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Abstract: This paper proposes a model-free predictive control method for nonlinear systems on the basis of polynomial
regression. In contrast to conventional model predictive control, model-free predictive control does not require mathe-
matical models. Instead, it uses the previous recorded input/output datasets of the controlled system to predict an optimal
control input so as to achieve the desired output. The novel point in this paper is the improvement of existing model-free
predictive control by adopting polynomial regression, which is a generalization of the so-called Volterra series expansion
of nonlinear functions.
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1. INTRODUCTION

Model-free predictive control is data-driven control
that does not explicitly require any mathematical model
[1]-[10]. In contrast to standard model predictive con-
trol utilizing mathematical models, the model-free pre-
dictive control method uses past records of input and out-
put datasets and the current input and output to predict fu-
ture input and output. The underlying principle is Just-In-
Time modeling, which was originally proposed in [11]-
[14]; this model aims to adaptively obtain a local linear
model using both online measured input/output data and
past data [12], [13]. Just-In-Time modeling is also re-
ferred to as model on-demand [14], [15], lazy learning
[16], or instance-based learning [17]. There are several
applications of Just-In-Time modeling including predic-
tion of production processes in the steel industry [18]-
[21], PID parameter tuning [22], [23], and soft sensors in
industrial chemical processes [24]. In [25], Just-In-Time
modeling is also utilized for predictive control; however,
only identified local linear models are used for predictive
control similar to that in standard model predictive con-
trol.

Purely model-free predictive control with no model
usage was proposed in [1]-[3]. It basically uses input
and output sequences that are cut out into short-length
vectors. Although the vectors can be used to identify
an auto-regressive model, they are instead used to es-
timate a short-length vector corresponding to future in-
put sequences by using locally weighted averaging. The
idea can also be seen in [4] and can be used to treat dis-
cretized input systems [5]. It has also been applied to
an inverted pendulum system [6] and a parallel mech-
anism with pneumatic drives [7]. Recently, in [8], [9]
it has been pointed out that locally weighted averaging
can be replaced with optimization under a linear algebraic
equation that relates to least-norm solutions andℓ1 mini-
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mization. This yields us a mathematically much simpler
model-free predictive control algorithm. The effective-
ness of the simplified algorithms is investigated in [10].

So far, model-free predictive control presumes that the
controlled system can be locally linearized. Therefore,
the short-length vectors linearly contain cut out input
and output sequences as a regressor vector of the auto-
regressive model. In this paper, to treat nonlinearity in
detail, we adopt a polynomial regressor vector for the
short-length vectors. We first review a polynomial re-
gression model together with a Volterra series model [26],
[27] in Section 2. We also review model-free predictive
control and extend it with polynomial regression in Sec-
tion 3. Section 4 illustrates numerical simulations results,
and Section 5 provides the concluding remarks.

2. VOLTERRA AND POLYNOMIAL
REGRESSION MODELS

In this section, we review a Volterra model and a poly-
nomial regression model [26], [27].

The so-called Volterra model is a general nonlinear
model with an outputy(t) and an inputu(t) that can be
expressed as follows:

y(t) =

P∑
p=0

Hp(x1(t)) + e(t) (1)

wheree is independent and identically distributed noise

x1(t) =

x1(t)
...

xL(t)

 ∈ RL, (2)

xi(t) = u(t− i), i = 1, . . . , L, (3)



and

Hp(x1(t)) =

L∑
i1=1

· · ·
L∑

ip=1

hp(i1, . . . , ip)

×
p∏

k=1

u(t− ik) (4)

where eachhp(i1 · · · ip) is called a Volterra kernel of the
system. In general, the expansion orderP is infinity.
Here, we consider the truncated model, that is, forp > P ,
|Hp(x1(t))| is sufficiently small. Forp > 1, by defining
thepth order monomials (homogeneous) regressor vector

xp(t) = xp−1(t)⊗ x1(t) ∈ RLp

, (5)

where⊗ denotes the tensor (Kronecker) product; we can
rewrite (4) as

Hp(x1(t)) = x⊤
p (t)hp, (6)

where hp is a vector containing Volterra kernels
hp(i1 · · · ip). By using (4), another expression of (1) is
given as

y(t) = ϕ⊤(t)h+ e(t), (7)

where

ϕ⊤(t) =
[
1 x⊤

1 (t) · · · x⊤
P (t)

]
(8)

h =


h0

h1

...
hP

 ∈ R
∑P

p=0 Lp

(9)

By changing the meaning of the indext in (2) so as to
neither limit the time nor restrictxi(t) = u(t − i), we
obtain a polynomial regression model. Since we can set
xi(t) = u(t− i), the Volterra model is a special polyno-
mial regression model.

To use polynomial regression, we define another form
of the Volterra model. That is, we define

x1(t) =



x1(t)
...

xm(t)
xm+1(t)

...
xL(t)


=



u(t− 1)
...

u(t−m)
y(t− 1)

...
y(t− n)


(10)

andL = m+ n. By adopting this model, we can reduce
the truncated orderP .

Since the tensor product is a particularly effective
method to establish the topological vector space, it yields
several duplicate terms. By eliminating these duplicate
terms, we define the pseudo-tensor product⊗̃, for in-
stance,[

a b
]
⊗̃
[
a b

]
=

[
a2 ab b2

]
, (11)

by unifying the duplicated termab in
[
a b

]
⊗

[
a b

]
.

When we use the pseudo-tensor product in (5) as

xp(t) = xp−1(t)⊗̃x1(t) ∈ R

(
L+ p− 1

p

)
. (12)

the size ofϕ andh can be reduced to

P∑
p=0

(
L+ p− 1

p

)
=

(
L+ P
P

)
. (13)

3. MODEL-FREE PREDICTIVE
CONTROL

In this subsection, we first summarize the model-free
predictive control algorithm. Then we extend it to han-
dle polynomial regression. Subsequently, we assume a
system that can be approximated by (1).

3.1. Linear regression case

The control objective is to make theh-step’ output tra-
jectory of the system

yf (t) =

y(t+ 1)
...

y(t+ h)

 ∈ Rh (14)

track the desired reference

r(t) =

r(t+ 1)
...

r(t+ h)

 ∈ Rh. (15)

To achieve the control objective, we predict anh-step’
future input sequence

uf (t) =

 u(t)
...

u(t+ h− 1)

 ∈ Rh. (16)

Model-free predictive control [1] uses the large amount
of past data{u(t), y(t)} to determine the future input se-
quence. In particular, it uses forj = 1, 2, . . . , N ,

aj =

yp(tj)
yf (tj)
up(tj)

 ∈ Rn+m+h (17)

cj = uf (tj) ∈ Rh, (18)

where

yp(t) =

y(t− n+ 1)
...

y(t)

 ∈ Rn. (19)

up(t) =

u(t−m)
...

u(t− 1)

 ∈ Rm. (20)



Algorithm 1 Model-free predictive control algorithm
Determinen, m, N , h, and the orderP . Constructaj
andcj (j = 1, . . . , N ). t← 0.
while t ≤ max(n,m) do

Measurey(t) and applyu(t) with an appropriate
value. Increment the time ast← t+ 1.

end while
repeat

Construct a query vectorb.
Solve (28).
Compute (23) to obtain̂uf (t).
Apply u(t) := û(t|t) to the system.
t← t+ 1

until a terminate condition is met.

Model-free predictive control [1], [2] utilizes a query vec-
tor

b =

yp(t)
r(t)
up(t)

 ∈ Rn+m+h (21)

to synthesize

ûf (t) =

 û(t|t)
...

û(t+ h− 1|t)

 (22)

= cw ∈ Rh, (23)

where

c =
[
c1 . . . cN

]
∈ ℜh×N (24)

w =
[
w1 . . . wN

]⊤ ∈ ℜN . (25)

The first element̂u(t|t) of ûf (t) is only applied into the
system asu(t).

The vectorw is originally determined by using the
Akaike’s final prediction error criterion [1]-[3]. In [8],
w is derived as a least-norm solution of

Aw = b, (26)

where

A =
[
a1 . . . aN

]
∈ ℜ(n+m+h)×N . (27)

In [9], w is found by solving anℓ1-minimization prob-
lem:

min
w
∥w∥1 subject toAw − b = 0. (28)

Many algorithms to solve theℓ1-minimization problem
have been proposed [28].

The fundamental procedure is summarized as in Algo-
rithm 1.

3.2. Polynomial regression case
We can extend the model-free predictive control

method in the previous subsection to the higher order

polynomial regression case. First, we must define the
vectors

a1(j) =

yp(tj)
yf (tj)
up(tj)

 , (29)

b1 =

yp(t)
r(t)
up(t)

 (30)

c1(j) = uf (tj) (31)

ap(j) = ap−1(j)⊗̃a1(j) (32)

bp = bp−1⊗̃b1 (33)

cp(j) = cp−1(j)⊗̃c1(j) (34)

and construct

aj =

a1(j)
...

aP (j)

 (35)

b =

b1

...
bP

 (36)

cj =

c1(j)
...

cP (j)

 . (37)

By using these vectors and definingA in (27) andb in
(24), we can use Algorithm 1.

In practical computation, we must introduce a scaling
matrix S to avoid blow-up of high-order exponentiation
in polynomial regression as

min
w
∥w∥1 subject toSAw − Sb = 0. (38)

4. SIMULATION

In this section, we illustrate several simulation re-
sults to show the effectiveness of the proposed method.
Throughout the simulations, we used the square signal
reference

r(t) =


0 200k ≤ t < 50 + 200k

1 50 + 200k ≤ t < 100 + 200k

0 100 + 200k ≤ t < 150 + 200k

−1 150 + 200k ≤ t < 200 + 200k

k = 0, 1, . . . (39)

4.1. Linear System
We first used the linear system

y(t)− 1.7y(t− 1) + 0.72y(t− 2)

= 0.1u(t− 1) + 0.2u(t− 2) + e(t) (40)

with stable poles0.9 and 0.8 and an unstable zero−2
[29]. To apply a random sequencee(t) according to a
Gaussian distribution with zero mean, variance0.0012,



Fig. 1 Stored measurement data of the linear system (40)
for model-free predictive control

Fig. 2 Simulation result of model-free predictive control
for the linear system (40)

Fig. 3 Simulation result of model-free predictive control
with the overestimated order for the linear system (40)

and a random sequenceu(t) generated from a uniform
distribution [−2, 2], we prepared a dataset containing
samples (N = 300) of u(t) andy(t), as shown in Fig. 1.

By using parameters for model-free predictive control
m = 3, n = 2, P = 3, andh = 2 under the noisy
conditione(t) ∼ N (0, 0.0012), we obtained the control
result shown in Fig. 2. It shows that the outputy can track
the referencer.

Next, we used an overestimated orderm = 3, with

Fig. 4 Stored measurement data of the nonlinear sys-
tem (41) for model-free predictive control to obtain
the control result in Fig. 5

Fig. 5 Simulation result of model-free predictive control
for the nonlinear system (41)

other parameters being the same as before, i.e.,n = 2,
P = 3, andh = 2, and obtained the control result shown
in Fig. 3; this is similar to that shown in Fig. 2.

From the two results (Fig. 2 and 3), we see that the
proposed method can achieve the desired control per-
formance even when the order of the system is over-
estimated.

4.2. Nonlinear system

We used the nonlinear system

y(t+ 1) =
y(t)

1 + y(t)2
+ u(t)3 + e(t). (41)

To obtain a dataset, we apply a random sequencee(t) ac-
cording to a Gaussian distributione(t) ∼ N (0, 0.0012)
with zero mean and variance0.0012, andu(t) according
to a uniform distribution[−2, 2]. When we used a dataset
containing samples (N = 300) of generatedu(t) and
y(t), as shown in Fig. 4, and parametersn = 2, m = 2,
P = 2, andh = 2, we obtained a very poor control re-
sult (Fig. 5). This may be because considered that only
a few values exist in the dataset close to the reference
r = −1, 0, and 1 (Fig. 6).

To gathery(t) around the referencer, we used PI con-
trol only when a dataset was generated. When we use PI



Fig. 6 Histogram of values of outputy in the dataset used
to obtain the control result in Fig. 5

Fig. 7 Stored measurement data of the nonlinear system
(41) to obtain the control result in Fig. 9

Fig. 8 Histogram of values of outputy in the dataset used
to obtain the control result in Fig. 9

control

u(t) = Kpϵ(t) +Ki

t∑
τ=−∞

ϵ(τ) (42)

ϵ(t) = r(t)− y(t) (43)

with the proportional gainKp = 0.6 and the integral gain
Ki = 0.4, we obtained the input/output shown in Fig. 7
and the histogram ofy shown in Fig. 8. In Fig. 7, we
see thaty roughly tracksr, and there exists much more
y aroundr = −1, 0, 1 in Fig. 8 than in Fig. 6. When
using this dataset, we obtain a better control result with
only model-free predictive control (in this case PI control
is not used), as shown in Fig. 9. It shows that the output
y can properly track the referencer. From this result, we
see that the control performance depends on the dataset.

5. CONCLUSION

In this paper, we examined model-free predictive con-
trol using polynomial regression, which is a generaliza-
tion of the Volterra series. Without estimating the co-
efficients of polynomial regression (Volterra series), an
appropriate control input can be determined by using a

Fig. 9 Simulation result of model-free predictive con-
trol for the nonlinear system (41) with the datasets in
Fig. 7

dataset containing the input/output data of the controlled
system. The obtained control performance depends on
the dataset; hence, maintaining a rich dataset is impor-
tant, that is, the dataset must contain input/output data
that is near the desired output. In simulations, we used PI
control to maintain the dataset. However, in model-free
predictive control, once a rich dataset is obtained, such PI
control is not needed. Thus, model-free predictive control
yields better control results than PI control.
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