Asymmetric addition of phenylzinc reagents to C－alkynyl nitrones．Enantiomeric enhancement by a product－like additive

メタデータ	言語：eng
	出版者：
	公開日：2017－10－03
	キーワード（Ja）：
	キーワード（En）：
	作成者：
	メールアドレス：
	所属：
URL	https：／／doi．org／10．24517／00010148

This work is licensed under a Creative Commons
Attribution－NonCommercial－ShareAlike 3.0
International License．

Graphical Abstract

To create your abstract, type over the instructions in the template box below.
Fonts or abstract dimensions should not be changed or altered.

Asymmetric Addition of Phenylzinc Reagents

Leave this area blank for abstract info.

to C-Alkynyl Nitrones. Enantiomeric Enhancement by a

Product-like Additive
Weilin Wei, Yoshihira Hamamoto, Yutaka Ukaji,* Katsuhiko Inomata*
Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University,
Kakuma, Kanazawa, Ishikawa 920-1192, Japan

Asymmetric Addition of Phenylzinc Reagents to C-Alkynyl Nitrones. Enantiomeric Enhancement by a Product-like Additive
 Weilin Wei, Yoshihira Hamamoto, Yutaka Ukaji,* and Katsuhiko Inomata*
 Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan

(Received; E-mail: inomata@cacheibm.s.kanazawa-u.ac.jp)

Abstract

Asymmetric addition of diphenylzinc to C-alkynyl nitrones was achieved by utilizing di $(t$-butyl) (R, R)-tartrate as a chiral auxiliary to afford the corresponding optically active (S)- N-(1-phenyl-3-substituted prop-2-ynyl)hydroxylamines. By the addition of a product-like additive, enantiomeric enhancement was observed. A mixed zinc reagent, PhZnMe, improved enantioselection affording the hydroxylamines up to 92% ee.

© 2008 Elsevier Science. All rights reserved

1. Introduction

Chiral amines are synthetically important target compounds, since they are found in natural products, pharmaceuticals, and other bioactive molecules. ${ }^{1}$ For example, chiral benzylic amines are found in such biologically active compounds and their building blocks. ${ }^{2}$ One of the most attractive approaches to the syntheses of benzylic amines is the enantioselective addition of phenylmetal reagents to imine derivatives. ${ }^{3,4}$ Although various methods for the enantioselective synthesis of chiral benzylic amines are known including reduction and alkylation of aromatic imines, direct asymmetric addition of phenyl reagents to $\mathrm{C}=\mathrm{N}$ bond is still one of the challenging problems especially in terms of availability of chiral auxiliaries. Very recently we have reported an enantioselective nucleophilic addition of alkynylzinc reagents to nitrones by utilizing a tartaric acid ester as a chiral auxiliary and unprecedented enantiomeric
*Corresponding author. Tel.: +81-76-264-5700; fax: +81-76-264-5742; e-mail: inomata@cacheibm.s.kanazawa-u.ac.jp
enhancement by a racemic product-like additive was realized. ${ }^{5}$ Herein, we wish to describe an enantioselective addition of phenylzinc reagents to acyclic nitrones bearing an alkynyl substituent on the carbon utilizing the tartaric acid ester as a chiral auxiliary to produce N -(1-phenyl-3substituted prop-2-ynyl)hydroxylamines. The enantiomeric enhancement by the addition of a product-like additive was again observed.

2. Results and Discussion

Table 1. Asymmetric addition of phenylzinc reagents to the nitrone $\mathbf{2 a}$.

Entry	$\mathrm{m} / \mathrm{eq} . \mathrm{n} / \mathrm{eq}$	X	$\mathrm{Solvent}^{2}$	$\mathrm{~T} /{ }^{\circ} \mathrm{C}$	t / h	Yield $/ \%$	ee $/ \%^{\mathrm{a}}$	
1	1.0	0	Ph	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0	16	53	70
2	1.0	0	Ph	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	0.5	68	76
3	1.0	0	Ph	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	0.5	54	79
4	1.0	0.2	Ph	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0	16	50	82
5	1.0	0.2	Ph	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	0.5	65	88
6	1.0	0.2	Ph	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	0.5	67	88
7	1.0	0.2	Ph	CHCl_{3}	25	0.5	72	88
8	1.0	0.2	Ph	$\mathrm{Et}_{2} \mathrm{O}$	25	0.5	67	82
9	1.0	0.2	Ph	$\mathrm{Toluene}^{2}$	25	0.5	63	81
10	1.0	0.2	Ph	$\mathrm{Benzene}^{2}$	25	0.5	60	80
11	0.2	0	Ph	CHCl_{3}	25	0.5	34	36
12	0.2	0.2	Ph	CHCl_{3}	25	0.5	63	56
13	1.0	0.2	Me	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	1	75	91
14	1.0	0.2	Me	CHCl_{3}	25	1	75	92

${ }^{\mathrm{a}}$ Enantiomer ratios were determined by HPLC analysis (Daicel Chiralcel OD-H).
${ }^{\mathrm{b}} \mathrm{PhZnMe}$ was prepared in situ from 0.5 eq. of $\mathrm{Ph}_{2} \mathrm{Zn}$ and 0.5 eq. of $\mathrm{Me}_{2} \mathrm{Zn}$.

An asymmetric addition reaction of diphenylzinc to N benzyl C-alkynyl nitrone $\mathbf{2 a}$ was first examined (Table 1). To a solution of a 1.0 equivalent of bis(methylzinc) salt of $\operatorname{di}(t-$ butyl) (R, R)-tartrate $\mathbf{1}$, prepared in situ from 1.0 equivalent of di $(t$-butyl $)(R, R)$-tartrate [(R, R)-DTBT] and 2.0 equivalents of dimethylzinc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, diphenylzinc ($\mathrm{X}=\mathrm{Ph}$) and nitrone 2a were successively added at $0{ }^{\circ} \mathrm{C}$ (eq. $1, \mathrm{~m}=1.0, \mathrm{n}=0$). After usual work up, the corresponding N (propargylic)hydroxylamine 3a was obtained in 53\% yield with enantioselectivity of 70% ee (Entry 1). The addition predominantly occurred from si-face of the nitrone 2a, and the sense of the enantiofacial differentiation was same as that in the previous our addition reaction of alkynylzinc reagents to C-(phenyl-substituted) nitrones. ${ }^{5}$ When the reaction temperature was increased to $25^{\circ} \mathrm{C}$ or $40^{\circ} \mathrm{C}$, the reaction proceeded smoothly to give the desired product 3a with enantioselectivities of 76% ee and 79% ee, respectively (Entries 2 and 3). Previously, we observed the enantiomeric enhancement by a product-like additive in the addition of alkynylzinc reagents. ${ }^{5}$ Thus, the effect of the addition of a product-like additive 4, prepared in situ from 0.2 equivalent of racemic N-benzyl- N-[1-(4-methoxyphenyl)-3-phenylprop-2ynyl]hydroxylamine and 0.2 equivalent of dimethylzinc, was also investigated in the present reaction at $0{ }^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$ and 40 ${ }^{\circ} \mathrm{C}$, respectively (eq. $1, \mathrm{~m}=1.0, \mathrm{n}=0.2$). ${ }^{5 \mathrm{a}}$ To our delight, the enantioselectivity was remarkably enhanced, respectively (Entries 4-6). When the reaction was carried out at $25^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$, 3a was obtained with high enantioselectivity of 88% ee. The effect of the solvent was also investigated for further optimization at $25{ }^{\circ} \mathrm{C}$. (Entries 5, 7-10). Although the enantioselectivity did not remarkably change depending on the
solvent used, higher yield was resulted in CHCl_{3}. When 0.2 equivalent of $\mathbf{1}$ was used, enantioselectivity was not satisfactory (Enrty 11). However, enantiomeric enhancement was still observed by addition of the product-like additive 4 to give 3a with improved enantioselectivity (Enrty 12). Finally it was found that utilization of a mixed zinc species PhZnMe , prepared in situ from $\mathrm{Ph}_{2} \mathrm{Zn}$ and $\mathrm{Me}_{2} \mathrm{Zn}$, ${ }^{6}$ achieved the highest enantioselectivity of 92% ee (Entry 14).

Asymmetric additions of phenylzinc reagents to several other nitrones 2 were performed (eq. 2) to furnish the corresponding N-(propargylic)hydroxylamines $\mathbf{3}$ with high enantioselectivities (Table 2). It was confirmed that the addition of the product-like additive 4 was effective to improve enantioselectivity as shown in the column of $\mathrm{n}=$ 0.2 in Table 2. Not only in the case of C-(aryl-substituted alkynyl) nitrones 2a-c, but also in the case of C-(alkylsubstituted alkynyl) nitrone 2d, the enantiomeric excess was remarkably enhanced in the presence of additive 4. Furthermore, higher enantioselectivity was accomplished by the use of PhZnMe (Entries 2 and 8).

Table 2. Asymmetric additon of phenylzinc regents to nitrones 2
in the presence of a racemic product-like additive 4

Entry	2		X		$\mathrm{n}=0.2$		$\mathrm{n}=0$						
	R			t/h	Yield / \%	ee / \%	Yield / \%	ee / \%					
1	Ph	a	Ph	0.5	72	$88^{\text {a }}$	70	$64^{\text {a }}$					
2			Me ${ }^{\text {c }}$	1	75	$92^{\text {a }}$							
3	${ }^{p} \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	b	Ph	1	75	$87^{\text {a }}$	80	$77^{\text {a }}$					
4			$M e^{\text {c }}$	1	66	$87^{\text {a }}$							
5	${ }^{p} \mathrm{BrC}_{6} \mathrm{H}_{4}$	c	Ph	1	64	$90^{\text {a }}$	68	$53^{\text {a }}$					
6			Me ${ }^{\text {c }}$	1	70	$90^{\text {a }}$							
7	${ }^{n} \mathrm{C}_{6} \mathrm{H}_{13}$	d	Ph	1	67	$82^{\text {b }}$	61	$52^{\text {b }}$					
8			Me ${ }^{\text {c }}$	1	67	$87^{\text {b }}$							
${ }^{\text {a }}$ Enantiomer ratio was determined by HPLC analysis (Daicel Chiralcel OD-H). ${ }^{\text {b }}$ Enantiomer ratio was determined by HPLC analysis (Daicel Chiralcel OJ-H). ${ }^{c} \mathrm{PhZnMe}$ was prepared in situ from 0.5 eq. of $\mathrm{Ph}_{2} \mathrm{Zn}$ and 0.5 eq. of $\mathrm{Me}_{2} \mathrm{Zn}$.													

It was now confirmed that enantiomeric enhancement occurrs in the preparation of $\mathbf{3}$ by both the phenylation of C-alkynyl nitrones and alkynylation of C aromatic nitrones. ${ }^{5}$ To scope such an intriguing enantiomeric enhancement, ${ }^{7}$ asymmetric phenylation of a C-alkenyl nitrone 5 was next examined. The addition reaction was sluggish to afford the corresponding N (allylic)hydroxylamine 6 with poor enantioselectivity, however, the enantioselectivity was also enhanced to 49% ee in the presence of the additive $4 .{ }^{8}$

3. Conclusion

As described above, the asymmetric addition of phenylzinc reagents to C-alkynyl nitrones have been developed utilizing tartaric acid ester as a chiral auxiliary. By the addition of a product-like substrate, the high enantioselectivities were realized. Furthermore, the enantiomeric enhancement by the addition of N (propargylic)hydroxylamine derivative $\mathbf{4}$ was also achieved in the case of C-alkenyl nitrone. Further investigation for the present peculiar enantiomeric enhancement by the product-like additive is now in progress in our laboratory.

4. Experimental

4.1 General

All of the melting points were determined by a micro melting apparatus (Yamagimoto-Seisakusho) and uncorrected. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL Lambda 400 and a JEOL Lambda 300 spectrometers. The chemical shifts were determined in the δ-scale relative to tetramethylsilane $(\delta=0)$ as an internal standard. The IR spectra were measured by JASCO FT/IR-230 spectrometer. The specific optical rotations were recorded on JASCO DIP-370 spectrometer. CHCl_{3} was treated with Merck's aluminum oxide 90 active basic ($0.063-0.200 \mathrm{~mm}$, activity stage I, Art. 101076) and dried over MS 4A just before use. $\mathrm{Et}_{2} \mathrm{O}$ was freshly distilled from sodium diphenylketyl. All other solvents were distilled and stored over drying agents. Flash column chromatography and thin-layer chromatography (TLC) were performed on Cica-Merck's silica gel 60 (No. 9385-5B) and Merck's silica gel $60 \mathrm{PF}_{254}$ (Art. 107749), respectively.

4.2 Preparation of Aldehydes

Phenylpropynal was prepared according to the procedure described in reference 9. Other aldehydes were prepared in a similar manner.

Phenylpropynal: ${ }^{9}$ An oil, IR (neat) 3297, 3061, 2856, 2189, 1660, 1489, 1444, 1388, 1261, 1174, 1027, 1002, 978, $758,688 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=7.36-7.40(\mathrm{~m}, 2 \mathrm{H})$, 7.44-7.49 (m, 1H), 7.52-7.64 (m, 2H), $9.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO})$; HRMS (FAB^{+}), Found: m / z 131.04970. Calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}$: $\left(\mathrm{M}^{+}+\mathrm{H}\right), 131.05015$.
p-Tolylpropynal: An oil, IR (neat) 3295, 3033, 2922, 2856, 2185, 1657, 1605, 1508, 1448, 1408, 1385, 1266, 1180, $1020,982,817,711 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=2.39(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 7.20 (d, $J=8.06 \mathrm{~Hz}, 2 \mathrm{H}$), 7.49 (d, $J=8.06 \mathrm{~Hz}$, 2H), 9.41 (s, 1H, CHO); HRMS (FAB^{+}), Found: m / z 145.06581. Calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}:\left(\mathrm{M}^{+}+\mathrm{H}\right), 145.06535$.
(4-Bromophenyl)propynal: $\mathrm{Mp} \quad 95-97{ }^{\circ} \mathrm{C}$ (from hexane/AcOEt; unstable on storage); IR (KBr) 3283, 3087, 2922, 2890, 2191, 1654, 1581, 1475, 1392, 1264, 1067,

1009, 988, 822, $764 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=7.46(\mathrm{~d}, J$ $=8.61 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 2 \mathrm{H}), 9.41(\mathrm{~s}, 1 \mathrm{H}$, CHO); HRMS (FAB ${ }^{+}$), Found: m / z 208.96006. Calcd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{OBr}$: $\left(\mathrm{M}^{+}+\mathrm{H}\right), 208.96020$.

Non-2-ynal: An oil, IR (neat) 2931, 2859, 2201, 1671, 1457, 1387, 1226, 1137, 824, 790, $726 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=0.88\left(\mathrm{t}, J=7.14 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.31(\mathrm{~m}, 4 \mathrm{H}$, $\left.\left(\mathrm{CH}_{2}\right)_{2}\right), 1.39$ (quin, $J=7.14 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.60 (quin, $J=$ $7.14 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.41 ($\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} \equiv \mathrm{CCH}_{2}$), 9.17 (s, 1H, CHO); HRMS (FAB ${ }^{+}$), Found: $m / z 139.11263$. Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}:\left(\mathrm{M}^{+}+\mathrm{H}\right), 139.11230$.

4.3 Preparation of Nitrones

(Z)-1-Phenyl-N-(3-phenylprop-2-

ynylidene)methanamine Oxide (2a): To a solution of phenylpropynal ($262 \mathrm{mg}, 2.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ with MS 3A (342 mg) was added a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ solution of N (benzyl)hydroxylamine ($246 \mathrm{mg}, 2.0 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under an argon atmosphere. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ overnight. Then the solvent was removed in vacuo and the residue was partitioned between ethyl acetate and water. The organic extract was washed successively with water, brine, and dried over sodium sulfate. After evaporation of the solvent, the residue was separated by silica gel [treated with $10 \%(\mathrm{w} / \mathrm{w})$ water in advance to deactivate] column chromatography (eluted with CHCl_{3}) to afford $\mathbf{2 a}(170 \mathrm{mg})$ in 36% yield. The nitrone was so labile that it was partially decomposed during purification even by treatment with deactivated silica gel. An oil, IR (neat) 3062, 3030, 2923, 2215, 1654, 1578, 1541, 1495, 1451, 1238, 1178, 1072, 1027, 754, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta=5.37\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArHC}=\mathrm{N}), 7.29-7.39$ $(\mathrm{m}, 6 \mathrm{H}), 7.47-7.55(\mathrm{~m}, 4 \mathrm{H})$; HRMS $\left(\mathrm{FAB}^{+}\right)$, Found: m / z 236.10799. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}:\left(\mathrm{M}^{+}+\mathrm{H}\right), 236.10754$.

In a similar manner, nitrones $\mathbf{2 b}$-2d were prepared from the corresponding aldehydes and N (benzyl)hydroxylamine.

(Z)-1-Phenyl- N-(3-p-tolylprop-2-

ynylidene)methanamine Oxide (2b): An oil, IR (neat) 3029, 2921, 2188, 1655, 1606, 1541, 1507, 1454, 1240, 1178, 816, 753, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=2.39(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArHC}=\mathrm{N})$, $7.20(\mathrm{~d}, J=8.01 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.01 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-$ 7.38 (m, 3H), 7.53-7.40 (m, 2H); HRMS (FAB ${ }^{+}$), Found: m / z 250.12306. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}:\left(\mathrm{M}^{+}+\mathrm{H}\right), 250.12319$.

(Z)-1-Phenyl- N-[3-(4-bromophenyl)prop-2-

ynylidene]methanamine Oxide (2c): $\mathrm{Mp} 90-91{ }^{\circ} \mathrm{C}$ (from hexane/AcOEt), IR (KBr) 3060, 3029, 2922, 2186, 1640, 1584, 1536, 1485, 1452, 1395, 1355, 1290, 1241, 1173, 1071, 1008, 952, 824, 771, 736, $697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=5.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArHC}=\mathrm{N})$, 7.32-7.41 (m, 4H), 7.50-7.54 (m, 5H); HRMS (FAB ${ }^{+}$),

Found: m / z 314.01786. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NOBr}:\left(\mathrm{M}^{+}+\mathrm{H}\right)$, 314.01805 .
(Z)-1-Phenyl- N-(non-2-ynylidene)methanamine Oxide (2d): An oil, IR (neat) 3030, 2928, 2857, 2232, 1654, 1496, $1455,1353,1078,1028,754,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta=0.89\left(\mathrm{t}, J=7.14 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.35\left(\mathrm{~m}, 4 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2}\right)$, 1.43 (quin, $J=7.14 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.59 (quin, $J=7.14 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.50\left(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} \equiv \mathrm{CCH}_{2}\right), 5.21(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 6.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArHC}=\mathrm{N}), 7.30-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.40-$ 7.56 (m, 2H); HRMS (FAB^{+}), Found: m / z 244.16954. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}:\left(\mathrm{M}^{+}+\mathrm{H}\right), 244.17014$.

(Z)-1-Phenyl- N-[(E)-3-phenylallylidene]methanamine

Oxide (5): To a solution of cinnamaldehyde ($925 \mathrm{mg}, 7.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{ml})$ was added a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{ml})$ solution of N-(benzyl)hydroxylamine ($865 \mathrm{mg}, 7.0 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$ under an argon atmosphere. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ overnight. Then the solvent was removed in vacuo and the residue was recrystallized from hexane/AcOEt to give the nitrone $5(1.229 \mathrm{~g})$ in 74% yield. Mp $124-125{ }^{\circ} \mathrm{C}$ (from hexane/AcOEt); IR (KBr) 3051, 1545, 1494, 1457, 1424, 1347, 1319, 1291, 1199, 1177, 1122, 1072, 1026, 961, 941, 915, 861, 821, 764, 747, 700 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=4.96\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.94(\mathrm{~d}, J$ $=16.34 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=9.76 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.36(\mathrm{~m}$, $3 \mathrm{H})$, 7.38-7.50 (m, 8H). Found: C, 81.00; H, 6.37; N, 5.90%. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 80.98 ; \mathrm{H}, 6.37$; N, 5.90%.
4.4 Preparation of N -benzyl- N -[1-(4-methoxyphenyl)-3-phenylprop-2-ynyl]hydroxylamine: To a toluene (9 ml) solution of phenyl acetylene ($337 \mathrm{mg}, 3.3 \mathrm{mmol}$) was added dimethylzinc (3.3 ml of 1.0 M solution in hexane, 3.3 mmol) at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere, and the mixture was stirred for 30 min . To the solution, a toluene (9 ml) solution of N-(4-methoxybenzylidene)-1phenylmethanamine oxide ($732 \mathrm{mg}, 3.0 \mathrm{mmol}$) was added. The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 14 h and quenched by addition of a saturated aq. NaHCO_{3} solution. After filtration of the precipitate, the filtrate was extracted with AcOEt. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and condensed under reduced pressure. The residue was separated by TLC on SiO_{2} to isolate the corresponding hydroxylamine (hexane $/ \mathrm{AcOEt}=$ $3 / 1$) in 97% yield (1.00 g). Mp $116-117{ }^{\circ} \mathrm{C}$ (from hexane/AcOEt), IR (KBr) 3235, 2924, 1608, 1509, 1489, 1456, 1333, 1303, 1246, 1172, 1077, 1033, 801, 753, 699, $690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.97$ (d, $\left.J=13.06 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.06(\mathrm{~d}, J=13.06 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCHNBn}), 6.91(\mathrm{~d}$, $J=8.61 \mathrm{~Hz}, 2 \mathrm{H}) 7.28-7.41(\mathrm{~m}, 8 \mathrm{H}), 7.54-7.58(\mathrm{~m}, 4 \mathrm{H})$; HRMS (FAB^{+}), Found: m / z 344.1650. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}$: $\left(\mathrm{M}^{+}+\mathrm{H}\right), 344.1652$.

4.5 Asymmetric Phenylation

Representative Procedure for Asymmetric Phenylation of \boldsymbol{N}-Benzyl \boldsymbol{C}-Alkynyl Nitrone 2a (Table 2, Entry 2): To
a $\mathrm{CHCl}_{3}(3 \mathrm{ml})$ solution of (R, R)-DTBT $(157 \mathrm{mg}, 0.6$ $\mathrm{mmol})$ was added dimethylzinc $(1.55 \mathrm{ml}$ of 1.0 M solution in hexane, 1.55 mmol) at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere, and the mixture was stirred for 10 min . To the solution, a $\mathrm{CHCl}_{3}(3 \mathrm{ml})$ solution of racemic N-benzyl- N-[1-(4-methoxyphenyl)-3-phenylprop-2-ynyl]hydroxylamine (34 $\mathrm{mg}, 0.1 \mathrm{mmol}$) was added. After stirring for 10 min , diphenylzinc (1.95 ml of 0.128 M solution in toluene, 0.25 mmol) was added to the solution. The reaction mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred for 1 h , then a $\mathrm{CHCl}_{3}(3$ $\mathrm{ml})$ solution of the nitrone $\mathbf{2 a}$ ($117 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added. The resulting solution was stirred at $25^{\circ} \mathrm{C}$ for 1 h and quenched by addition of a saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. After filtration of the precipitate, the filtrate was extracted with AcOEt. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and condensed under reduced pressure. The residue was separated by TLC on SiO_{2} to isolate 3a (hexane/ $\mathrm{AcOEt}=3 / 1$) in 75% yield (117 mg).

(S)- N-Benzyl- N-(1,3-diphenylprop-2-ynyl)hydrox

ylamine (3a): ${ }^{10}$ Mp 133-134 ${ }^{\circ} \mathrm{C}$ (from EtOH); $[\alpha]_{\mathrm{D}}{ }^{25}-42$ (c 1.23, EtOH, 92\% ee); IR (KBr) 3239, 3029, 2905, 1597, 1488, 1452, 1331, 1298, 1179, 1070, 1026, 1003, 988, 916, $826,812,757,729,690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=3.89$ (d, $\left.J=12.69 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.99(\mathrm{~d}, J=12.69 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCHNBn}), 5.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.28-$ $7.37(\mathrm{~m}, 10 \mathrm{H}), 7.59-7.61(\mathrm{~m}, 5 \mathrm{H})$. Found: C, 84.31; H, 6.15 ; $\mathrm{N}, 4.43 \%$. Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 84.31 ; \mathrm{H}, 6.11$; N , 4.47%. The enantiomer ratio was determined by HPLC analysis (Daicel Chiralcel OD-H, hexane $/{ }^{i} \operatorname{PrOH}=45 / 1$, detected at 254 nm).
(S)-N-Benzyl- N-(1-phenyl-3-p-tolylprop-2-ynyl) hydrox ylamine (3b): $\mathrm{Mp} 135-136{ }^{\circ} \mathrm{C}$ (from EtOH); $[\alpha]_{\mathrm{D}}{ }^{25}-45$ (c $1.23, \mathrm{EtOH}, 87 \%$ ee); IR (KBr) 3236, 3028, 2918, 1600, $1542,1508,1495,1453,1353,1289,1075,1029,1020,985$, 913, 861, $815,757,738,696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=$ $2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.99\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.93(\mathrm{~s}, 1 \mathrm{H}$, ArCHNBn), $5.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.87-7.86(\mathrm{~m}, 14 \mathrm{H})$. Found: C, 84.09; H, 6.50; N, 4.34\%. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}: \mathrm{C}$, 84.37 ; $\mathrm{H}, 6.47$; N, 4.28%. The enantiomer ratio was determined by HPLC analysis (Daicel Chiralcel OD-H, hexane $/{ }^{i} \mathrm{PrOH}=60 / 1$, detected at 254 nm).
(S)-N-Benzyl- N -[3-(4-bromophenyl)-1-phenylprop-2ynyl]hydroxylamine (3c): Mp $166-167^{\circ} \mathrm{C}$ (from EtOH); $[\alpha]_{\mathrm{D}}{ }^{25}-69$ (c 0.50, EtOH, 90% ee); IR (KBr) 3339, 3063, 3030, 2971, 2894, 1602, 1485, 1453, 1393, 1297, 1272, 1070, 1049, 1011, 880, 824, 736, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=3.98\left(\mathrm{~d}, J=13.17 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.06(\mathrm{~d}, J$ $\left.=13.17 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCHNBn}), 5.05(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}$), 7.28-7.49 (m, 12H), 7.57-7.63 (m, 2H). Found: C, $67.51 ; \mathrm{H}, 4.70 ; \mathrm{N}, 3.52 \%$. Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NOBr}$: C, 67.35 ; $\mathrm{H}, 4.60 ; \mathrm{N}, 3.57 \%$. The enantiomer ratio was determined by HPLC analysis (Daicel Chiralcel OD-H, hexane $/{ }^{i} \mathrm{PrOH}$ $=45 / 1$, detected at 254 nm).
(S)-N-Benzyl- N -(1-phenylnon-2-ynyl)hydroxylamine
(3d): An oil, $[\alpha]_{\mathrm{D}}{ }^{25}-43$ (c 1.14, EtOH, 87% ee); IR (neat) 3256, 3086, 3063, 3030, 2930, 2857, 2227, 1603, 1585, $1558,1494,1454,1330,1180,1074,1050,879,831,813$, $755,735,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.90(\mathrm{t}, J=6.69$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23-1.35\left(\mathrm{~m}, 4 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2}\right), 1.43-1.51(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.58-1.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.38(\mathrm{t}, J=5.04 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C} \equiv \mathrm{CCH}_{2}$), $3.90\left(\mathrm{~d}, J=13.11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.00(\mathrm{~d}, J=$ $13.11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.77 (s, 1H, ArCHNBn), 4.89 (s, $1 \mathrm{H}, \mathrm{OH}), 7.14-7.39(\mathrm{~m}, 8 \mathrm{H}), 7.52-7.58(\mathrm{~m}, 2 \mathrm{H})$; HRMS $\left(\mathrm{FAB}^{+}\right)$, Found: m / z 322.21737. Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}:\left(\mathrm{M}^{+}+\right.$ H), 322.21709. The enantiomer ratio was determined by HPLC analysis (Daicel Chiralcel OD-H, hexane/EtOH = $75 / 1$, detected at 254 nm).

Asymmetric Phenylation of (Z)-1-Phenyl- $N-[(E)$-3phenylallylidene]methanamine Oxide (5) (Eq. 3): To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{ml})$ solution of (R, R)-DTBT $(95 \mathrm{mg}, 0.36$ mmol) was added dimethylzinc (0.78 ml of 1.0 M solution in hexane, 0.78 mmol) at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere, and the mixture was stirred for 10 min . To the solution, a $\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(1.8 \mathrm{ml})$ solution of racemic N -benzyl- N-[1-(4-methoxyphenyl)-3-phenylprop-2-ynyl]hydr oxylamine ($21 \mathrm{mg}, 0.06 \mathrm{mmol}$) was added. After stirring for 10 min , diphenylzinc $(2.3 \mathrm{ml}$ of 0.129 M solution in toluene, 0.30 mmol) was added to the solution. Then a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{ml})$ solution of the nitrone $5(72 \mathrm{mg}, 0.30$ mmol) was added. The resulting solution was stirred at 25 ${ }^{\circ} \mathrm{C}$ for 24 h and quenched by addition of a saturated aq. NaHCO_{3} solution. After filtration of the precipitate, the filtrate was extracted with AcOEt. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and condensed under reduced pressure. The residue was separated by TLC on SiO_{2} to isolate 6 (hexane/ $\mathrm{AcOEt}=10 / 1$) in 76% yield (73 mg).
(R, E)- N-Benzyl- N-(1,3-diphenylallyl)hydroxylamine (6): An oil, $[\alpha]_{\mathrm{D}}{ }^{25}+7$ (c 0.73 , EtOH, 49% ee); IR (neat) 3529, 3082, 3059, 3027, 2923, 2850, 1599, 1494, 1452, 1246, 1072, 1028, 966, 744, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=$ $3.81\left(\mathrm{~d}, J=13.42 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.95(\mathrm{~d}, J=13.42 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.44(\mathrm{~d}, J=8.04 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, $6.54(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=11.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.58(\mathrm{~m}$, 15H); HRMS (FAB ${ }^{+}$), Found: m / z 316.16955. Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}:\left(\mathrm{M}^{+}+\mathrm{H}\right), 316.17014$. The enantiomeric ratio was determined by HPLC analysis (Daicel Chiralcel OD-H, hexane $/ \operatorname{PrOH}=20 / 1$, detected at 254 nm).

Acknowledgements

The present work was financially supported in part by Grant-in-Aid for Scientific Research on Priority Areas from The Ministry of Education, Culture, Sports, Science and Technology (MEXT) and NOVARTIS Foundation (Japan) for the Promotion of Science.

References

1 (a) Bloch, R. Chem. Rev. 1998, 98, 1407. (b) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069.
2 (a) Kuo, D.; Weidner, J.; Griffin, P.; Shah, S. K.; Knight, W. B. Biochemistry 1994, 33, 8347. (b) Finke, E. P.; Shah, S. K.; Fletcher, D. S.; Ashe, B. M.; Brause, K. A.; Chandler, G. O.; Dellea, P. S.; Hand, K. M.; Maycock, A. L.; Osinga, D. G.; Underwood, D. J.; Weston, H.; Davies, P.; Doherty, J. B. J. Med. Chem. 1995, 38, 2449. (c) Grell, W.; Hurnaus, R.; Griss, G.; Sauter, R.; Rupprecht, E.; Mark, M.; Luger, P.; Nar, H.; Wittneben, H.; Müller, P. J. Med. Chem. 1998, 41, 5219. (d) Bartholomeusz, G.; Talpaz, M.; Bornmann, W.; Kong, L.-Y.; Donato, N. J. Cancer Res. 2007, 67, 3912.

3 Recent examples of asymmetric phenylation: (a) Hayashi, T.; Ishigedani, M. J. Am. Chem. Soc. 2000, 122, 976. (b) Hermanns, N.; Dahmen, S.; Bolm, C.; Bräse, S. Angew. Chem. Int. Ed. 2002, 41, 3692. (c) Kuriyama, M.; Soeta, T.; Hao, X.; Chen, Q.; Tomioka, K. J. Am. Chem. Soc. 2004, 126, 8128. (d) Otomaru, Y.; Tokunaga, N.; Shintani, R.; Hayashi, T. Org. Lett. 2005, 7, 307. (e) Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. 2007, 129, 5336.

4 (a) Bolm, C.; Hildebrand, J. P.; Muñiz, K.; Hermanns, N. Angew. Chem. Int. Ed. 2001, 40, 3284. (b) Schmidt, F.; Stemmler, R. T.; Rudolph, J.; Bolm, C. Chem. Soc. Rev. 2006, 35, 454.
5 (a) Wei, W.-L.; Kobayashi, M.; Ukaji, Y.; Inomata, K. Chem. Lett. 2006, 35, 176. (b) Konishi, A.; Wei, W.-L.; Kobayashi, M.; Fujinami, S.; Ukaji, Y.; Inomata, K. Chem. Lett. 2007, 36, 44.

6 It was reported that a mixed zinc reagent PhZnEt was prepared from $\mathrm{Ph}_{2} \mathrm{Zn}$ and $\mathrm{Et}_{2} \mathrm{Zn}$ in situ. The mixed zinc species was more effective for controlling the reactivity than $\mathrm{Ph}_{2} \mathrm{Zn}$. (a) Bolm, C.; Kesselgruber, M.; Hermanns, N.; Hildebrand, J. P.; Raabe, G. Angew. Chem. Int. Ed. 2001, 40, 1488. (b) Fontes, M.; Verdaguer, X.; Solà, L.; Pericàs, M. A.; Riera, A. J. Org. Chem. 2004, 69, 2532. (c) Rudolph, J.; Hermanns, N.; Bolm, C. J. Org. Chem. 2004, 69, 3997. See also reference 3b.

7 Examples for asymmetric amplification by additives: (a) Faller, J. M.; Lavoie, A. R.; Parr, J. Chem. Rev. 2003, 103, 3345. (b) Mikami, K.; Yamanaka, M. Chem. Rev. 2003, 103, 3369. (c) Soai, K. J. Synth. Org. Chem. Jpn. 2004, 62, 673. (d) Trost, B. M.; Fettes, A.; Shireman, B. T. J. Am. Chem. Soc. 2004, 126, 2660.

8 The absolute configuration of hydroxylamine $\mathbf{6}$ was confirmed to be R by chemical correlation. Namely, the double bond in 6 (38% ee) was reduced to give a saturated N-hydroxylamine 7. Furthermore, (S) 3a (92% ee) was also reduced to 7. Although the value of the specific rotation of 7 was too small to be compared, the major peaks in HPLC analyses (Chiralcel OD-H, hexane/EtOH $=4 / 1$) were identical each other.

9 Journet, M.; Cai, D.-W.; DiMichele, L. M.; Larsen, R. D. Tetrahedron Lett. 1998, 39, 6427.
10 Aschwanden, P.; Frantz, D. E.; Carreira, E. M. Org. Lett. 2000, 2, 2331.

Stereochemistry Abstract

Weilin Wei, Yoshihira Hamamoto, Yutaka Ukaji,* and Katsuhiko Inomata*	
$\mathrm{Bn}_{\mathrm{N}^{-}} \mathrm{OH}$	$\begin{aligned} & \mathrm{Ee}=87 \% \\ & {[\alpha]_{\mathrm{D}}^{25}-45(\mathrm{c} 1.23, \mathrm{EtOH})} \end{aligned}$ Source of chirality: (R, R)-DTBT Absolute configuration: (S)
$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}$ (S)-N-benzyl-N-(1-phenyl-3-p-tolylprop-2-ynyl)hydroxylamine	

Weilin Wei, Yoshihira Hamamoto, Yutaka Ukaji,* and
Katsuhiko Inomata*

$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NOBr}$
(S)-N-benzyl-N-[3-(4-bromophenyl)-1-phenylprop-2-ynyl]hydroxylamine

Weilin Wei, Yoshihira Hamamoto, Yutaka Ukaji,* and Katsuhiko Inomata*	
	$\begin{aligned} & \mathrm{Ee}=87 \% \\ & {[\alpha]_{\mathrm{D}}{ }^{25}-43(\mathrm{c} 1.14, \mathrm{EtOH})} \end{aligned}$ Source of chirality: (R, R)-DTBT Absolute configuration: (S)

Weilin Wei, Yoshihira Hamamoto, Yutaka Ukaji,* and Katsuhiko Inomata*	
	$\begin{aligned} & \mathrm{Ee}=49 \% \\ & {[\alpha]_{\mathrm{D}}^{25}+7(\mathrm{c} 0.73, \mathrm{EtOH})} \end{aligned}$ Source of chirality: (R, R)-DTBT Absolute configuration: (R)
$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}$ (R,E)-N-benzyl-N-(1,3-diphenylallyl)hydroxylamine	

