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§1. Introduction. For a sequence {Rk} of disjoint
rectangles in Rn with sides parallel to the axes, let Af =

(2 ISkalz)llz, where SRk is a Fourier multiplier operator defined

.

by (S, f) = x, £ . Then, the following is known:
Ry Ry

Theorem (a Littlewood-Paley inequality for arbitrary rectangles).

For p € [2, »), there exists a constant cp such that

P, N
IApr < cplflp (f €¢ L"(R)).
This was proved by Rubio de Francia [4] for n = 1 and by Journé
[1] for n = 2. Soria [5] gave a simple proof of the theorem for n

= 2, by applying Journé’s covering lemma of [2].

On the other hand, Journé’s covering lemma was extended to
higher dimensions by Pipher [3]. In this note we give a simple
proof of the theorem for n > 3, by using Pipher’s covering lemma.

As in [1], we prove the L%-BMO boundedness of a certain
decomposition operator (Lemma 8). We prove the lemma by induction
on the dimension n, and then the covering lemma and Fubini’s theorem
are used effectively.

In §2, we review Pipher’s covering lemma and apply it in §3

to show the theorem.



§2. Covering lemmas. For an open set U in R" ; let

D(U) denote the collection of dyadic rectangles in U. Here, a

k. k

dyadic rectangle is a rectangle of the form nlii‘n(iiz l,(£i+ 1)2 i)

with 25 ki € Z (the set of integers). (For convenience, we
consider open dyadic rectangles.) Put Dn = D(Rn). For a bounded
open set Q in R® (n = 2), let Mn(g) denote the collection of
dyadic rectangles R ¢ @ which are maximal in Q in the
xn-direction. Here, the maximality in © in the xn—direction of

R means that if R = I;x...xI _;xI =~ and if R’ = IyxeooxIy _(xI) s
a dyadic rectangle such that R’ ¢ @, R <« R’, then R = R’. (For
each i, 1 < i < n, the maximality in Q@ in the xi-direction is
defined in the same way.) When Q < R, MI(Q) (= M(Q)) denotes the
collection of maximal dyadic intervals in Q.

Let § be a bounded open set in R® (n = 2). For I € Dy and

S € Dn-l’ we define #£(I,S;Q) to be the maximum element of the set:
(I'e D, : I' 51, |I'xS n | > 3|1T’xS|)

if this set is not empty; otherwise, let £(I,5;Q) = I. Next, for

I €Dy and k € N (the set of positive integers), put
G(I,k;Q) = u {S € Dn_1: IxS ¢ Q, £(I,8;Q) = I(k-1)},

where 1I(k-1) denotes the dyadic interval containing I of length

2k‘1|1|.



The following lemma is essentially due to Pipher [3].

Lemma 1. (a) Let Q* = {x € R™: Ms(xg)(x) > 1/2}, where MS

denotes the strong maximal operator. Then
b 4

(b) Let w:[0,=) - [0,«) be increasing and such that

E:=1 kw(z—k) < =, Then
zzenl D=1 1T1w(27%) |6(1,k;0) | < clQ].-
Proof. By the definition of G(I,k;Q), (a) is obvious. Next,

for an open set U and 1I € Dl’ let EI(U) = u {8 € Dn—l: IxS < U}.

Then, as in [3], we have

|G(Ilk;9) | < CIEI(Q)\EI(I{} (Q) I .

Thus, (b) follows from the inequality:
Srep, Zke1 IT1w(27%) |EL(Q)\E () () | = clal,

which was proved in [3]. This completes the proof of Lemma 1.



For R = le...xln (3 Dn’ we define k(R,Q) (e N ) by

}(II’I[Z,n];Q) = Il(k(R’Q) = 1) (I[z’n] = 12X||-X1n)-

Then, we easily see the following:

Lemma 2. If R € D(Q), then I[Z,n] c G{Il,k(R,Q);Q) and if R

€ Mn(Q), then I[Z,n] € Mn_l(G(Il,k(R,Q);Q)).

We have defined an open set G(I,k;Q) and a positive integer
k(R,Q). In the following, we will consider G and k 1in
different dimensions to make definitions.

When n = 3, for Il’ AT In_1 € D1 and kl’ P kn—l € N, we
define open sets G(I[l,i]’k[l,i];g) (k[l,i] = (kl,..., ki)) in

Rn_l (2 <1 <n-1) by the relation:

G(Ipg, 417178 1,i41739R) = G(I5,9,K5,93G(Ipy 590Kpq,5759))

(i =1, ¢eey, n = 2)

Then, by Lemma 1 we have the following:



Lemma 3. Let n = 3. (a) For i=1, ..., n - 2,

b 4
Livi(Bipq = DIXG(Ipq 49708 p1,541739) © G (Tpg 570Kpq,3759)

(b) Let w be as in Lemma 1. Then, for i =1, ..., n - 2,

'ki+1

b
i+1€Dy “ky,q=1
Let R = Iyx...xI_ € D,. We define k;(R) = ki(R,Q) (e N)

for i=1, ¢, n - 1. First, let kl(R,g) = k(R,Q). Then, for

i > 2, define ki one after another by
ki(R:Q) = k(I[i,n]’G‘I[l,i—l]’k[l,i—l](R’Q);Q))
(k[l’i_I](R!Q) = (kl(R,Q),-.., ki-l(R’Q))).
Then, by Lemma 2 we obtain the following:
Lemma 4. If R € D(R), then I[i+1,n] -

G(I[l,i]’k[l,i](R’g);g) and if R € M (Q), then, I[;,q ;| €
Mn*i(G(I[l,i]’k[l,i](R’Q);Q)) (i =1, «o.y, n = 1).



e

For R = le...xIn € D(Q) (n = 2) , define Ij = IJ(R) =

we have the following (see Pipher [3] for n > 3 and Journé [2] for
n=2):
Lemma 5. (a) IUReD(Q) R | <c|Q|, where R = R(Q) =

le...xIn_lxIn;

(b) 2ReM (Q) |R|W(|11|/|£1|)---w(|In_ll/1fn_1|) < c|Q|, where w
" .

is as in Lemma 1.

We give a proof of Lemma 5, for completeness. Using (a) of
Lemma 1 and (a) of Lemma 3, we see that flx...xIn_lxIn [ = Q*(nnlj,

of (1) _ oF #(k+1) _ ¥(k) )%

where Q and Q Thus (a) holds.

To prove (b), we rewrite the sum as follows:

2Rem_(2) IR Mer1,n-11¥0IT5 17115 1)

-k, +1

1 k +

- 1
@ n-1

3 Sk, =1 1T 1W(2
I1,€D; “ky=1771 n-1€P1

where in the last sum 21 s the dyadic interval I, runs over the
n

set {In € D1: R € Mn(Q), ki(R,Q) = k. l1<i<n-1}. By Lemma 4,

ll
such an In belongs to MI{G(I[I,n-I]’k[l,n-ll;g))’ which implies

that



Thus by successive applications of (b) of Lemma 3 and (b) of Lemma 1
in the rewrited sum, we obtain the desired inequality. This

completes the proof.

*(n—l)), by applying the

Next, we enlarge the rectangle R € D(Q
same procedure as above but changing the enlargement order of
intervals. By continuing enlargement of rectangles in this way, we

can obtain the following lemma, which will be used in the proof of

the theorem.

- (n = 2). Then

Lemma 6. Let Q be a bounded open set in R
for R = le...xln € Mn(ﬂ), there exist dyadic intervals Ti = Ti(R),

1 <£ix<n, satisfying the following properties:

(a) R o R, where R = Tlx...xTh.
(b) IVpen_(q) ¥I < clal.
(c) For every permutation ¢ of the set {1, 2, ..., n}, there

exist a bounded open set Qa > Q and a mapping To: Mn(g) - D(Qa)

such that |Q_| < cl|@l; T_(R) > R; and s;l[{soTo(R)} (s o)1 < &,
R n . ; _

where So‘ R - R is defined by Sox = (xa(l)’ xa(Z)’ " e ey xa(n))'

(d) IRIW?;i W(llilllTil) < clQ] (w is as in Lemma 1).

2ReMn(Q)



§3. A proof of a Littlewood-Paley inequality. Let ¢ € ¢(R)
(the Schwartz space) be such that X[-2,21 < ¥ < X[-3,3]" For

integers j, k, let
TPE(x) = Ifw kP (x,y)f(y) dy,

. N -+
where Kﬂ(x,y) = 2k¢(2k(x - y))evznlJz Y,

Let e Zn X Zn -» {0, 1} be such that

-k,
i

(j,k)ez™ «(dr KM o X[-3,31(2 & - Jj) <¢4

for some constant Co ? where j = (ji), k = (ki)’ £, € R. Then,

we define the bounded operator Fa: Lz(Rn) - Lz(mn, gz(zzn)) by

J J
i . 1 n
Ff(x) = [m(J,k)[Tl’kl...Tn’kn]f(x))j’k ,

Js Js
where T, ' is the operator T 1 which acts only on the

i,k. k.
i i

variable X4 that is,

Jj Ji
Ti,kif(x) = [Tkif(xl’ s sy xi_lg = ’ Xi+1, .8y xn)](xi)o
. I3 I
We also write Ti,k = Tk.'



i .

It is known that the theorem stated in section 1 follows from

the boundedness of the operator Fa from LP(R®) to Lp(Rn, Lz(zzn))
for 2 < p ¢ = (see [1], [4]) and by interpolation this boundedness
follows from that of Fm from L%(R®) to BMO(Rx...xR, LZ(Zzn)).

(t =(t1, —— tn), ti > 0), where @ is

Let Qt = Q °"Qt &

®1 n i

an operator which acts only on the variable x5 by convolution with

qti(xi) t;lq(xi/ti). Here q € CS(R) is even and such that

supp(a) (-1, 1), fq = 0, Jgld(s)|? ds/s = 1.
Then the L*-BMO boundedness of Fa follows from the following:

Lemma 7. For b € L®(R®), let

; j 2 dt
diy lxat) = 3 «(d, k) 1Q, TYb(x) |© dx =,
b (j,k)ezzn t k t
3 jl jn .
where Tk = Tkl...Tkn, dt/t = dtlltl...dtn/tn. Then a, is a

Carleson measure on (RE)D, that is, ub(S(Q)) < chIiIQI for every

bounded open set § in R™, where S(Q) denotes the set:

{(x,t) = (xl,tl;...;xn,tn) € (Rf)n: m (xi - t.,x.

l<i<n g%y, ¥ Bk e Bl

Lemma 7 is an immediate consequence of the following:



-y

Lemma 8. Let Q@ be a bounded open set in R" and let b €
L(R™). Then there exists a non-negative function ¢ € Ll(Rn}

depending only on @ such that g, < I and

up(S(Q)) < chn Ib(z)|%g(z) dz,

where ¢ 1is a constant depending only on . and n.

To prove the theorem, thus it only remains to show Lemma 8.

Proof of Lemma 8. We prove it by induction. Let A(n) (n =
1) denote the assertion of Lemma 8 for R".
First we prove A(l). If I 1is an interval in R, I (r > 0)
denotes, as usual, the interval of length r|I| and with the same
center as I. For a bounded open set Q in R, we put ¢ =
Y syt PO L
Let b1 = bxﬁ ’ b2 = b - bl' Then by the Lz-boundedness of

F we have
o

up(S(2)) < by i3 = cf lb(z}lzxﬁtz} dz.

In the following, we show the existence of a sequence {gk} of

non-negative functions on R such that ay (8(Q)) < Czk fiblzgk dz,
2

zk"gknl < c|Q]. Then the function g of Lemma 8 is obtained by
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normalizing xﬁ + Zk g

We use the following result of Journé [1].

Lemma 9. Let (x,t) e (Rfln (n = 1) and let bx + €
y

L”(R™) be such that supp(bx,t} c {z € R": Ixi - zii > Zti, 1 <i <
n}. Then

S on 19:Tib, (x)12 < o j;bx (2121 oalzg,xg,t;) dz,

(J,k)eZ : ’ 1<i<n

where a{zi,xi,ti} = t?/lxi - zi|1+e, 0 ¢ & ¢ 1/2.

For an interval I, let e(I,x) = |c(I) - xl-l_S (x ¢ R, x =
c(I)), where <c¢{I) denotes the center of 1I. Then, since S(Q) <

UIGM{Q)S{T)! where I = 5I, by using Lemma 9 for n = 1 we have

. j 2 dt
_ 3 alisk) Q. Tb,(x) | dx &2
21 IS(I, tTicP2 3

2 dt
< 3 IS(TJ [ 1b5¢2)1%a(2,x,¢) dz dx 9¢

<3 [ 1212 11118 J(z)e(I,z) dz

(100I)

c3; [ Iv(2)1%21(2) dz, say.
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We easily see that EIeM(Q}HgI"I < CEI|I| < cl|Q]. This is what we
need. Thus the proof of A(1l) 1is complete.

Next we prove A(n) (n = 2) , assuming A(m) for every m < n
- 1. Let Q@ be a bounded open set in R® and let b € Lm{Rn).

We put = uREﬁn‘g}100R, where for a rectangle R = le...xln and r

> 0, rR is defined by rR = rI x...xrl . Recall that || < c|Q]

(Lemma 6).

We assume that supp(b) < ge. Let A= {1, 2,..., n}. Then
b(z) = S (-1 1E1=1b(z)  m x((100%;(R))®,2;) = 31 by g
IcA, I= ¢ iel * * !

for all R € Mn{Q), where |I| denotes the number of the elements of

I and we write x{E,zi) -~ xE{zi) . Note that S(Q) <

URGMH(Q) S{E), where R = 5R. Thus if {§(§)} (R € Mn(Q}) is a

collection of disjoint sets such that g(ﬁ) c S(ﬁ), U g(ﬁ) = u S(R),

then we have

up(8(R)) < py(U S(R)) = EReMn(g}“big(E’) < o3 3p R(E(E:).

For each I ¢ A, I # ¢, we prove below the existence of a sequence

{gk I}k of non-negative functions such that
L

Zr Hp, R<§(E)) < 3y J’ Iblzgk,l dz, 3 gy 0y < clel.
r



-

By the same argument as in the proof of A(1l), this is sufficient for

the proof of A(n).

(I) Estimate for ER ay (g(ﬁ)). By Lemma 9, we have
AR
w, (S(R) < cI 3 j’|bA g(z2)1% 1 a(z;,x;,t;) dz dx 9¢
AR S(R) ¥ l<i<n
2
< cf Ib(z) |"gp(2z) dz,
where gp(z) = |R|1+8nix((IOOTi(R))c,zi)e(Ii,zi) (R = IyxeeoxI ).
From (d) of Lemma 6 with w(t) = ts, it follows that ER ﬂanl <
c3 |Rl1+8l§|-8 < c|Q]|. This is what we have to show.
(II) Estimate for 3p ay (S(R)) in the case |I| = q <n - 1.
I,R

Let ¢ be the permutation of A such that I = {&(l), &(2), ...,
o(q)} and J = A -1 = {o(q+l), o(q+2), ..., o(n)} (o(i) < o(i+l)
if i = q). Let Qo o Q, To: Mn{Q) - D(Qa) be as in Lemma 6. Put

{1;¢uss g} = Ki Then

(A) = Zpem (@) #b; o'3(B)) = 2qen(q ) 2rer;l(q) #by {S(R))

R

= EHqu ZnygeN? ZLeg(H,my) 2ReT; s l(Hx) Hbg (S(R)),

where
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B{H:mK} =

{L € D(G(H’mK;Saga)): HxL € D(Sago)’ ki(HxL,SaQo) = m,

i 1<i<q}

with my = (ml,...,mq) (see Lemma 4).

Fix H, m and let

K

® ZLeg(n,my) ZRer;ls;l(mxw) #pp (S(R)).

(B)

Then by (¢) of Lemma 6, we have

(B) = (S(R))

2ogamy ZLeg(H,my) ZReR(L,2y) by o

2y emy ZLeg(H,my) 2ReR(L,2y) “b(H, e, ) (SR

where

R(L, o) = (R € Tohs;M(HxL): T i) (R) = J;(2;-1), 1 < i < q)

with H = Jlx...qu ,

b(H,lK)(z) - bH’!‘K(Z} = (_1)q—1b{2}“1€K x“lOOJl(.ﬂ.l—l))c,Za(l))

and LK = m, means that li > my for every i € (1,..., q}.



=i

Since TO(R} > R and (S(R)} is disjoint, we see that

2 Zher—lg-1 X (xyt) £ %  _ (Xpetadx _ (xy4ty),

LEE(H,mK) RETo Sa (HxL) S(R) ) S (H) I'"I us (T) J'"J
where uS(E) = ULEE(H,mK] S(f) and Xy = (xa(l)""’xa(q))’ etc.
Thus

’ . j 2 . dt
(B) = 29 am ZLee(H,mg) 2Rem(L, o) Jg gy 2 978 19¢TicPn, o ()17 dx ¢

: j 2 Woiva, ox

= i 5
22K Ié(ﬁ)EJI’kI[qu(E} EJJ’ ty I

where dtI/tI = s 5 wAL / ouw QX

dx. = dx
e

at (1) e (1) to(q)’ 1 (1)

etc. Observing that u S{E) c S(G*M(H,mK)) for some M € N (we

o(q) o(q)’

omit Sano) and

k.
< 1 s
z'jJ’kJ a(J;k)“ieJ X[_3’3}(2 8y - Ji) < cC

o ¥

we apply to the inner integral the assertion A(n-q), taking for Q

the open set G*M(H,mK). Then it is majorized by

J

1 -1 2
o [ 19 Tx Py B0 e Zp) 1 Bg i, V250 20



B

g J

_ _ i ;
where Qt = niel Qti, TkI “ieI Tk. and the function gH,m

I K

gsatisfies ngH,mKll < ch(H,mK)I.

1

Thus using Lemma 9, we have

2 I
(B) < 3 om j;(ﬁ} f by, g (2) 157 (25,5t )8y g (2) d2 dxp —
2
< %y am | LEIEN £, mg s 0, (2) 9%
where
g (z) =
H'mK"ﬂ'K
l+g c
1 8y, my (Z5) Ty x( (1003502510072, (5y)elT5180(4) )
. 2
Thus we obtain (A) < c3 > J1b|” g dz.
Furthermore, by (b) of Lemma 1 and (b) of Lemma 3 with w(t) = t€,
we see that
s s i I s b iz o0, .2 %ty !
g2 < C . e £
-gm; -smq
< CEH EmK |H|2 R |G(H,mK)| < cISoQal < cl|Ql.
This gives a necessary estimate for the case (II). Thus the proof of

A(n) 1is complete, which finishes the proof of Lemma 8.
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