(H (N)) with unit trace are called density matrices. For each
density matrix ρ, we consider the normal state ωρ(·) on L(H (N)) defined by

ωρ( · ) = 〈ρ | · 〉H (N) . (1.9)

To describe evolution of the open system corresponding to (1.4), we consider the
Kossakowski-Lindblad-Davies (KLD) dissipative extension of the Hamiltonian dynam-
ics to non-Hamiltonian master equation: ∂tρ(t) = Lσ(t)(ρ(t)), with the time-dependent
generator

Lσ(t)(ρ) := −i [HN(t), ρ] + Q(ρ) − 1

2
(Q∗(1l)ρ + ρQ∗(1l)) , (1.10)

for t ∈ [0, Nτ). [AJP3, AF] The operator Q acts on ρ as

Q(ρ) = σ− b0 ρ b∗0 + σ+ b∗0 ρ b0 . (1.11)

Its dual operator Q∗ is defined by the relation 〈Q(ρ) |A〉H (N) = 〈ρ |Q∗(A)〉H (N) :

Q∗(A) = σ− b∗0 Ab0 + σ+ b0 Ab∗0 . (1.12)

Since the Hamiltonian part of the dynamics is piecewise autonomous, the generator
(1.10) for t ∈ [(k − 1)τ, kτ ), k = 1, 2, . . . , N , gets the form

Lσ,k(ρ) := −i[Hk, ρ] + Q(ρ) − 1

2
(Q∗(1l)ρ + ρQ∗(1l)) . (1.13)
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Note that the form of generators (1.10), (1.13) corresponds to repeated perturbation
of the open system S + R, i.e. we study (S + R) + CN for external boson reservoir R.
Then a formal solution ρ(t) of the Cauchy problem for the master equation corresponding
to initial condition ρ(0) = ρ, is defined by the evolution map {T σ

t,0}t≥0. It is a composition
of QDS with generators (1.13):

ρ(t) = T σ
t,0(ρ) := (T σ

n,ν(t) T σ
n−1 . . . T σ

2 T σ
1 )(ρ) (1.14)

for t = (n − 1)τ + ν(t) and n 6 N , where T σ
k,s = esLσ,k , T σ

k = T σ
k,τ (k = 1, 2, · · · , n).

Consequently, the analysis of evolution for repeated perturbation reduces to the study of
QDS on the intervals [(k − 1)τ, kτ), k = 1, · · · , N .

It is known that for the standard KLD generator of the form (1.13) with bounded Hk,
Q and Q∗, the corresponding QDS {T σ

k,s}s≥0 on C1(H (N)) is norm-continuous, completely
positive and trace-preserving, see e.g.[Da1]. The first aim of the present paper is to give a
rigorous meaning to the generator of the standard form (1.13) with unbounded operators
(1.6), (1.11) and (1.12) and to construct QDS for the solution (1.14). And then, we show
the above properties for our QDS with unbounded generators.

Our next hypothesis demands that the parameters σ± (1.11), (1.12) satisfy the condi-
tion:

(H2) 0 6 σ+ < σ− . (1.15)

Together with (H1), the condition plays an important role in the construction of semi-
groups {T σ

k,s}s≥0 with trace-preserving property. cf. Theorem 2.7. Under these hypothesis,
complete positivity of the dual semigroups {T σ ∗

k,s }s≥0 are established in Section 3.2.

Finally, from now on we suppress the superscript N in H (N) for brevity.

2 Minimal Dynamical Semigroup

2.1 Unbounded generators

First, we define operators related to the Hamiltonian (1.6) in the Hilbert space H (1.1):

K0 =
σ+

2
b0b

∗
0 +

σ−

2
b∗0b0 + i

(
(E − ε)b∗0b0 + ε n̂

)
, n̂ =

N∑
j=0

b∗jbj , (2.1)

Kn = K0 + i η(b∗0bn + b∗nb0) =
1

2
Q∗(1l) + iHn , n = 1, 2, . . . , N . (2.2)

Here E, ε, η > 0 and σ± satisfy (H1) and (H2), respectively. Domains of these operators
are identical to D0 (1.5), which is dense in H .

Lemma 2.1 For n = 1, 2, . . . , N , the operator Kn is m-accretive.
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For the proof, see Appendix

It is known that for any m-accretive A in a Hilbert space, the operator (−A) is
the generator of a one-parameter Strongly Continuous Contraction Semigroup (SCCS)
{e−tA}t>0 on the Hilbert space, in general, e.g. [Ka2], [Za]. Then Lemma 2.1 implies:

Corollary 2.2 The operator −Kn is the generator of a SCCS {e−t Kn}t>0 on H for
n = 1, 2, · · · , N .

Next we make precise definition of operators (1.13). Since the operators {bn, b
∗
n}N

n=0 in
H are unbounded, the operators (1.13) in the Banach space C1(H ) are also unbounded.
Let Φ : C1(H ) → C1(H ) be the positive injection defined by Φ(ρ) = (1l+ n̂)−1ρ(1l+ n̂)−1,

and put D̃ = Φ(C1(H )). Note that n̂ is a non-negative self-adjoint operator on domain
D0. In fact,

ψm =
b∗m0
0 b∗m1

1 . . . b∗mN
N√

m0! m1! . . . mN !
ΩF (2.3)

is the eigenvector of n̂ with eigenvalue
∑N

k=0 mk for m = (m0, · · · ,mN) ∈ ZN+1
+ . And the

set of vectors (2.3) for m ∈ Z+ form a Complete Ortho-Normal System (CONS) of H .
Note that operators (2.2) are relatively bounded with respect to (1l+ n̂), i.e., ‖Knψ‖ ≤

α ‖(1l + n̂)ψ‖, ψ ∈ D0 hold for some α > 0, [Ka2]. Taking into account that operators
b0(1l + n̂)−1 and b∗0(1l + n̂)−1 are bounded, the unbounded operator (1.13)

Lσ,n(ρ) = −Knρ − ρK∗
n + σ−b0ρb∗0 + σ+b∗0ρb0 (2.4)

can be defined on D̃ as

Lσ,n(Φ(ρ)) = −Kn(1l + n̂)−1ρ(1l + n̂)−1 − (1l + n̂)−1ρ(Kn(1l + n̂)−1)∗

+σ−b0(1l + n̂)−1ρ(b0(1l + n̂)−1)∗ + σ+b∗0(1l + n̂)−1ρ(b∗0(1l + n̂)−1)∗ , (2.5)

for any ρ ∈ C1(H ) and n = 1, 2 . . . , N . Note that the domain D̃ is dense in C1(H ), since
it contains all finite-rank operators made of vectors lie in D0.

2.2 Dynamical semigroup on the space of density matrices

To construct dynamical semigroups (DS) with the generators which are extensions of
(2.4), we recall some results of the Kato-Davies approach [Ka1], [Da2]. Since these results
are applicable to any n = 1, 2, . . . N verbatim, we describe them under our notations for
the case n = 1 and the corresponding semigroup.

First, we note that the operator K1 (2.2) satisfies the identity

−(K1ϕ, ψ) − (ϕ, K1ψ) + σ−(b0ϕ, b0ψ) + σ+(b∗0ϕ, b∗0ψ) = 0 , (2.6)

for all ϕ, ψ ∈ D0 (1.5).
Let V denote the Banach subspace of all self-adjoint elements of C1(H ). The family

of maps
St(ρ) = e−tK1 ρ (e−tK1)∗ (t > 0 , ρ ∈ V ) (2.7)
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defines a positive SCCS on V . Let Z be the generator of St and dom (Z) its domain.
Then D = Ψ(V ) := (1l + K1)

−1V ((1l + K1)
−1)∗ ⊂ dom (Z) and

Z(ρ) = −K1ρ − ρK∗
1 for ρ ∈ D (2.8)

hold. The set D is dense in V and a core of the generator Z. Note that D = D̃ ∩ V .
There are two positive Z-bounded operators J− and J+ on dom Z such that

J−(ρ) = b0ρb∗0 , J+(ρ) = b∗0ρb0 for ρ ∈ D . (2.9)

Then, the operator L̂ := Z + σ−J− + σ+J+ is defined on the domain dom (Z). Whereas

let us denote L the operator (2.4) for n = 1 with domain D̃ . Here we understand (2.8)
and (2.9) as in (2.5). Then,

TrH (L̂(ρ)) = 0 holds for ρ ∈ dom (Z) (2.10)

and the operator J := (σ−J− + σ+J+) is Z-bounded with the relative bound equals to
one, which require non-perturbative arguments to construct the DS corresponding to L̂.

Proposition 2.3 For any r ∈ [0, 1) the operator Z + r(σ−J− + σ+J+) with domain
dom (Z) is the generator of a positive SCCS {Tt,r}t>0 on V .

Proposition 2.4 There exists a positive SCCS {Tt}t>0 on V such that

lim
r→1

Tt,r(ρ) = Tt(ρ) , ρ ∈ V ,

uniformly in each compact interval of t > 0. The generator M of Tt is a closed extension
of the operator L̂.

Remark 2.5 Since perturbation J has relative bound 1, the operator L̂ may have many
closed extensions [Ka2]. The semigroup constructed in Proposition 2.4 is minimal in the
following sense: if the SCCS {T ′

t}t>0 has the generator M ′, which is another extension of
L̂, then T ′

t > Tt holds for all t > 0. Moreover, in spite of (2.6), or the ”conservativity”
(2.10), the minimal DS need not be trace-preserving.

Proposition 2.6 If dom (Z) is a core of the generator M , then the minimal semigroup
{Tt}t>0 is trace-preserving, i.e. a Markovian semigroup.

Thus far, we have got a glimpse of results from [Ka1, Da2]. Now we come back to
analysis of our concrete open system (1.6), (1.13) for the master equation with generators

Lσ,n (2.4) on domain D̃ .

Theorem 2.7 For each n = 1, 2 . . . , N , the closure of the operator Lσ,n ¹D is the gener-
ator of a trace-preserving SCCS on V .
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Proof: It is enough to consider only the case n = 1 as above.
1◦ We start by checking that dom (Z) is a core of M . Let us define the SCCS Rs on V
by

Rs(ρ) = e−sn̂ρe−sn̂ , (s > 0 , ρ ∈ V ) .

Then
e−tK1e−sn̂ = e−sn̂e−tK1 on H , (2.11)

as well as b0e
−sn̂ = e−se−sn̂b0, b∗0e

−sn̂ = ese−sn̂b∗0 on D0. Combining with (2.7), we obtain

Rs(St(ρ)) = St(Rs(ρ)) for ρ ∈ V . (2.12)

Since any element of D can be expressed as a convergent sum of the rank-one operators
with eigenvectors in D0, we obtain that

J+(Rs(ρ)) = e2sRs(J+(ρ)) ,

J−(Rs(ρ)) = e−2sRs(J−(ρ)) , (2.13)

hold for ρ ∈ D . Differentiating (2.12) with respect to t, one gets

Rs(dom (Z)) ⊂ dom (Z) and Rs(Z(ρ)) = Z(Rs(ρ)) for ρ ∈ dom (Z). (2.14)

Note that Z-boundedness of J± together with (2.13) and boundedness of J±Rs imply that
the same relations (2.13) hold for all ρ ∈ dom (Z). Hence, (2.14) and (2.13) yield

(Z + σ+J+ + σ−J−)Rs = Rs(Z + e2sσ+J+ + e−2sσ−J−) (2.15)

on dom (Z). Now we introduce the operators K̃0 and K̃1 which are defined by replacing
parameters σ±, E, ε and η in K0 and K1 (see (2.1), (2.2)) by σ̃± = e±2sσ±, Ẽ = r(s)E, ε̃ =
r(s)ε and η̃ = r(s)η, where

r(s) :=
e2sσ+ + e−2sσ−

σ+ + σ−
. (2.16)

To keep r(s) ∈ (0, 1), we set s ∈ (0, 2−1 log σ−/σ+) that is possible by the hypothesis
(H2): 0 6 σ+ < σ−. Note that lims↓0 r(s) = 1.

By virtue of (2.2), one gets the identity

K1 =
K̃1

r(s)
− σ+σ−

σ+ + σ−

sinh 2s

r(s)
1l .

Then we obtain that

Z =
Z̃

r(s)
+

2σ+σ−

σ+ + σ−

sinh 2s

r(s)
1l (2.17)

holds on D . Here operator Z̃ is given by the same expression as (2.8), but with K̃1 instead
of K1. Taking the closure in equality (2.17), one gets that dom (Z) = dom (Z̃) and that
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(2.17) holds also on dom (Z). Hence, the operators J̃± which are Z̃-bounded extension of
(2.9), are equal to J±, respectively. Therefore, the equality

Z + σ̃+J+ + σ̃−J− =
1

r(s)

[ 2σ+σ−

σ+ + σ−
sinh 2s 1l + Z̃ + r(s)(σ̃+J+ + σ̃−J−)

]
,

also holds on dom (Z). Together with (2.15), this yields the relation

(λ1l − Z − σ+J+ − σ−J−) Rs = (2.18)
1

r(s)
Rs

[(
r(s)λ − 2σ+σ−

σ+ + σ−
sinh 2s

)
1l − Z̃ − r(s)(σ̃+J+ + σ̃−J−)

]
.

on dom (Z). Now, for arbitrary λ > 0, we choose s ∈ (0, 1) small enough such that :

r(s)λ − 2σ+σ−

σ+ + σ−
sinh 2s > 0 .

Proposition 2.3 in the tilded context yields that Z̃+r(s)(σ̃+J++σ̃−J−) is the generator of a
SCCS. Hence by the Hille-Yosida theorem, its resolvent set includes C+ := { z ∈ C |Re z >
0 }, which yields that the last factor in the right-hand side of (2.18) is invertible and that
the range of the operator in the left-hand side: (λ1l−Z − σ+J+ − σ−J−) Rs (V ) coincides
with the set Rs (V ), which is obviously dense in V . Hence, the range of (λ1l−Z −σ+J+−
σ−J−) is also dense in V .

Note that by Proposition 2.4 the operator L̂ = Z + σ+J+ + σ−J− on the domain
dom (Z) is closable since it has the closed extension M . Let M0 be the closure of L̂. Then
we have: λ1l − M ⊇ λ − M0 ⊃ λ1l − L̂, which implies for λ > 0:

(λ1l − M)−1 ⊃ (λ1l − M0)
−1 ⊃ (λ1l − L̂)−1 . (2.19)

By the conclusion in the previous paragraph, the domain of the last operator in (2.19) is
dense. Hence, by Proposition 2.4 the first operator in (2.19) is a closed bounded extension
of the last. Since the second operator is the closure of the last one and a restriction of
the bounded (λ1l−M)−1, then it is also a bounded operator on V . This yields M = M0,
which implies that the minimal semigroup is trace-preserving by Proposition 2.6.

2◦ To finish the proof, we show that D is a core of M . However, this is a direct conse-
quence of the fact that D is a core of Z and that dom (Z) is a core of M0 = M , which
have already been established.

Hence, the closure of the operator Lσ,1 ¹D coincides with M . This completes the proof
of the theorem for n = 1. ¤

Remark 2.8 The set of density matrices { ρ ∈ C1(H ) | ρ > 0, TrH ρ = 1 } ⊂ V is obvi-
ously invariant subset of C1(H ) for the Markov Dynamical Semigroups (MDS) {T σ

n,t}t>0,
n = 1, 2, . . . , N . On the other hand, the semigroups {T σ

n,t}t>0 can be extended to the MDS
on the Banach space C1(H ) by linearity.
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3 Markov Dynamical Semigroup on Dual Space

3.1 Dual dynamics

Equivalent and often more convenient description of the evolution ρ 7→ T σ
t,0(ρ), ρ ∈ C1(H )

is the dual evolution {T σ ∗
t,0 }t>0 on the dual space C∗

1(H ) ' L(H ).
For repeated perturbation, we have to study semigroups {T σ ∗

n,t }t>0 dual to the SCCS
{T σ

n,t}t>0 constructed in Theorem 2.7:

〈T σ
n,t(ρ) | A〉H = 〈ρ | T σ ∗

n,t (A)〉H for (ρ,A) ∈ C1(H ) × L(H ) , n = 1, · · · , N . (3.1)

Since the maps T σ
n,t are trace-preserving, the dual semigroups are unital (unity-preserving)

contractions. They are also called the Markov Dynamical Semigroups (MDS).
Because the semigroup {T σ

n,t}t>0 has unbounded generator, the adjoint semigroup
{T σ ∗

n,t }t>0 is not strongly continuous on the dual space L(H ). The duality relation (3.1)
and the strong continuity of semigroup {T σ

n,t}t>0 merely imply the weak∗-continuity of
T σ ∗

n,t on L(H ). Therefore, the pair (L(H ), T σ ∗
n,t ) is a W ∗-dynamical system.

Let A (H ) denote the Weyl CCR-algebra on H . This unital algebra is generated as
operator-norm closure of the linear span Afin(H ) of the Weyl operators

W (ζ) = exp[i
(
〈ζ, b〉 + 〈b, ζ〉

)
/
√

2] , (3.2)

where the sesquilinear form notations

〈ζ, b〉 :=
N∑

j=0

ζ̄jbj, 〈b, ζ〉 :=
N∑

j=0

ζjb
∗
j (3.3)

are used. We comment that CCR (1.3) has the Weyl form:

W (ζ1)W (ζ2) = e−i Im〈ζ1,ζ2〉/2 W (ζ1 + ζ2) for ζ1, ζ2 ∈ CN+1 . (3.4)

and the algebra A (H ) is dense subset of L(H ) in the weak as well as in the strong
operator topologies. (see e.g. [AJP1] Lectures 4 and 5).

In the rest of this section, we give the explicit form for the action of {T σ ∗
n,t }t>0 for

1 6 n 6 N on the Weyl operators. To this aim, we introduce (N +1)× (N +1) Hermitian
matrices Jn, Xn and Yn by

(Jn)jk =

{
1 (j = k = 0 or j = k = n)

0 otherwise
, (3.5)

(Xn)jk =



(E − ε)/2 (j, k) = (0, 0)

−(E − ε)/2 (j, k) = (n, n)

η (j, k) = (0, n)

η (j, k) = (n, 0)

0 otherwise

(3.6)
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and

Yn = εI +
E − ε

2
Jn + Xn for n = 1, · · · , N, (3.7)

where I is the (N + 1)× (N + 1) identity matrix. By P0 we denote the (N + 1)× (N + 1)
matrix: (P0)jk = δj0δk0 (j, k = 1, 2, . . . , N). Then the Hamiltonian (1.6) takes the form

Hn =
N∑

j,k=0

(Yn)jkb
∗
jbk . (3.8)

Theorem 3.1 For n = 1, 2, . . . , N , the action of {T σ ∗
n,t }t>0 on the Weyl operator has the

form:
T σ ∗

n,t (W (ζ)) = Γσ
n,t(ζ)W (Uσ

n (t)ζ) , ζ ∈ CN+1 , (3.9)

Γσ
n,t(ζ) = exp

[
− 1

4

σ− + σ+

σ− − σ+

(
〈ζ, ζ〉 − 〈Uσ

n (t)ζ, Uσ
n (t)ζ〉

)]
, (3.10)

and

Uσ
n (t) = exp

[
it

(
Yn + i

σ− − σ+

2
P0

)]
. (3.11)

Remark 3.2 The main effect of non-zero σ∓, in comparison to the case σ∓ = 0 [TZ],
may be summarised as an imaginary shift of the energy parameter:

E → Eσ := E + i
σ− − σ+

2
, 0 ≤ σ+ < σ− .

Note that by (H2) Im(Eσ) > 0. Thereby the semigroup {Uσ
n (t)}t>0 is contraction.

Proof (of Theorem 3.1): Without loss of generality, we only consider n = 1. We put

Ω(t) = Γσ
1,t(ζ) and ζ(t) = Uσ

1 (t)ζ . (3.12)

1◦ The operator-valued equation

∂t(Ω(t)W (ζ(t))) = Ω(t)
(
i[H1,W (ζ(t))] + σ− b∗0 W (ζ(t)) b0

−σ−

2
{b∗0b0,W (ζ(t))} + σ+ b0 W (ζ(t)) b∗0 −

σ+

2
{b0b

∗
0, W (ζ(t))}

)
. (3.13)

holds on D0 (1.5). Here the derivative in the left-hand side is valid in the strong-operator
convergence sense.

It is straightforward to check (3.13) by using the formulae

∂tW (ζ(t)) =
(
i
〈∂tζ(t), b〉 + 〈b, ∂tζ(t)〉√

2

+
1

2

[
i
〈ζ(t), b〉 + 〈b, ζ(t)〉√

2
, i

〈∂tζ(t), b〉 + 〈b, ∂tζ(t)〉√
2

] )
W (ζ(t)) ,
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and

[bk,W (ζ(t))] = i
ζ(t)k√

2
W (ζ(t)) , [b∗k,W (ζ(t))] = −i

ζ(t)k√
2

W (ζ(t)) ,

which make sense on D0. See, e.g., [AJP1], Lecture 5.

2◦ For any ρ ∈ D = (1l + n̂)−1V (1l + n̂)−1, the following equality holds:

∂t Tr[ρ Ω(t)W (ζ(t))] = Tr[(Lσ,1ρ)Ω(t)W (ζ(t))] . (3.14)

In fact, let ρ = (1l + n̂)−1ν(1l + n̂)−1, where ν ∈ V is approximated by a family of
finite-rank self-adjoint operators {νk}k>1, i.e., νk → ν, when k → ∞, in the trace-norm
topology. Then from 1◦ with the help of (2.5), we obtain

∂tTr[(1l + n̂)−1νk(1l + n̂)−1Ω(t)W (ζ(t))]

= Tr
[
Lσ,1

(
(1l + n̂)−1νk(1l + n̂)−1

)
Ω(t)W (ζ(t))

]
.

One also gets that the limit:

lim
k→∞

Lσ,1

(
(1l + n̂)−1νk(1l + n̂)−1

)
= Lσ,1

(
(1l + n̂)−1ν(1l + n̂)−1

)
in the trace-norm, since by (2.5) the expression of Lσ,1

(
(1l + n̂)−1(νk − ν)(1l + n̂)−1

)
is the

sum of the products of νk − ν and k-independent bounded operators . Then

∂tTr[(1l + n̂)−1νk(1l + n̂)−1Ω(t)W (ζ(t))] → Tr
[
Lσ,1

(
(1l + n̂)−1ν(1l + n̂)−1

)
Ω(t)W (ζ(t))

]
holds uniformly in t. On the other hand, the limit

Tr[(1l + n̂)−1νk(1l + n̂)−1Ω(t)W (ζ(t))] → Tr[(1l + n̂)−1ν(1l + n̂)−1Ω(t)W (ζ(t))]

also holds for k → ∞ uniformly in t. Then we obtain the assertion by the standard
argument on differentiation under the limit.

3◦ The equality (3.14) also holds for ρ ∈ dom Lσ,1 ¹D . Here Lσ,1 ¹D denotes the closure of
the restriction Lσ,1 ¹D (c.f. Theorem 2.7).

In fact, for any ρ ∈ dom Lσ,1 ¹D , there exists a sequence {ρk}k>1 ⊂ D such that

ρk → ρ, Lσ,1 ¹D ρk → Lσ,1 ¹D ρ ,

as k → ∞, in the trace-norm topology. Then we obtain the assertion by differentiation
under the limit as in 2◦.

4◦ For each ρ ∈ dom Lσ,1 ¹D , ζ ∈ CN+1 and t > 0, the following equality holds:

Tr [T σ
1,t(ρ)W (ζ)] = Tr [ρ Ω(t)W (ζ(t))] . (3.15)

To this aim, we define the function

f(s, t) := Tr [T σ
1,s(ρ)Ω(t)W (ζ(t))] for s, t > 0.

12



Then Theorem 2.7 and the Hille-Yosida theorem yield T σ
1,s(ρ) ∈ dom Lσ,1 ¹D and ∂sf(s, t) =

Tr [Lσ,1 ¹D(T σ
1,s(ρ))Ω(t)W (ζ(t))], which is equal to ∂tf(s, t) by 3◦. Then we obtain ∂sf(t−

s, s) = 0 and the assertion (3.15) follows from f(t, 0) = f(0, t).

5◦ Since T σ
1,t is bounded and dom Lσ,1 ¹D is dense in V , (3.15) holds for any ρ ∈ V . Note

that any ρ ∈ C1(H ) can be presented as a linear combination of elements from V . The
theorem then follows by Remark 2.8 and by the duality (3.1). ¤

From (1.14), the dual evolution map for the repeated perturbation is given by

T σ ∗
t,0 = T σ ∗

1 · · · T σ ∗
n−1 T σ ∗

n,ν(t) , (3.16)

where t = (n − 1)τ + ν(t), n 6 N .

Corollary 3.3 The composition of dual evolutions (3.16) on the Weyl operator is:

T σ ∗
Nτ,0(W (ζ)) = exp

[
− 1

4

σ− + σ+

σ− − σ+

(
〈ζ, ζ〉 − 〈Uσ

1 · · ·Uσ
N ζ, Uσ

1 · · ·Uσ
N ζ〉

)]
× W (Uσ

1 · · ·Uσ
N ζ) , (3.17)

where we denote Uσ
n := Uσ

n (τ).

To illustrate the above statements by an example, we consider the evolution of the
initial state given by product of the Gibbs states:

ρ = ρ0 ⊗
N⊗

k=1

ρk , ρ0 = e−β0a∗a/Z(β0) , ρj = e−βa∗a/Z(β) (j = 1, 2 . . . , N), (3.18)

which has the characteristic function (see [TZ]):

ωρ(W (ζ)) = 〈ρ |W (ζ)〉 = exp
[
− |ζ0|2

4

(1 + e−β0

1 − e−β0
− 1 + e−β

1 − e−β

)
− 〈ζ, ζ〉

4

1 + e−β

1 − e−β

]
. (3.19)

From Corollary 3.3, we obtain the following proposition about time evolution of the
Gibbs state for the open system (S + R) + C.

Proposition 3.4 Let ρ be initial density matrix (3.18). Then

ωT σ
Nτ,0ρ(W (ζ)) = 〈ρ |T σ ∗

Nτ,0(W (ζ))〉 = exp
[
− 1

4
〈ζ,Xσ(Nτ)ζ〉

]
,

where Xσ(Nτ) is the (N + 1) × (N + 1) matrix given by

Xσ(Nτ) = Uσ ∗
N · · ·Uσ ∗

1

[(
− σ− + σ+

σ− − σ+

+
1 + e−β

1 − e−β

)
I +

(1 + e−β0

1 − e−β0
− 1 + e−β

1 − e−β

)
P0

]
×Uσ

1 · · ·Uσ
N +

σ− + σ+

σ− − σ+

I. (3.20)
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3.2 Completely positive quasi-free maps and states

Let A(S, σ) be the (abstract) Weyl CCR-algebra for a linear space S and a symplectic
form σ on S. Recall that a bounded linear unital map T : A(S, σ) → A(S, σ) is quasi-free
if there exists a linear map U : S → S, and a map Γ : S → C such that

T(W (ζ)) = Γ(ζ)W (Uζ) hold for all ζ ∈ S . (3.21)

We also recall that for two C∗-algebras A and B, a map T : A → B is completely
positive (CP) if

K∑
k,k′=1

y∗
k T(x∗

kxk′) yk′ > 0 (3.22)

holds for all {xk}K
k=1 ⊂ A and {yk}K

k=1 ⊂ B for any K > 1. See [Pe] Ch.8, [AF], [AJP3].
Using (3.21), one can define the map T for a given U and Γ on the algebraic span of Weyl
operators which is dense in A(S, σ). For the problem of extension of T to a CP map on
A(S, σ), we refer the following result in [DVV].

Proposition 3.5 For a given linear map U : S → S, let σU be another symplectic form
defined by

σU(α, β) = σ(α, β) − σ(Uα,Uβ) for α, β ∈ S . (3.23)

Then the necessary and sufficient condition of that the map (3.21) can be extended to a
completely positive map on A(S, σ) is the existence of a state ω on A(S, σU) such that
Γ(ζ) = ω(WU(ζ)) for Weyl operators WU ∈ A(S, σU).

Theorem 3.6 As a map on A (H ), the dual MDS {T σ ∗
n,t }t≥0 given by the duality (3.1)

is quasi-free and completely positive for n = 1, 2, . . . N .

Proof: It is obvious from (3.9) and its contraction property that the dual MDS maps
A (H ) into itself and that it is quasi-free.

For a fixed n and t, we put U = Uσ
n (t). By setting S = CN+1 and σ( · , · ) = Im 〈 · , · 〉,

then A(S, σ) = A (H ) holds and the action of T σ ∗
n,t has the form (3.21). Since U is a

contraction (Remark 3.2), there is a linear map C : CN+1 → CN+1 such that

〈Cα,Cβ〉 = 〈α, β〉 − 〈Uα,Uβ〉 , α, β ∈ CN+1 . (3.24)

Then we can consider the CCR-algebra A(CN+1, σU) with symplectic form

σU(α, β) = σ(α, β) − σ(Uα,Uβ) = Im〈Cα,Cβ〉 , (3.25)

as the C∗-subalgebra of L(H ) generated by the Weyl system {W (Cζ) | ζ ∈ CN+1}. Note
that WU(ζ) = W (Cζ) satisfies CCR with symplectic form σU , where W (ζ) is given by
(3.2).
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Let ρ be the product density matrix (3.18) with β0 = β = log σ−/σ+ > 0 (c.f. H.2).
Then we have the corresponding normal state ωρ on L(H ). Let ω be the restriction of
ωρ to A(CN+1, σU). From (3.19), one gets

ω(WU(ζ)) = 〈ρ |W (Cζ)〉 = exp
[
− ‖Cζ‖2

4

σ− + σ+

σ− − σ+

]
.

Comparing with Γσ
n,t(ζ) in (3.10) and (3.24), we see that the ω plays the role in Proposition

3.5. Then, there exists a CP map on A (H ) whose action on the Weyl operators coincides
with that of T σ ∗

n,t . From the continuity, the coincidence of these maps on A (H ) follows.
Thus, the complete positivity of T σ ∗

n,t has been proved. ¤
Since a composition of quasi-free CP maps is clearly quasi-free and CP, (3.16) imply

Corollary 3.7 The dual evolutions T σ ∗
t,0 is the completely positive quasi-free map on the

Weyl CCR-algebra A (H ) for t ∈ [0, Nτ).

Corollary 3.8 The dual evolutions T σ ∗
t,0 and T σ ∗

n,t (n = 1, · · · , N) are the completely
positive maps on L(H ) for t ∈ [0, Nτ).

Proof : For T = T σ;∗
n,t , arbitrarily fixed unit vector ϕ ∈ H and K ∈ N, put

Φ({Ak}K
k=1, {Bk}K

k=1) = (ϕ,

K∑
k,k′=1

B∗
k T(A∗

kAk′) Bk′ϕ) , (3.26)

where {Ak}K
k=1, {Bk}K

k=1 ⊂ L(H ). Since the CCR algebra A (H ) is a dense subset of
L(H ) in the strong operator topology, we may take {Ak,j}j∈N, {Bk,j}j∈N ⊂ A (H ) such
that

s−lim
j→∞

Ak,j = Ak and s−lim
j→∞

Bk,j = Bk

for every k = 1, · · · , K. Recalling that T = T σ ∗
n,t is CP on A (H ), we have

0 6 Φ({Ak,j}K
k=1, {Bk,j}K

k=1) =
K∑

k,k′=1

〈T σ
n,t(Bk,jPϕB∗

k′,j), A
∗
k,jAk′,j〉 ,

where Pϕ is the projection operator on H onto its one dimensional subspace spanned by
ϕ. Note that

T σ
n,t(Bk,jPϕB∗

k′,j) → T σ
n,t(BkPϕB∗

k′) in C1(H )

as j → ∞ since Bk,jPϕB∗
k′,j → BkPϕB∗

k′ in C1(H ) and T σ
n,t is bounded on C1(H ). Note

also that A∗
k,jAk′,j converges to A∗

kAk′ weakly. By the principle of uniform boundedness,
{A∗

k,jAk′,j}j∈N is a bounded set. Together with weak continuity of normal states 〈ρ| · 〉 :
L(H ) → C, this yields that

Φ({Ak}K
k=1, {Bk}K

k=1) = lim
j→∞

Φ({Ak,j}K
k=1, {Bk,j}K

k=1) > 0 .
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Thereby we have proved the complete positivity of T = T σ ∗
n,t on L(H ). Proofs for the

other maps are almost verbatim. ¤
As we have seen, T

(
A (H )

)
⊂ A (H ) for T = T σ ∗

t,0 , T σ ∗
n,t holds. Moreover, T is

positive unital map. Therefore for any state ω on A (H ), ω ◦T is also a state on A (H ).
Recall that a state ω on A (H ) is said to be quasi-free if there exist a linear form L

and a non-negative sesquilinear form q on CN+1 such that

ω(W (ζ)) = exp[L(ζ) − q(ζ, ζ)]

holds for every ζ ∈ CN+1[Ve]. By (3.9) and (3.17), it is obvious that ω ◦ T is quasi-free if
ω is. Let us summarize them in the following proposition.

Proposition 3.9 The operators T σ ∗
t,0 , T σ ∗

n,t (n = 1, · · · , N) map the set of quasi-free state
on A (H ) into itself.
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4 Appendix

Proof: (of Lemma 2.1) The operator K0 with its domain D0 (1.5) is closed with discrete
spectrum S(K0) ⊂ C+ = { z ∈ C|Re z > 0}. In fact, for m ∈ ZN+1,

(
2−1(σ+ +

σ−) + iE
)
m0 + 2−1σ+ + iε

∑N
j=1 mj is its eigenvalue and ψm in (2.3) is the corresponding

eigenvectors. It is enough to consider the case n = 1 only and to prove the following three
claims [Za]:
(i) the operator K1 is closed ;
(ii) the numerical range of K1 is contained in C+ ;
(iii) there exists z ∈ C such that Re z > 0 and z belongs to the resolvent set ρ(−K1) of
the operator −K1.

For (i), we show that there exist constants c ∈ (0, 1) and C > 0 such that

‖η(b∗0b1 + b∗1b0)ϕ‖ 6 c‖K0ϕ‖ + C‖ϕ‖ (4.1)

for every ϕ ∈ D0. It is obvious from CCR that

‖b∗0b1ϕ‖2 =
(
b0b

∗
0ϕ, b∗1b1ϕ

)
6

(
(b∗0b0 + 1l)ϕ, (b∗1b1 + · · · + b∗NbN + 1l)ϕ

)
,

‖b∗1b0ϕ‖2 =
(
b∗0b0ϕ, b1b

∗
1ϕ

)
6

(
(b∗0b0 + 1l)ϕ, (b∗1b1 + · · · + b∗NbN + 1l)ϕ

)
hold for any ϕ ∈ D0. Note that∥∥∥(

E − i
σ+ + σ−

2

)
(b∗0b0 + 1l)ϕ + ε(b∗1b1 + · · · + b∗NbN + 1l)ϕ

∥∥∥2
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−2
(
E +

√
E2 + (σ+ + σ−)2/4

)
ε
(
(b∗0b0 + 1l)ϕ, (b∗1b1 + · · · + b∗NbN + 1l)ϕ

)
=

∥∥∥√
E2 + (σ+ + σ−)2/4 (b∗0b0 + 1l)ϕ − ε(b∗1b1 + · · · + b∗NbN + 1l)ϕ

∥∥∥2

> 0

and

−iK0ϕ +
(
E + ε − i

σ−

2

)
ϕ =

(
E − i

σ+ + σ−

2

)
(b∗0b0 + 1l)ϕ + ε(b∗1b1 + · · · + b∗NbN + 1l)ϕ .

Then, we have

‖η(b∗0b1 + b∗1b0)ϕ‖ 6 2η
(
E +

√
E2 + (σ+ + σ−)2/4

)−1/2

ε−1/2

×
√(

E +
√

E2 + (σ+ + σ−)2/4
)
ε
(
(b∗0b0 + 1l)ϕ, (b∗1b1 + · · · + b∗NbN + 1l)ϕ

)
6

√
2η

(
E +

√
E2 + (σ+ + σ−)2/4

)−1/2

ε−1/2
∥∥∥ − iK0ϕ +

(
E + ε − i

σ−

2

)
ϕ
∥∥∥

6 c‖K0ϕ‖ + C‖ϕ‖,
where

c =
√

2η
(
E +

√
E2 + (σ+ + σ−)2/4

)−1/2

ε−1/2 < 1

because of the conditions η2 6 Eε (H.1) and 0 < σ+ + σ− (H.2).
To show (ii), let ϕ ∈ D0, ‖ϕ‖ = 1. Then one gets

(ϕ,K1ϕ) =
σ+

2
(ϕ, b0b

∗
0ϕ) +

σ−

2
(ϕ, b∗0b0ϕ)

+i E(ϕ, b∗0b0ϕ) + iε(ϕ,

N∑
j=1

b∗jbjϕ) + i η(ϕ, (b∗0b1 + b∗1b0)ϕ)

=
σ+

2
‖b∗0ϕ‖2 +

σ−

2
‖b0ϕ‖2 + iE‖b0ϕ‖2 + iε

N∑
j=1

‖bjϕ‖2 + 2iη Re (b0ϕ, b1ϕ) ⊂ C+.

For (iii), we note that by virtue of S(K0) ⊂ C+, z ∈ ρ(−K0) and ‖(z1l + K0)
−1‖ 6

1/Re z hold, if Re z > 0. Moreover, the identity

‖(z1l + K0)ϕ‖2 − ‖K0ϕ‖2 = |z|2‖ϕ‖2 + 2(Re z)
(
ϕ,

(σ+

2
b0b

∗
0 +

σ−

2
b∗0b0

)
ϕ
)

+2(Im z)
(
ϕ,

(
Eb∗0b0 + ε

N∑
j=1

b∗jbj

)
ϕ
)

yields ‖K0(z1l + K0)
−1‖ 6 1, if Re z > 0 and Im z > 0 hold. Hence, by (4.1), we obtain

‖η(b∗0b1 + b∗1b0)(z1l + K0)
−1‖

6 c‖K0(z1l + K0)
−1‖ + C‖(z1l + K0)

−1‖ 6 c +
C

Re z
(4.2)
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for such value of z. Then, if Re z is large enough, the right hand side of (4.2) is less than
one. For this z, thanks to the resolvent identity for K1 and K0, we have the boundedness
of

(z1l + K1)
−1 = (z1l + K0)

−1
(
1l + iη(b∗0b1 + b∗1b0)(z1l + K0)

−1
)−1

,

which proves the assertion (iii) and the lemma. ¤

References

[AF] R. Alicki and M. Fannes, Quantum Dynamical Systems, Oxford University Press
2001.

[AJP1] Open Quantum Systems I, The Hamiltonian Approach, S. Attal, A. Joye, C.-
A. Pillet (Eds.), Lecture Notes in Mathematics 1880, Springer-Verlag, Berlin-
Heidelberg 2006.

[AJP2] Open Quantum Systems II, The Markovian Approach, S. Attal, A. Joye, C.-
A. Pillet (Eds.), Lecture Notes in Mathematics 1881, Springer-Verlag, Berlin-
Heidelberg 2006.

[AJP3] Open Quantum Systems III, Recent Developments, S. Attal, A. Joye, C.-A. Pillet
(Eds.), Lecture Notes in Mathematics 1882, Springer-Verlag, Berlin-Heidelberg
2006.

[ALM-K] L.Arlotti, B.Lods, and M.Mokhtar-Kharroubi, On perturbed substochastic
semigroups in abstract state spaces, hal-00395363, version 1 - 15 Jun 2009.

[BJM] L.Bruneau, A.Joye, and M.Merkli, Repeated interactions in open quantum sys-
tems, J.Math.Phys., 55 (2014) 075204.

[BR1] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical
Mechanics, vol.1, Springer-Verlag, Berlin 1979.

[ChF] A. M. Chebotarev and F. Fagnola, Sufficient conditions for conservativity of
quantum dynamical semigroups, J. Funct. Anal. 118 (1993), 131-153 and
Sufficient conditions for conservativity of minimal quantum dynamical semi-
groups, J. Funct. Anal. 153 (1998), 382-404

[Da1] E.B.Davies, Quantum Theory of Open Systems, Academic Press, London 1976.

[Da2] E.B.Davies, Quantum dynamical semigroups and the neutron diffusion equation,
Rep.Math.Phys., 11 (1977) 169-188.

[Da3] E.B.Davies, Generators of Dynamical Semigroups, J.Funct.Anal., 34 (1979) 421-
432.

18



[DVV] B.Demoen, P.Vanheuverzwijn, and A.Verbeure, Completely positive maps of the
CCR-algebra, Lett.Math.Phys., 2 (1977) 161-166.

[EL] D.E.Evans and J.T.Lewis, Some semigroups of completely positive maps on the
the CCR algebra, J.Funct.Anal. 26 (1977) 369-377.

[FR] F.Fagnola and R.Rebolledo, On the existence of stationary states for quantum
dynamical semigroups, J.Math.Phys., 42 (2001) 1296-1308.

[Fa] M.Fannes, Quasi-free states and Automorphisms of the CCR-Algebra, Com-
mun.Math.Phys., 51 (1976) 55-56.

[Ka1] T. Kato, On the semi-groups generated by Kolmogoroff’s differential equations,
J.Math. Soc. Japan, 6 (1954) 1-15.

[Ka2] T. Kato, Perturbation Theory for Linear Operators, (Corrected 2nd Edt)
Springer-Verlag, Berlin-Heidelberg 1995.

[M-K] M.Mokhtar-Kharroubi, On perturbed positive semigroups on the Banach space
of trace class operators, Inf.Dim.Analysis, Quantum Prob. and Rel.Topics, 11
(2008) 405-425.

[NVZ] B. Nachtergaele, A. Vershynina, and V. A. Zagrebnov, Non-Equilibrium States
of a Photon Cavity Pumped by an Atomic Beam, Annales Henri Poincaré, 15
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