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Abstract: The numerical property of the predictor-
based least squares (PLS) algorithm which provides
the same least squares solutions as the RLS algorithm
is studied. This paper theoretically proves that the
backward PLS (BPLS) algorithm is statistically sta-
ble. First, the eigenvalues of the transition matrix is
verified to be within or on the unit circle of the com-
plex plain regardless of the input signals. Then, the
expectation of the transition matrix is shown to have
the eigenvalues within the unit circle. This means that
the BPLS algorithm is statistically stable.

1. Introduction

In solving the least squares problem for transver-
sal adaptive filters, the recursive least squares (RLS)
algorithm is well known. However, it is reported
that divergence phenomena may occur when the arith-
metic precision is not enough or the input signal is
ill-conditioned([5, 6, 1].

Another approach for solving the least squares prob-
lem is to use the fast least squares (FLS) algorithm.
The principle of the -algorithm is different from that
of the RLS algorithm in that the relation of the for-
ward and backward predictors and the gain vector are
exploited, which result in a fast convergence rate with
much less computation. However, the numerical in-
stability of the FLS algorithm is so serious that they
cannot be continuously used in real applications, espe-
cially under finite-precision implementation[2, 4].

Although the algorithm we called the predictor-
based least squares (PLS) algorithm is easily derived
from the FLS algorithm, it is reported to be much
more stable than the RLS, FLS, or other stabilized
versions[7]. Ref.[8] show that three main instability
sources encountered in both the RLS and the FLS al-
gorithms, including the unstable behavior of the con-
version factor, the loss of symmetry, and the loss of
positive definiteness of the inverse correlation matrix,
do not exist in the PLS algorithm. Nevertheless, the
stability has not been guaranteed theoretically yet.

This paper gives the theoretical proof of the stabil-
ity of the backward PLS (BPLS) algorithm. First, it is
shown that the eigenvalues of the transition matrix are
necessarily within or on the unit circle of the complex
plain regardless of the input signal or the tap-weight
vectors of the predictors. The property, however, can-
not guarantee the stability of the BPLS algorithm be-

cause this system is time-varying. Then, we evaluate
the expectation of the transition matrix and show that
its eigenvalues are within the unit circle. This means
that the BPLS algorithm is statistically stable.

2. Backward PLS Algorithm

In the FLS algorithm(3], the gain vector kp(n) is
obtained using two order-update equations,

[ kM(r?— 1) ]

fmar(n)
M Fyy1(n)

[ kMO(n) ]
brm+1(n)
Bum41(n)

In deriving kps(n) from kas(n — 1), kar41(n) is used
therefore reversely order-updated. This is said that one
of the causes of instability of the FLS algorithm(8]. In
order to avoid the above, the forward (backward, resp)
PLS algorithm uses Eq. (1) (Eq. (2)) to get kp(n),
which leads the necessity of the gain vectors k, (n) and
the predictors am(n) (em(n)) forallm=1,..., M and
it makes the computational load order of M? although
that of the FLS algorithm is order of M[7).

Since the two are very similar, only the backward
PLS (BPLS) algorithm is studied in this paper. For
convenience of analysis, we write the BPLS algorithm
below:

km41(n)

(1)

aM+1(n),

1l

kumir(n)

+ (2

cm41(n).

‘/’m(n) = Cm(ﬂ - I)Tum(n)r (3)
Bm(n) = ABn(n—1)+ ym(n)¥m(n)?, (4)
em(n) = em(n—1)~9Ym(n) [ k'"_ol(n) } ,(5)
7m+l(n) = :\—B;;—I:E:En__)l')"Ym(n)v (6)
km(n) = [ km—ol(n) ]
)
a(n) = d(n)—wy(n—-1)Tupy(n), (8)
wp(n) = wpm(n—1)+ky(n)a(n), (9)
m = 1,...,M,
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where ¥, (n) is the backward a priori prediction error,
B, (n) is the minimum power of the backward pre-
diction error, vm(n) is the conversion factor, km(n) is
the gain vector, cm(n) is the tap-weight vector of the
backward predictor, a(n) is the a priori estimation er-
ror, u,(n) is the tap-input vector, d(n) is the desired
signal, and wps(n) is the tap-weight vector of the adap-
tive filter. The backward a posteriori prediction error
bm(n) in Eq. (2) is equivalent to ¥m(n)¥m(n) in the
above definition.

To initialize the BPLS algorithm at time n = 0,
set em(0) = [0F._,1]7, Bn(0) = 6, km(0) = Om,
Tm(0)=1form=1,2,..., M, where § is a small pos-
itive constant and 0,, is the 1 x m vector all of whose
elements are zero. And at each iteration n > 1, gener-
ate the first-order variables as 4;(n) = 1 and ko(n) is
null. Then, all of the variables are derived with Egs.
(3)-(9) when the input signal u(i),i = 1,... are given.

3. Eigenvalues of Transition Matrix

In this section, it is shown that the eigenvalues of
the transition matrix are between 0 and 1 or equal
to 1 regardless of the input signal, and this property
remains even if the tap-weight vectors ¢m(n) of the
backward predictors include numerical errors.

First, we show the following lemma:

Lemma 1
VYm,n,0 < um(n)Tkm(n) < 1

and the property holds even when c,(n) includes er-
roTS.

Substituting Eq. (5) to Eq. (7),
km(n) = (1 _ LmL”lM) [ k1) ]

B, (n)
Ym(n)¥m(n)
+—B—nT(TCm(n -1) (10)
is derived. Therefore,
1= upm(n) km(n)
= am(n) (1—um-l(n)Tkm—l(n)) (ll)

where

_ 'Ym(n)y"m(”)z
am(n) = (1 - ——Bm(n) ) .

Eq. (11) means that 0 < um(n)Tkm(n) < 1 when 0 <
am(n) < 1and 0 < up_1(n)T k-1 (n) < 1, which are
inductively shown to be satisfied from Eq. (4) and

71(n)¥1(n)?

0 < uy(n)Tky(n) = Bi(n)

< 1.

Since the property of ¢,,(n) is not used at all in the
derivation above,

VYm,n,0< u,,,(n)Tkm(n) <1

holds even when ¢, (n) has numerical errors.

Next, we define the transition matrix and show that
all of its eigenvalues are between 0 and 1 or equal to
1. Let (k,,.(n)T,O;r_m)T and (cm(n)T,Of_m)T be de-
noted by &, (n) and ¢, (n), respectively. When j < m,
cl.(n) is defined as the vector whose jth element is
equal to that of ¢;,(n). Then, Eq. (5) and Eq. (7) are
rewritten as

Dn) = (n—1) = Ym(RT_(n),  (12)
kn(n) = km_y(n) 4 20 oy g

B (n)
Substituting Eq. (3) to Eq. (12),
(Emt1 —

knt (n)umsr(n)T )emsr(n — 1X14)

is derived where E, 4 is (m + 1) x (m + 1) identity
matrix. Because the (m + 1)th element of cpyy(n)
is constantly unity, the essential transition formula of
cm41(n) is

C:H(")

cmy1(n) =

(Em = km(n)um+1(n)T )empa(n — 1)
(Em — km(”)“ﬂl(")’r)c:“(" -1)
(15)

Let the optimal predictor be denoted by cm41(o0),
then the above is rewritten as

—u(n — m)km(n)

cm1(n) = Cgtl(m)
= (Em- km(")“m(n)T)
(C:H(" -1~ C$+1(°°))
—km(n) (ums1(n)Tems1(o0)) . (16)
Since ¢m41(00) is the optimal backward predictor, the
last term statistically vanishes. In the same way, the
transition formula of was(n) is also written as
wp(n) — wpr(oo)
= (Em- kM(n)'u.M(n)T)
(wp(n = 1) — war(o0))
+kar(n) (war(n)Twar(o0) — d(n)) . (17)
Then, let us define the transition matrix as E,, —
ko (n)um(n)T and consider the eigenvalues of the tran-
sition matrix in the following.

" See u;n(n) as a vector in R™ and consider the
orthogonal complement of u,,(n), whose m — 1 ba-

sis vectors are denoted by vy(n),...,v,-1(n). Since
um(n)Tvi(n) =0,
(E‘m - km(n)u,,,(n)T) vi(n) = vi(n) (18)

is satisfied for any v;(n), which means that v;(n) is an
eigenvector of the matrix Em — km(n)um(n)7 and its
eigenvalue is unity. And since

(Em - km(n)um(n)T) km(n)

= (1= um(n)Tkm(n)) km(n), (19)
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kn(n) is an eigenvector of the matrix E, —
km(n)um(n)T and its eigenvalue is 1 — um(n)7 ke (n).
km(n) and v;(n),t = 1,...,m — 1 are linearly inde-
pendent because um(n)Tkm(n) # 0, which concludes
that the eigenvalues of E,, — k., (n)um,(n)T are only 1
and 1 — u;,(n)Tkm(n). From Lemma 1, the following
theorem is derived:

Theorem 1 For any tap-input wvector up,(n), the
eigenvalues of Eq — km(n)um(n)T are laid within or
on the unit circle.

Since only the property that 0 < up,(n)km(n) < 1is
used in the derivation above, the theorem holds even
when ¢, (n) has numerical errors. This means that the
BPLS algorithm is robust against numerical errors.

4. Expectation of Transition Matrix

Because the system described by Eq. (16) is time-
varying, its stability cannot be guaranteed even though
the eigenvalues of the transition matrix are within the
unit circle. In other words, the stability of the BPLS
algorithm cannot be derived from Theorem 1. In this
section, we evaluate the expectation of the transition
matrix and show that its eigenvalues are laid within
the unit circle. This means that the BPLS algorithm is
statistically stable, where we assume that the tap-input
vector um(n) obeys a colored Gaussian distribution.

In case of m = 1, ¢;(n) is constantly equal to 1 and
then stable. So, in order to prove the stability of ¢,,(n)
for any m, it is enough to show that ¢,,41(n) is stable

when so are ¢i(n),i=1,...,m.
Let Cn(n), Dm(n), and ¥ p(n) be defined as
Cn(n) = (cf*(n),...,cq(n)), (20)
Dm(n) = diag{di(n),...,dm(n)}, (21)
() = Ym#r(n) 7i(n)

di(n) = Y1) Bi(n)’ (22)

Un(n) = (%a(n),...,¥m(n))"
= Cn(n-1)Tun(n), (23)

respectively. Using Eq. (10) recursively, it is derived
that

kn(n)

%k;‘_m
&y ABi(n—1)) 1(n)
. Z(H B, () )an)

¢i(n = )ci(n — li)Tum(n)

7‘::11((:)) Z;((T;)) ei(n = jei(n = T up(n)
i=1 ! !

= Cm(n=1)Dm(n)Cn(n = )T up(n).

(24)
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Therefore, the transition matrix Ep — km(n)um,(n)7
of ety 1(n) is written as

Epn —kn(n)um (n)T

= Ep—=Cmn(n=1)Dp(n)Cn(n-1)T
-um(n)um(n)T

= Cm(n - 1)(Em -
D () ¥ () Wi ()T Cim(m = 1)1

Then, the eigenvalues of the transition matrix coincide
with those of Em — Dm(n)¥m(n)¥m(n)T. From the
assumption that ¢;(n),i = 1,...,m, and Cpy(n) are
stable, we only need to consider the eigenvalues of E,, —
Dn(n)¥m(n)¥m(n)7. Since ¢;(n) is the tap-weight
vector of the backward predictor and ¥;(n) means the
backward a priori prediction error by their definitions,
when ¢;(n) converges, Ex [¢,~(n)2] approaches to its
minimal value, and its derivatives by the jth element
(ci(n—1))j of ¢i(n—1)for j = 1,...,i— 1 become
null, that is,

OEx [1(n)?]

m = Ex [wf(n)u(n - ])] =0.

This means that ;(n) is statistically orthogonal to
u(n—j),j=1,...,i—-1,and then ¥;(n),j =1,... i—1
because %;(n) is a linear combination of u(n),...,u(n—
7). Therefore,

Ex [i(n)y; (n)] = 0

is satisfied when i # j. Eq. (25) means that ¢;(n),i =
1,...,m are statistically independent since ¥,,(n)
obeys a Gaussian distribution by the assumption that
um(n) is Gaussian.

Because the i,j element of Dy, (n)¥,, (n)¥m(n)7 is

Ym+1(n) 7i(n)¥i(n)¥;(n)
Yit1(n) ABi(n— 1) + vi(n)i(n)2"

(25)

its expectation is 0 when i # j from the independence
and otherwise

E [‘7m+1(") ‘Y:‘(")‘/’i(")2 ]
Yit1(n) ABi(n — 1) + 7i(n)¢i(n)?
which is between 0 and 1 because so are both frac-
tions So, it has been shown that all of the eigenvalues
of the expectation of Ep — Dy (n)¥,n(n)¥,, (n)T ex-
ist between 0 and 1, and so do the eigenvalues of the
expectation of

Crn(n—1)(Em —

Din(n) ¥ (n) ¥ (R)T)Crm(n — 1)71  (26)

about ¥, (n). That means that ¢1, | (n) is statistically

stable, and so is ¢m41(n) = (c,";‘lﬂ(n)T, 1)
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When %;(n),i = 1,...,m are not independent be-
cause of the error of Cp(n — 1), the expectation of
E,. - Dm(n)‘llm(n)\l!m(n)T does not become a diago-
nal matrix. However, if the error is small (for example,
order of €), the eigenvalues of the expectation also move
a little (order of €) and still exist within the unit circle,
cm+1(n) is still statistically stable. Then, the stability
of ¢m(n) for any m has been inductively proven.

5. Simulation Results

Computer simulations are done to confirm that the
eigenvalues of the transition matrix are within the unit
circle.

A backward predictor with 10 taps is employed for
the simulation. Each of the tap-weight vectors of the
backward predictors ¢,,(n) and the gain vectors k,,(n)
consists of an 8-bit exponent and a 3-bit mantissa. The
input u(n) is made by an AR model (1, a1, a2)) of white
Gaussian noise N(0,1) where a; = —2rzcosf, a; =
rl, r, = 0.82, and § = 7/4. The initial parameter
§ = 10 which is a little large to make the condition
worse and the forgetting factor A = 0.95 are used, and
the eigenvalues of the ensemble average (50 samples)
of the transition matrices at time n = 15 (early stage)
and n = 50 (convergence stage) are calculated.

0.04 Unit C;uzlg -
n=50 X
0.02 '
X
0 . K = e
> Eg
-0.02
-0.04

09 082 094 096 098 1 1.02

Figure 1: Eigenvalues at n = 15 and n = 50

Fig. (1) clearly demonstrates that the eigenvalues
are within the unit circle in both cases even when the
predictors and the gain vectors do not have enough pre-
cision and supports the theoretical result given above.

6. Conclusion

The stability of the BPLS algorithm has been proven
in this paper. First, the eigenvalues of the transition
matrix which represents the essence of the BPLS algo-
rithm are shown to be between 0 and 1 or equal to 1
for any tap-input vector u,,(n) and any backward pre-
dictors ¢;(n),i = 1,...,m. This is one of the reasons
that the BPLS algorithm is robust against numerical
errors.

To show the stability of the BPLS algorithm more
strictly, the expectation of the transition matrix is eval-
uated and shown to have eigenvalues between 0 and 1.

This means that the BPLS algorithm is statistically
stable.

The computer simulation results also show that the
transition matrix has eigenvalues within the unit circle
in average which guarantees the stability of the BPLS
algorithm even in short-precision cases. Because the
superiority of the BPLS algorithm over the RLS algo-
rithm is theoretically supported, too, it is very promis-
ing that the use of the RLS algorithm and its square
root versions may be replaced by the BPLS algorithm.
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