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1. Introduction

We are concerned with linear size-structured population models with spacial diffusion. Size is recognized
as an important variable to describe some kinds of population dynamics. For example, to describe
population dynamics of plants or fishes, it is known that size is better than age. See [5] for an introduction
and models of size-structured population without diffusion. Age-structured population models with
diffusion have been investigated by many authors as seen in [2, Chap. 4] and the references therein. See
also [12] for semigroup approach on steady states. On the other hand, for size-structured population
models, only the case without diffusion has been studied so far. See e.g. Calsina-Saldaña [3], Ackleh et
al. [1], and Kato [8–10] for existence results, Farkas and Hagen [6] for stability and regularity results.
In addition, Hritonenko et al. [7] have considered optimal harvesting problem for plant management by
using size-structured models. We also mention that Webb [14] has studied population models structured
by age, size and spacial position, where the birth process is determined by age, not by size.

Let us consider a biological population living in a habitat Ω ⊂ R
d (d = 1, 2, 3) which is a bounded

domain with smooth boundary ∂Ω. Let p(s, t, x) be the population density with respect to size s ∈ [0, s†)
and position x ∈ Ω at time t ∈ [0, T ], where s† ∈ (0,∞) is the maximal size, T ∈ (0,∞) is a given
time. We assume that the growth rate g(s, t) depends on size s and time t and independent of position
x, while the fertility rate β(s, t, x) and the mortality rate µ(s, t, x) depend on size s, time t and position
x. Throughout the paper, we set ΩT := (0, T ) × Ω, Q := (0, s†) × Ω, QT := (0, s†) × (0, T ) × Ω and
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N. Kato Size-structured population with diffusion

ΣT := (0, s†)×(0, T )×∂Ω. We consider the following harvesting problem with harvesting effort u(s, t, x):

∂tp(s, t, x) + ∂s(g(s, t)p(s, t, x))−∆p(s, t, x)

= −µ(s, t, x)p(s, t, x)− u(s, t, x)p(s, t, x) + f(s, t, x) in QT ,

g(0, t)p(0, t, x) = C(t, x) +

∫ s†

0

β(s, t, x)p(s, t, x) ds in ΩT ,

∂p

∂ν
(s, t, x) = 0 on ΣT ,

p(s, 0, x) = p0(s, x) in Q,





(1.1)

where ∆ is the Laplacian, f(s, t, x) and C(t, x) represent inflows of s-size and zero-size populations
respectively from outside, and p0 is a given initial data. The Neumann boundary condition in the third
equation means the individuals never go out from the habitat Ω, where ∂/∂ν stands for the outward
normal derivative. The harvesting effort u is assumed to belong to the control set

U = {u ∈ L∞(QT ) | ζ1(s, t, x) ≤ u(s, t, x) ≤ ζ2(s, t, x) a.e. (s, t, x) ∈ QT }

where ζ1, ζ2 ∈ L∞(QT ), 0 ≤ ζ1(s, t, x) ≤ ζ2(s, t, x) a.e. in QT . In this paper, we employ a mild solution
introduced by using characteristic method and semigroup theory. See Definition 2.1 below. Denoting
by pu the mild solution of (1.1) corresponding to the harvesting effort u ∈ U , we consider the following
optimal harvesting problem:

Maximize

∫

QT

w(s, t, x)u(s, t, x)pu(s, t, x) dsdtdx subject to u ∈ U , (1.2)

where w(s, t, x) is a given weight function. Such a problem without diffusion has been studied in Kato [11].
The integral in (1.2) represents the total price, or total amount of harvest if w ≡ 1. In Anita [2], similar
optimal harvesting problem has been studied for age-structured models with diffusion. There, the solution
of the model is formulated along characteristic line through the theory of heat equation.

In Section 2, we investigate the existence results to the harvesting problem (1.1). For that purpose,
since µ + u works as a mortality rate, it suffices to consider the case without harvesting effort. See
Corollary 2.5 below. Then we show the existence of an optimal control to the above optimal harvesting
problem (1.2) governed by (1.1) in Section 3.

2. Existence of solutions

We first consider the following linear size-structured population model with diffusion:

∂tp(s, t, x) + ∂s(g(s, t)p(s, t, x))−∆p(s, t, x) = −µ(s, t, x)p(s, t, x) + f(s, t, x) in QT ,

g(0, t)p(0, t, x) = C(t, x) +

∫ s†

0

β(s, t, x)p(s, t, x) ds in ΩT ,

∂p

∂ν
(s, t, x) = 0 on ΣT ,

p(s, 0, x) = p0(s, x) in Q,





(2.1)

We assume the following assumptions:

(H1) g : [0, s†]× [0, T ] → [0,∞) is continuously differentiable and |∂sg(s, t)| ≤ Lg for some constant Lg > 0,
g(s, t) > 0 if s ∈ [0, s†) and g(s†, t) = 0.

(H2) µ, β ∈ L∞(QT ) and µ(s, t, x) ≥ 0, β(s, t, x) ≥ 0 a.e.
(H3) f ∈ L2(QT ), f(s, t, x) ≥ 0 a.e. in QT . C ∈ L2(ΩT ), C(t, x) ≥ 0 a.e. in ΩT . p0 ∈ L2(Q), p0(s, x) ≥ 0

a.e. in Q.
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N. Kato Size-structured population with diffusion

We extend g on R× [0, T ] by putting g(s, t) = g(0, t) for s < 0 and g(s, t) = 0 for s > s†. Note that the
extended g(s, t) satisfies the Lipschitz condition:

|g(s1, t)− g(s2, t)| ≤ Lg|s1 − s2|, ∀s1, s2 ∈ R, t ∈ [0, T ].

We define the characteristic curve ϕ(t; t0, s0) through (s0, t0) ∈ R × [0, T ] by the unique solution of the
following differential equation

s′(t) = g(s(t), t), t ∈ [0, T ], s(t0) = s0.

Let z(t) := ϕ(t; 0, 0). For (s, t) ∈ [0, s†)× [0, T ] satisfying s < z(t), define τ := τ(t, s) by the relation

ϕ(t; τ, 0) = s, or equivalently, ϕ(τ ; t, s) = 0. (2.2)

Then define the initial time τ∗(t, s) for (s, t) ∈ [0, s†)× [0, T ] by

τ∗(t, s) =

{
τ(t, s) s < z(t)

0 s ≥ z(t).
(2.3)

For γ ∈ L∞((0, s†)× (0, T )), we set

Πγ(t, τ, t0, s0) = exp

(∫ t

τ

γ(ϕ(σ; t0, s0), σ) dσ

)

for (s0, t0) ∈ [0, s†)× [0, T ].
Let A be the realization of Laplacian ∆ in L2(Ω) with the Neumann boundary condition, i.e.,

D(A) =

{
φ ∈ H2(Ω)

∣∣∣
∂φ

∂ν
(x) = 0 a.e. on ∂Ω

}
⊂ L2(Ω)

Aφ = ∆φ for φ ∈ D(A).

It is known that A generates an analytic semigroup {T (t) | t ≥ 0} in L2(Ω). See e.g. [4]. We translate
the problem (2.1) to the following abstract problem in L2(Ω):

∂tp(s, t) + ∂s(g(s, t)p(s, t))−Ap(s, t) = G(t, p(·, t))(s), s ∈ [0, s†), t ∈ [0, T ],

g(0, t)p(0, t) = F (t, p(·, t)), t ∈ [0, T ],

p(s, 0) = p0(s), s ∈ [0, s†),





(2.4)

where p(s, t) is an L2(Ω)-valued function and

[F (t, p(·, t))](x) := C(t, x) +

∫ s†

0

β(s, t, x)p(s, t, x) ds, (2.5)

[G(t, p(·, t))(s)](x) := −µ(s, t, x)p(s, t, x) + f(s, t, x). (2.6)

Note that F (t, p(·, t)) ∈ L2(Ω) and G(t, p(·, t))(s) ∈ L2(Ω). Similar abstraction was done in Webb [13]
for age-structured models without diffusion.

Definition 2.1. A function p ∈ L∞(0, T ;L2(Q)) is said to be a mild solution to (2.1) if p satisfies

p(s, t) =





T (t− τ)Πγ(t, τ ; t, s)
F (τ, p(·, τ))

g(0, τ)

+

∫ t

τ

T (t− σ)Πγ(t, σ; t, s)G(σ, p(·, σ))(ϕ(σ; t, s)) dσ

a.e. s ∈ (0, z(t)),

T (t)Πγ(t, 0; t, s)p0(ϕ(0; t, s))

+

∫ t

0

T (t− σ)Πγ(t, σ; t, s)G(σ, p(·, σ))(ϕ(σ; t, s)) dσ

a.e. s ∈ (z(t), s†),

(2.7)
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N. Kato Size-structured population with diffusion

where τ := τ(t, s) is defined by (2.2) and γ(s, t) := −∂sg(s, t).

Remark 2.2. Note that each function p ∈ L∞(0, T ;L2(Q)) can be regarded as a function in L2((0, s†)×
(0, T );L2(Ω)) as well as a function in L2(QT ) by the relation

[p(t)](s, x) = [p(s, t)](x) = p(s, t, x) for a.e. (s, t, x) ∈ QT := (0, s†)× (0, T )×Ω.

The following proposition states the relation between mild solutions and the problem (2.1).

Proposition 2.3. Let p ∈ L∞(0, T ;L2(Q)) be a mild solution to (2.1). Then for a.e. (s0, t0) ∈ (0, s†)×
{0}∪ {0}× (0, T ), the function t 7→ p(ϕ(t; t0, s0), η) is continuously differentiable from [τ∗(t0, s0), T ] into
L2(Ω) and satisfies (2.4), and so (2.1) as well, along characteristic curves, where τ∗(t0, s0) appears in

(2.3).

Proof. For a.e. t0 ∈ (0, T ), since τ∗(t0, 0) = τ(t0, 0) = t0 and ϕ(t; t0, 0) < z(t) for t ∈ (t0, T ), it follows
from (2.7) that

p(ϕ(t; t0, 0), t) = T (t− t0)Πγ(t, t0; t0, 0)
F (t0, p(·, t0))

g(0, t0)

+

∫ t

t0

T (t− σ)Πγ(t, σ; t0, 0)G(σ, p(·, σ))(ϕ(σ; t0, 0)) dσ. (2.8)

Since {T (t) | t ≥ 0} is an analytic semigroup, the right side of (2.8) is continuously differentiable in t as
a mapping from (t0, T ) into L2(Ω) and we have

d

dt
p(ϕ(t; t0, 0), t) = Ap(ϕ(t; t0, 0), t)− ∂sg(ϕ(t; t0, 0), t)p(ϕ(t; t0, 0), t)

+G(t, p(·, t))(ϕ(t; t0, 0)). (2.9)

For a.e. s0 ∈ (0, s†), since τ∗(0, s0) = 0 and ϕ(t; 0, s0) > z(t) for t ∈ (0, T ), it follows from (2.7) that

p(ϕ(t; 0, s0), t) = T (t)Πγ(t, 0; 0, s0)p0(ϕ(0; 0, s0))

+

∫ t

0

T (t− σ)Πγ(t, σ; 0, s0)G(σ, p(·, σ))(ϕ(σ; 0, s0)) dσ. (2.10)

Again, since {T (t) | t ≥ 0} is an analytic semigroup, the right side of (2.10) is continuously differentiable
in t as a mapping from (0, T ) into L2(Ω) and we have

d

dt
p(ϕ(t; 0, s0), t) = Ap(ϕ(t; 0, s0), t)− ∂sg(ϕ(t; 0, s0), t)p(ϕ(t; 0, s0), t)

+G(t, p(·, t))(ϕ(t; 0, s0)). (2.11)

Furthermore, it follows from (2.10) that p satisfies the initial condition in the sense that

p(s, 0) := lim
η↓0

p(ϕ(η; 0, s), η) = p0(s), a.e. s ∈ (0, s†). (2.12)

(2.9), (2.11), and (2.12) show that the mild solution p satisfies (2.4), and so (2.1), along characteristic
curves. �

Let α ∈ R. For positivity of mild solutions, we rewrite (2.4) by adding αp(s, t) to both sides of the first
equation. Then mild solution p ∈ L∞(0, T ;L2(Q)) is rewritten as the following form as well: For a.e.
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N. Kato Size-structured population with diffusion

t ∈ (0, T ),

p(s, t) =





T (t− τ)Πγα
(t, τ ; t, s)

F (τ, p(·, τ))

g(0, τ)

+

∫ t

τ

T (t− σ)Πγα
(t, σ; t, s)[G+ αI](σ, p(·, σ))(ϕ(σ; t, s)) dσ

a.e. s ∈ (0, z(t)),

T (t)Πγα
(t, 0; t, s)p0(ϕ(0; t, s))

+

∫ t

0

T (t− σ)Πγα
(t, σ; t, s)[G+ αI](σ, p(·, σ))(ϕ(σ; t, s)) dσ

a.e. s ∈ (z(t), s†),

(2.13)

where τ := τ(t, s) and γα(s, t) := −∂sg(s, t)−α. Actually, it is shown that if p ∈ L∞(0, T ;L2(Q)) satisfies
(2.13), then p is a mild solution to (2.1) and the converse is also true. We omit the details. Concerning
the existence of solutions, we have

Theorem 2.4. Let (H1)–(H3) hold. Then there exists a unique mild solution p ∈ L∞(0, T ;L2(Q)) of

(2.1), which satisfies p(s, t, x) ≥ 0 a.e. (s, t, x) ∈ QT and

‖p(·, t)‖2L2(Q) ≤ C̃T

{
‖p0‖

2
L2(Q) + ‖C‖2L2(ΩT ) + ‖f‖2L2(QT )

}
(2.14)

for some constant C̃T > 0 depending on ‖β‖L∞(QT ), ‖µ‖L∞(QT ) and g
T
:= mint∈[0,T ] g(0, t) > 0.

Proof. Set ET,+ := {p ∈ L∞(0, T ;L2(Q)) | p(s, t, x) ≥ 0 a.e. (s, t, x) ∈ QT }. Put α = ‖µ‖L∞(QT ) and
define the mapping Kα on ET,+ by

[Kαp](s, t) =





T (t− τ)Πγα
(t, τ ; t, s)

F (τ, p(·, τ))

g(0, τ)

+

∫ t

τ

T (t− σ)Πγα
(t, σ; t, s)[G+ αI](σ, p(·, σ))(ϕ(σ; t, s)) dσ

a.e. s ∈ (0, z(t)),

T (t)Πγα
(t, 0; t, s)p0(ϕ(0; t, s))

+

∫ t

0

T (t− σ)Πγα
(t, σ; t, s)[G+ αI](σ, p(·, σ))(ϕ(σ; t, s)) dσ

a.e. s ∈ (z(t), s†),

(2.15)

where τ := τ(t, s) and γα(s, t) := −∂sg(s, t) − α. We will seek a fixed point of Kα. To do this, we will
show that Kα maps ET,+ into itself and that Kα is a contraction mapping in ET,+. In what follows, we
put Fp(t) := F (t, p(·, t)) and Gp,α(s, t) := [G+αI](t, p(·, t))(s) for simplicity of notation. First, note that
Kαp(s, t) ∈ L2(Ω) and [Kαp(s, t)](x) ≥ 0 for p ∈ ET,+. By definition of Kαp, we have

‖Kαp(·, t)‖
2
L2(Q) =

∫ z(t)

0

‖Kαp(s, t)‖
2
L2(Ω) ds+

∫ s†

z(t)

‖Kαp(s, t)‖
2
L2(Ω) ds

≤ K2
1 (t) +K2

2 (t) +K2
3 (t) +K2

4 (t), (2.16)

where

K2
1 (t) =

∫ z(t)

0

∥∥∥∥T (t− τ)Πγα
(t, τ ; t, s)

Fp(τ)

g(0, τ)

∥∥∥∥
2

L2(Ω)

ds,
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N. Kato Size-structured population with diffusion

K2
2 (t) =

∫ z(t)

0

(∫ t

τ

‖T (t− σ)Πγα
(t, σ; t, s)Gp,α(ϕ(σ; t, s), σ)‖L2(Ω) dσ

)2

ds,

K2
3 (t) =

∫ s†

z(t)

‖T (t)Πγα
(t, 0; t, s)p0(ϕ(0; t, s))‖

2
L2(Ω) ds,

K2
4 (t) =

∫ s†

z(t)

(∫ t

0

‖T (t− σ)Πγα
(t, σ; t, s)Gp,α(ϕ(σ; t, s), σ)‖L2(Ω) dσ

)2

ds.

Recall that the semigroup {T (t)} satisfies ‖T (t)φ‖L2(Ω) ≤ ‖φ‖L2(Ω) for φ ∈ L2(Ω). For K2
1 (t),

we use change of variable from s to σ by σ = τ(t, s). Since ds/dσ = −g(0, σ)Π∂sg(t, σ; t, s) =
−g(0, σ)Π∂sg(t, σ;σ, 0), we have

K2
1 (t) =

∫ t

0

‖T (t− σ)Fp(σ)‖
2
L2(Ω)

1

g(0, σ)
Π2γα+∂sg(t, σ;σ, 0) dσ

≤
1

g
T

eLgT

∫ t

0

‖F (σ, p(·, σ))‖
2
L2(Ω) dσ

(2.17)

where g
T
:= mint∈[0,T ] g(0, t) > 0. For K2

3 (t), use change of variable from s to ξ by ξ = ϕ(0; t, s). Since
ds/dξ = Π∂sg(t, 0, t, s) = Π∂sg(t, 0, 0, ξ), we obtain

K2
3 (t) =

∫ s†

0

‖T (t)p0(ξ)‖
2
L2(Ω)Π2γα+∂sg(t, 0; 0, ξ) dξ ≤ eLgT ‖p0‖

2
L2(Q) (2.18)

To estimate K2
2 (t) +K2

4 (t), we use Schwarz’s inequality, Fubini’s theorem and change of variable from s
to ξ by ξ = ϕ(σ; t, s). Noting that ds/dξ = Π∂sg(t, σ, t, s) = Π∂sg(t, σ, σ, ξ), we have

K2
2 (t) +K2

4 (t) ≤ T

∫ z(t)

0

∫ t

τ

‖T (t− σ)Πγα
(t, σ; t, s)Gp,α(ϕ(σ; t, s), σ)‖

2
L2(Ω) dσ ds

+ T

∫ s†

z(t)

∫ t

0

‖T (t− σ)Πγα
(t, σ; t, s)Gp,α(ϕ(σ; t, s), σ)‖

2
L2(Ω) dσ ds

= T

∫ t

0

∫ s†

τ−1(σ)

‖T (t− σ)Πγα
(t, σ; t, s)Gp,α(ϕ(σ; t, s), σ)‖

2
L2(Ω) ds dσ

= T

∫ t

0

∫ s†

0

‖T (t− σ)Gp,α(ξ, σ)‖
2
L2(Ω)Π2γα+∂sg(t, σ;σ, ξ) dξ dσ

≤ TeLgT

∫ t

0

‖G(σ, p(·, σ)) + αp(·, σ)‖2L2(Q) dσ (2.19)

From (2.5), (2.6), and assumptions (H2), (H3), we find that

‖F (σ, p(·, σ))‖
2
L2(Ω) ≤ 2

(
‖C(σ, ·)‖2L2(Ω) + ‖β‖2L∞(QT )s†‖p(·, σ, ·)‖

2
L2(Q)

)
, (2.20)

‖G(σ, p(·, σ)) + αp(·, σ)‖2L2(Q) ≤ 2
(
2α‖p(·, σ)‖2L2(Q) + ‖f(·, σ, ·)‖2L2(Q)

)
. (2.21)

It follows from (2.16)–(2.21) that

‖Kαp(·, t)‖
2
L2(Q) ≤ C̃T

{
‖p‖2L2(QT ) + ‖p0‖

2
L2(Q) + ‖C‖2L2(ΩT ) + ‖f‖2L2(QT )

}
(2.22)

for some constant C̃T > 0 depending on T , ‖β‖L∞(QT ), ‖µ‖L∞(QT ), Lg, and g
T
. In particular, Kαp ∈

L∞(0, T ;L2(Q)) and we find that Kαp ∈ ET,+. Next, as usual, we introduce an equivalent norm

‖p‖λ := ess supt∈(0,T )e
−λt‖p(·, t, ·)‖L2(Q)
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in L∞(0, T ;L2(Q)) for λ > 0. Let p1, p2 ∈ ET,+. Considering p := p1 − p2, by linearity, Kαp satisfies
(2.15) with p0 ≡ 0, C(t, x) ≡ 0, f(s, t, x) ≡ 0 and hence by (2.22), we have

e−2λt‖Kαp1(·, t)−Kαp2(·, t)‖
2
L2(Q)

≤ C̃T e
−2λt

∫ t

0

e2λσe−2λσ‖p1(·, σ)− p2(·, σ)‖
2
L2(Q) dt ≤

C̃T

2λ
‖p1 − p2‖

2
λ

This implies that Kα is a contraction in ET,+ if λ > 0 is taken large enough. Thus, there exists a
unique fixed point p in ET,+ of Kα. Since the fixed point p satisfies (2.22) with Kαp(·, t) = p(·, t), using
Gronwall’s lemma, the estimate (2.14) is obtained. This completes the proof. �

Corollary 2.5. For any u ∈ U , there exists a unique mild solution p = pu ∈ L∞(0, T ;L2(Q)) of (1.1)
satisfying pu(s, t, x) ≥ 0 a.e. in QT .

Proof. Consider µ+ u as the mortality rate µ in (2.1) and apply Theorem 2.4. �

3. Existence of optimal control

In this section, we establish the existence of an optimal control which maximizes the optimal harvesting
problem (1.2) governed by (1.1). In addition to (H1)–(H3), we impose on the weight function w(s, t, x)
the following condition

(H4) w ∈ L∞(QT ), w(s, t, x) ≥ 0 a.e. in QT .

By Corollary 2.5, for any u ∈ U , there exists a unique mild solution pu ∈ L∞(0, T ;L2(Q)) of (1.1) such
that pu(s, t, x) ≥ 0 a.e. in QT . Then we have

Theorem 3.1. Let (H1)–(H4) hold. Then the optimal harvesting problem (1.2) governed by (1.1) has at
least one optimal solution.

Proof. Define Ψ : U → R+ by

Ψ(u) =

∫

QT

w(s, t, x)u(s, t, x)pu(s, t, x) dsdtdx

and put d = supu∈U Ψ(u). By (2.14), we find that

‖pu(·, t)‖L2(Q) ≤ C ′ (3.1)

for some constant C ′ > 0 independent of u ∈ U . Hence we have 0 ≤ d < ∞. Let {uN} ⊂ U be a

sequence satisfying d −
1

N
< Ψ(uN ) ≤ d. By (3.1), ‖pu‖L2(QT ) is bounded in u and hence there exists

a subsequence denoted again by {uN} such that puN converges weakly to some p∗ in L2(QT ). Using
Mazur’s theorem (see e.g. [2, p.69]), there exists a sequence {p̃N} in L2(QT ) satisfying

p̃N (s, t, x) =

kN∑

i=N+1

λN
i pui(s, t, x), λN

i ≥ 0,

kN∑

i=N+1

λN
i = 1 (kN ≥ N + 1),

p̃N → p∗ strongly in L2(QT ).

Define the sequence {ũN} by

ũN (s, t, x) =





∑kN

i=N+1 λ
N
i ui(s, t, x)p

ui(s, t, x)
∑kN

i=N+1 λ
N
i pui(s, t, x)

, if
∑kN

i=N+1 λ
N
i pui(s, t, x) 6= 0,

ζ1(s, t, x), if
∑kN

i=N+1 λ
N
i pui(s, t, x) = 0.
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Then ũN ∈ U . Since {ũN} is bounded in L2(QT ), there exists a subsequence denoted again by {ũN}
which converges weakly to some u∗ in L2(QT ). We shall show that this u∗ gives an optimal control to
the optimal harvesting problem (1.2) and (1.1). Note that by linearity, p̃N is a mild solution to (1.1)
with ũN instead of u. Since p̃N converges strongly to p∗ in L2(QT ) and p̃N ∈ L∞(0, T ;L2(Q)), we find
that p∗ ∈ L∞(0, T ;L2(Q)) and p∗ is a mild solution of (1.1) for u = u∗. By uniqueness of solutions, we
conclude that p∗ = pu

∗

and
∫

QT

w(s, t, x)ũN (s, t, x)p̃N (s, t, x) dsdtdx

→

∫

QT

w(s, t, x)u∗(s, t, x)p∗(s, t, x) dsdtdx = Ψ(u∗)

as N → ∞. On the other hand,
∫

QT

w(s, t, x)ũN (s, t, x)p̃N (s, t, x) dsdtdx

=

kN∑

i=N+1

λN
i

∫

QT

w(s, t, x)ui(s, t, x)p
ui(s, t, x) dsdtdx =

kN∑

i=N+1

λN
i Ψ(ui) → d

as N → ∞. Thus we obtain d = Ψ(u∗) and we conclude that (u∗, pu
∗

) is an optimal solution to the
optimal harvesting problem (1.2) and (1.1). �

4. Conclusion

We translated linear size-structured population models with diffusion to abstract partial differential
equations in Hilbert space L2(Ω). Based on the semigroup theory, we introduced a notion of mild
solution which has nice properties as it satisfies the equation along characteristic curves. The existence
of a unique nonnegative mild solution was shown. We then formulated an optimal harvesting problem
to maximize the total price or total harvest through mild solutions and the existence of an optimal
harvesting effort was shown.
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