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Minimal S; invariant Higgs potential with real soff; breaking masses is investigated. It is required that
without having a problem with triviality, all physical Higgs bosons, except one neutral one, become heavy
=10 TeV in order to sufficiently suppress flavor-changing neutral currents. There exist three nonequivalent
soft mass terms that can be characterized according to their discrete symmetries, and the one th&j breaks
completely. TheS; invariant vacuum expectation valué¢EVs) of the Higgs fields are the most economic
VEVs in the sense that the freedom of VEVs can be completely absorbed into the Yukawa couplings so that it
is possible to derive, without referring to the details of the VEVs, the most general form for the fermion mass
matrices in minimals; extension of the standard model. We find that except for the completely broken case of
the soft terms, th&, invariant VEVs are unique VEVs that satisfy the requirement of heavy Higgs bosons. It
is found that they also correspond to a local minimum in the completely broken case.
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[. INTRODUCTION wherel ,, R,, andH, correspond to three left-handed lep-
tons, right-handed leptons and Higgs bosons, which are sub-

A non-Abelian flavor symmetry is certainly a powerful ject to permutations. The three dimensional represent&ion
tool to understand flavor physics. In the case of the standardf S; is not an irreducible representatiod;can be decom-
model (SM), where only one HiggsSU(2), doublet is posed intol and2 as
present, any non-Abelian flavor symmetry has to be explic-
itly broken to describe experimental data. However, if the
Higgs sector is extended, and Higgs fields belong to a nont: H =— (H,+H,+H,), 2
trivial representation of a flavor grouif,2], phenomenologi- V3
cally viable possibilities may arise. The smallest non-Abelian
discrete group iS;.? It is a permutation group of three ob-

. : X 1 1

jects, and offers a possible explanation why there are threg. ., 1 v = (4 _H.) —(H.+H.—2H
generations of the quarks and leptdBs9]. An S; invariant (H1.Ha) \/E( a b)'\/E( al’p 2
Yukawa sector of the SM has exactly five independent cou- 3)

plings [8,9]:
and similarly forL’s andR’s. In terms of the fields in the

1: LaRaHatLpRoHp +LeRHe, irreducible basis, the five independent Yukawa couplings are

8,9
2. LaRp+R)H +Lp(Ry+R)Hp+ L (R +Ry)H, (8.9
3: (Lp+Lo)RyHa+ (Lt LoRyHp+ (La+Lp)ReH, LiRiHs, fijkLiRjHk, LsRsHs, LsRiH;, LiRsH; ,(4)
4: (LyRp+L.R)Hz+ (LR +LROH,
wherei,j,k run from 1 to 2, and
+(LaRa+LbRb)HCa
5: (LpRe+ LRy Ha+ (LaRe+LRa)Hp f112=T121=fony=—Topr=1. ®
+(LaRp+LpRa)Hc, (D) 1t has been found iff8,9] that these Yukawa couplings are

sufficient to reproduce the masses of the quarks and their
. mixing, and that they are not only consistent with the known
Flavor symmetries based on a permutation symmetry have beefihservations in the leptonic sector, but also can make test-
considered by many authors in the past. One of the first papers ogple predictions in the neutrino sector if one assumes an
permutation symmetries afd—3,5,8. See[7] for a review. Phe-  aqditional discrete symmetry in this sector. In deriving the
nomenologically viable models based on non-Abelian discrete flatarmion mass matrices, it has been assumd® @] that the

vor symmetriesS;,D, and A, and also on a product of Abelian vacuum expectation valug¥EVs) of the Higgs fields ars)
discrete symmetries have been recently constructd@-#12,14— invariant. i.e

18] and [19,20, respectively.(See alsq21-25.) However, it is
difficult to understand bilarge mixing of neutrinos in terms of Abe-
lian discrete symmetries aloh&3]. (Hg)#0, (Hy)=(H,)#0. (6)
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By the S} invariance we mean an invariance under the interwhere\, and\; can be complex.We first redefineH; as
change ofH; andH,, i.e.

1
Hi—H,. 7) Hi:E(HliHZ)i (11

Note that this permutation symmetry is not a subgroup of theand write theSU(2), Higgs doublets in components:
original S;. Although the Yukawa coupling&4) do not re-

spect this symmetry, each term in ti$g invariant Higgs het+ixs hst+ixs
potential [given in (9)], except for one term, respects this H.o=| 1 He=| 1

discrete symmetry. Moreover, as we can see ftdnthe S, =i ] = (h2+ixY
invariant VEVs(6) are the most economic VEVs in the sense \/E N N \/E

that the freedom of VEVs can be completely absorbed into (12

the Yukawa couplings so that we can derive the most gener

: ) aflhe down components of the Higgs doublets have zero elec-
form for the fermion mass matrices

tric charge, and therefore, we assume that only the down
components can acquire a VEV. Further, becaus¥ df)y

my+m; m; Ms gauge invariance, it is always possible to make a phase ro-

M= my mp—my; Mg (8)  tation for Hg so that only the real pah‘s’ can get VEV. We
m, m, ms denote the VEVs as follows:
(h)=v., (hY=vs, (xs)=Cx, (13

without referring to the details of VEVs. In other words, if
(H1)#(H5), the mass matrices would havg one more i”_de'vvhich should satisfy the constraint
pendent parameter that should be determined in the Higgs
sector. (v2+v2+vi+ci+c?)2=p=246 GeV. (14
In the present paper we investigate how different $e
invariant vacuum is under the requirement that except foin order to reproduce realistic fermion masses and their mix-
one neutral physical Higgs boson, all the physical Higgsngs[8], we also require that
bosons can become heawyl0 TeV without having a prob-
lem with triviality [26]. This bound results in order to sup- vs#0, andatleastoneob. andc.#0 (19

press three-level flavor-changing neutral curreENC is satisfied, and do not allow a large hierarchy among the
that contribute, for instance, to the mass differeAeay of o o 9 y 9
nonvanishing VEVs, unless it is noticedn Secs. Il and Il

K andK® in S; invariant extension of the S§R7,28. (See 1 owever we allow such hierarchy.

also Refs[3] and[4].) The investigations are presented in There’ are five minimization coﬁditions:

Secs. lll and 1V, and the conclusions are summarized in the

last section. In Sec. V we discuss the Pakvasa-Sugawara 0=—vgu3+Vay/ohg, (16)
vacuum[1], and a supersymmetric case is treated in Sec. VI.

0=—v,u2+dVyyloh, 17
II. S3 INVARIANT HIGGS POTENTIAL AND SOFT S3
BREAKING 0=—v_u3+dVyyloh®, (18)
A. Sz invariant nggs p-otentlal and |ts-problem o 0= _C+M%+‘9V4H /19)((1 ’ (19
The most genera&; invariant, renormalizable potential is
given by[1] 0=—c_u2+Vaylox". (20)
Vu=Von+Van, ©  we regard VEVs as independent parameters and express the
parameters of the potentié®), especially the mass param-
Vo= —ui(HIH +HIH,) — u3HHs, etersu? and u3, in terms of the VEVs. To make all the
physical Higgs bosons except one neutral Higgs boson with-
Vau=+ N1 (HIH + HIH )2+ N o(HIH,—HIH,)? out having large vglues 02f the 2ng%s quart|20 cozuplmgs,
R ; ) ; we have to have either u5,— u7>v° or —ui>v<, where
+N3[ (H{H,+HIH )2+ (HIH; —HJH,)?] v is defined in(14). For the first case, none of the VEVs can

be O(v) because the derivative terms, i.6V,,/dh% etc.,

T TRYITT; t T
TN afij(HsHi) (HH) +H.c.]+As(HsHs) (HaHy are ofO(VEV?). Therefore, this case cannot satisfy the con-

+HIH.) + Nl (HIH) (HIH9 + (HIH,) (HIHo)}

+{)\7[(H£H1)(Hng)+(HEHZ)(HgHz)]-I—H.C.} 2The S; invariant potential has been studied [ib,21], for in-
+ 5 stance. Similar potentials with non-Abelian discrete symmetries
+Ag(HsHg)*, (10 have been also studied [@2,3,14,29.
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straint(14). For the second casgg andv g can beO(v), but RXS):Hg——Hg and H_——H_, (25)
none ofv, ,v_,c, ,c_ can beO(v). That is, the hierarchy
vy lvg,lv_Tvg,|cs lvg,|c_lvg|<1 has to be satisfied.

This hierarchy is consistent with the minimization conditions RXS;:Hg——Hg and H, ——H, (26)
(17—(20), only if at least one of the derivative terms, i.e.,
0V /6h% etc., contains at least a term proportionabth SXSyH ——H_ and H,——H, @7

However, this is not the case, as we can see from the poten-

tial V4 (10). Moreover,(15) does not allow , =v_=c,

—c_=0. whereS; andS; are not a subgroup of the origing. Ac-
It is thus clear, if the two condition§l4) and (15) are  cordingly, we characterize the soft mass tef2® as

satisfied, thaiu?,u3~O(VEV?), which means that all the

masses of the physic_al Higgs bosons aréO¢VEV). 'I_'hat_ R:us=pmg=0, (28)

is, to have a large Higgs mass, the value of certain Higgs

couplings\’s have to be large. Then we run into the problem

with triviality; the Higgs mass cannot be larger than the cut- Sy ps=pe=0, (29

off. As we see from(9), the model has many Higgs cou-

plings, so that the known triviality bound on the Higgs mass,

~700 GeV[26], cannot be directly applied. But we may S5 pa= ps=0, (30
assume that the bound for the present case does not differ
very much from that of the SM. However, this upper bound RX S} 4= 5= =0, (31)

is too low to suppress three-level flavor changing neutral
currents(FCNC39 that contribute, for instance, to the mass
differenceAmy of K® andK®; certain Higgs masses i8; RX S pua=ps=pe=0, (32)
invariant extension of the SM have to be larger than
~0(10) TeV[3,27,29. Therefore, in a phenomenologically
viable S; extension of the SMS; symmetry should be bro-
ken, unless there is some cancellation mechanism of FCNCs.
Actually, there are only four nonequivalent soft-breaking
mass terms, including one without any discrete symmetry.
This is becaus&, and S; are not independent: The Higgs
As we have seen above, we have to modify the Higgsotential(9) and the soft term$21) are invariant under the
potential (9) to make it possible that the Higgs masses cannpterchange o, andH _ if one appropriately redefines the
become lager than 10 TeV. How should we br&aR We  coupling constants and mass parameters. In the next section
would like to maintain the consistency and prediction$ef  \ye will discuss the three cases, i.R,S, andRX S} invari-
in the Yukawa sector, while simultaneously satisfying theant cases, and in Sec. IV we will treat the completely broken
experimental constraints from the_FCNC phenomena. Therec‘ase, in which all the soft mass ter&{) are present. Each
fore, we brealS; as softly as possible. The softest operators,ssipility is renormalizable because all the other interac-
in the case at hand are those of.dlmensmn two; that is, maggs areS; invariant and cannot induce infini violating
terms. There are four soft-breaking mass terms breaking terms(21). In principle, u2, 2, and ug can be
complex. As announced, however, we assume that they are
real, except for Sec. V. This is consistent with renormaliz-
—(uPHTH_+H.c)— V2(u2HIH_+H.c). (21) ability from the same reason above. _
Before we go to the next sections, it may be worthwhile to

Miy,ué, and Mé can be complex parametérsiowever, we ylte(fg)\./vn explicitly thex, and N\, terms of the potential
SHH :

assume that they are real parameters in following discussion
except in Sec. V. We would like to characterize these four

SHX Syt pa= ps=pue=0. (33

B. Soft S; breaking terms and their characterization

Vse= —u5(HLHL —HIH )= V2(uiHH  +H.e)

mass terms according to discrete symmetries: 212V, y=[Re(Ag) x&— IM(A)hZ[(x2)*+3(x3)%x°
RiHs— —Hs, (22) =3x3(x2)2= (X2 +x 2 (h)?+x2 (h})?
+2x3h%h% —2x2h%h° —x3(h?)?
SpiH-——H-, @3 o+0+2 ) 0 ) 0
—x=(hZ)“]+[Re(Ag)hg+Im(Ay) xs]
SoiH——HL @4 XL = (%)% +2x%x2h?

—2x X% h2 +(h%)®—(h%)3+(x2)?h°
3The soft mass term&1) may be generated from %; invariant

_(,0\2K0 01210 _ R0 (W02
Higgs potential by introducing certai®; singlet Higgs field$4]. (x=)"h=+3(h3)"h=—3hy (ho)7, (34)
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Re(\;) 02 02 02 02 One can perform similar analyses for other cases such as

Vih= "> U+ (x2) = (hx) = (hI)7] c_~0(v). [vs#0 is always assumepAs before, one finds

that only oneSU(2), doublet can become heavy. So, the soft
X[(x22—(hY2]+4[ x%h% + X2 h® 1x2hd masses with the discrete symmeR¥ S, cannot be used for
0.0 0.0 02 012 a phenomenologically viable model.
+Im\){ (i +x2hD)[(xs)“— (hg)7] R (4= ug=0;\,=0): The five minimization conditions
L2+ (K02 (h)2 = (h°)21xehg, (35 M TS case are given by
_ 2 0
where only those terms containing the neutral components 0=—vsuz+dVanldhg (43)

are written above. The rest of the termsvigy have the form

0=—v,(ui+u3)—v_pud+Vayloh?, (44)
(hQ)2M(hT)2M2(h?)2Ms(x)2"( x5 )2"s(x 2 )"
, O0=—v, ud—v_(ui—ud)+Vayloh?, (45)
with
— 2 2\ _ 2 0
6 O=—cy(uit+u3z)—C_us+dVauyldxy, (46)
2 nj=2 and n;=0,1.2. (39 ) . o
=1 O0=—cCyus—C_(pu1—u3) +dVayldx-. (47)
I11. MINIMIZATION CONDITIONS AND HIGGS MASSES Again, because of43), u3;~O(VEV). |us| has to be large,

) ) otherwise the situation is the same as in the previous case.
Below we will analyze the total potentialr=V+Vsg  Equations(44) and (45) have a nontrivial solution
for the three nonequivalent caséd), (29), and (31). We
consider only phenomenologically viable caggs). But we ud(v2 +v2)+O(VEV?)
do allow, if necessary, a large hierarchy among the nonvan- ,ui= -
ishing VEVs. In all the cases,,=0 follows from the dis-

crete symmetry in question.

ZU+U,

wi(v?—v%)+O(VEV?

RXS, (ma=ps=ueg=0;1,=0): The five minimization 2_ 48
conditions in this case are given by 2v4v-
0=—vgu3+dVay/dh?, (37 if v, #0p_+0. Then the total potential becomes
0=—v. (u2+ pud) +Valoh? (39) Ve=maH{Hu+- -, (49)
0=—v_(u’— pu2)+dVyyloh°® (399  where, as before, the terms indicated by are those that
(M1 ™ M3 4H - :
are proportional to VEV (n=1, ... ,4), and
0=—Cy (ui+pa)+NVanloxT, (40 .
H v-Hi—v,H_ , UituZ (50
0=—c_(uf—ud)+dValax", (41 N 2422 MH= 7 o M

where the second derivative terms, i.8Y,y/dh° and
Ny lax®, are~0O(VEV3). We first_ observe that., because v_=0, Eq.(45) requires|v . /v|<1 becausdus|>v

of the absence2 of)\g, thze condition (37) requires us  pas to be satisfied. To satisfy E@5), on one hand, at least
~O(VEV). If [ui* u5|>v* should be satisfied, then none gne ofc, | andc_ has to beO(v) because of the absence of

of v, ,v_,c,,c_ can beO(v). But this is not consistent 3 terms in the derivative term. On the other hand, we obtain
with (38)—(41) because of the absence o} terms in the Eg. (48) with v.—c.. [c,~O(VEV),c_=0 and c,
derivative terms 0f38)—(41). Therefore, taking into account —q ¢ =O(VEV) “cannot satisfy(46) and (47).]

Therefore, onlyH,, can become heavy.

the condition(15), at least one o, ,v_,c, ,c_ has to be The casev., =0 is equivalent to the case_ =0. If v,

O(v). Assume thatv,~O(v), which means thaui= -, —0 the situation does not change. From these consid-
— u5+O(VEV?). Consequently, the total Higgs potential in erations, we conclude that the case at hand does not satisfy
this case can be written as the phenomenological requirement.

S, (us=ue=0;N4=0): The five minimization condi-

— _ o, 2t
Vi=—2puH H_+--, (42) tions in this case are given by
where the terms indicated by-are those that are propor- _ 2 2 0
; =-— - +
tional to VEV" (n=1, ... ,4). Therefore, onlyH_ can ob- 0= —vsui =20 i+ VanohS, (51
tain a large mass, i 22 is positive and large. So, this case _ 5o 9 2 0
does not satisfy the phenomenological requirement that all 0~ —v (it ud) =2 sui+ Vanlans (52)
the physical Higgs bosons, except one, can be made heavy s 0
without running into the problem with triviality. 0=—v_(u1—pn3)+dVan/ohZ, (53
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0=—cy(pmi+ud)+Vanlax%, (54)

0=—c_(uf—p5)+dVaulox>. (55)
Note that the derivative terms {83)—(55) contain at least of
one ofv_,c., andc_. Therefore, large values fqr,; and
Mo can be consistent witli53)—(55), only if (i) v_=c,
=c_=0 and (i) u?=u3+0(VEV?) or (i) ui=—u3
+O(VEV?). Keeping this in mind, we next solv&1) and
(52) to obtain

, va(pi+py)+O(VEVY
M3= > ,
Us
, vi(pitud)+O(VEV?)
Mg=— : (56)
\/EUS
Inserting(56) into the total Higgs potentid¥;, we obtain
pi+ps
Vr= = (ui= o) HIH- = 5= [(vgHl v Hy
s

X(vgHy—v Hg+H.c]+---. (57

We see from(57) that casd(ii) can be ruled out, because in

PHY SICAL REVIEW D 70, 036007 (2004

where

2
Mo =2u3+ V2 cotyui=—(ui—u3), (62)

m2,,=03 2(A 1+ \g)sirty

1 .
+§()\5+ Ng+2\7)SiP2y+ 2 gcosy|, (62

1)2

5 sin2y[(A{+\3)(1—cos 2y)

2
Mj 23~

+ (N5t Ng+2\7)C0OS 2y— 2\ gCOS Y], (63)

Mhg3=2\2p5/sin 2y
2

v
+?()\1+ )\3_)\5_)\6_2)\7+ )\B)SII’IZZ)/, (64)

Mo = 2u3\2+ picoty—2(No+ Ng)vd — 21703,

this caseH _ cannot obtain a large mass. We can also see

from (57) that case(iii) allows large values of the Higgs
masses ifv, /vg=40. However,(53) and(55) require that
|v_/Ivl],|]c_/v|<1. Note that the derivative terms @53
and (55) contain at least one af _ ,c_, which implies that
v_=c_=0 to satisfy(53) and (55). ¢, is nonvanishing in
case(iii ). For casdi) we obtain the same form of the leading
potentialVy, but no restriction on the ratio, /vg. In terms
of VEVs, we havev_=c,=c_=0 for case(i), andv_
=c_=0 for case(iii). These two types of VEVs ar§,
invariant VEVs (6). Both types of VEVs give rise to the
general form of the fermion mass matig).

Below we would like to consider only the casg (v_
=c,=c_=0), and give the mass matrmﬁ of the neutral
scalar Higgs bosons

h® ,h%=sinyh% + cosyh2,hd =cosyh? —sinyh?,
(58)

and the mass matrixnf( the neutral pseudoscalar Higgs
bosons

0 0 H 0 0 0 0 H 0
X=, XL=SInyx,+tCOSyxs,Xy=COSyx,—SINyxs,

(59
are, respectively, given by
2 2
Mo 0 0 Mo 0 0
mi=| o Mh22 Mhgs | » m)z(: o 0 0,
2
0 Mhy Mpg 0 0 Mo
(60)

(65
mio =2\2p2/sin 2y— 2\ 702, (66)
H
and we have introduced = (v2 +v2)?]
tany= U—+. (67)
Us

In (61)—(65), we have taken into account the higher order
terms of(57) with A\ ,=Im(\;)=0. (\,=0 follows from the

S, symmetry: If A, and Im(\;) do not vanish, there is no
local minimum for cas€i). As we can see from the mass
matrices(60) with (61)—(65), the pseudoscalar bosd0),

XL, IS the would-be Goldstone boson, and that excephﬁor
all the physical Higgs bosons can become heavy without
large Higgs couplinga.’s. We also find from(58) and (67)
that onlyh? acquires VEV. Since onlyr? acquires VEV, its
coupling to the fermions is flavor diagonal, while the other
physical neutral Higgs bosons have FCNC couplings. How-
ever, h? still mixes with hY, because of the nonvanishing
entry mé,;. Therefore, we have to fine tune so thaf,,
vanishes.(Of course, the mixing is suppressed b?/,uf1
~6x10 4 for us~10 TeV.) In this limit, m,3; andm;,, are

the masses di, and the lightest Higgh?, respectively.

IV. SOFT BREAKING WITHOUT SYMMETRY

Here we would like to investigate the full potentigl
=Vy+Vsg Without any assumption on Abelian discrete
symmetries. The reason is thg} is not a symmetry of the
theory; it can be a symmetry only in the Higgs potential. So,
radiative corrections can induce finite n8pHnvariant terms
in the Higgs potential, for instance. Here we assume that all
the soft masse&1) are present, and that they are still real.
We, however, do not allow an unnatural large hierarchy of
the VEVs, in contrast to the previous sections. There are
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exactly nine nonequivalent possibilities that satisfy the phehence,ug because 0f77)] goes to zero. Therefore, tH&

nomenological requiremer(L5): invariant local minimum exists in the full Higgs potential, if
e all the mass parameters are real.
Apt v-=C.=c_=0; Ayiv,=v_=Cc_=0; (68) A, (v,=v_=0): The five minimization conditions at
BiiC ,=C_=0: By:v_=c_=0: Byiv_=c,=0: v_+=v_=c_=0 [which is of theS; invariant type(6)] are
given by
Bs: vi=v_=0; (69
0=—vgu3+dVay/ohd, (79
Ciy: c_=0; Criv_=0; (70
= — Pveu? 0
D: none of them=0. (71) 0=—V2vsuy+dVanldhy, (80)

It will turn out that among these nine possibilities only two
casesA; and B, satisfy the phenomenological constraint
that all the Higgs bosons except one can be made heavy
without running into the problem with triviality. Note that 0=—c, (u2+ u? 0
L U pit o)+ NV laxs (82)
and alsoB, exhibit theS; invariant VEVs(6). I AR
A; (v_=c,=c_=0): We start with the casé,. The

0=—2vsu+ aV/oh°, (81)

first caseA,; corresponds to th&), invariant VEVs(6). The 0=—cug+dVanldx>. (83
nontrivial minimization conditions ab_=c,=c_=0 are
given by Equations (79)—(83) imply* that u3,(u?+ u2),u3, me,u3
~O(VEV?). Insertingu’s above into the total potential, we
0=—vsui— 20, ui+dVayldh, (72 find( ) e P
0= v, (pi+p§) —2vsul+ Van/on%, (73 - .
Vr=2u2H H_+O(VEV4). (84)
0=—2vsu2—v w2+ Vay/dh°, (74)
0 So, onlyH_ can become heavy.
0=Van/ax =v vdvIm(Ag)/2y2+vgIm(N7)], B, (c,=c_=0): The five minimization conditions at
(79 ¢, =c_=0 are given by
0= —vsui—2v, ui— V20 _pd+Vaylon, (85

Equation (75) requires G=Im(\5)+ (v./2y2v5)Im(N\y),
and(76) requires Im{,)=0. So, we assume that and\,

_ 2, 2 2 2 0
are real(In the case of th&, invariant soft term(29), \, has 0=—v,(ul+ud)— 2osui—v_pui+ Ve loh?,

to vanish for theS, VEVs (6) to correspond to a local mini- (86
mum) We then usg72)—(74) to expressu?,u3, andu? in
terms of VEVs: 0=—v, w2~ \2vgui—v_(u2—ud)+dVuyloh°,
(87)
pi=— pu5—2picoty+ O(VEV?),
,U%: _ \/Eﬂitan7+ O(VEVZ), 0= _(Ui +21)+Uf_U%)Uslm()\4)/2\/§_U+U§|m()\7),
88
né=—2picoty+O(VEV?), (77) (®9
wherey is defined in(67). Insertingu’s of (77) into the total 0= —(Ui —2v,v_ —vz_)vslm(M)/Z\/f—v_vélm(M).
potential, we can compute the mass matrices and find
(89)
2ud+\2ubeoty 0 \2udisiny
ma= 0 0 0 Equations(88) and (89) require Imj;)=Im(\,)=0. Solv-
Pulising 0 22u2sin2y ing (85)—(87) to expressu?,u3 and u3 in terms ofvg,v ,

andv _, and inserting them into the total potential, we obtain
+O(VEV?)=m?2 (79
for the basis(58) and (59). Comparinzg these results with  “as announced, we do not allow an unnatural large hierarchy
(60), we find that apart from th©(VEV?) terms, the masses among the VEVs. If, for instancéys/v|<1, thenu? can be large
(78) reduce to those of thg, invariant cas€60) as,ué [and  thanks to the nonvanishing,. In this caseHg can become heavy.
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Ve={[2u302 + u2(v3 /v, —v,v_)]vd) wi=[p2v? + V2 R u2)v v+ 2 Im(ud)vsc_
+\2ph(0 +v2 /v ) lvghHEHS +p3e2/(c% —v3) + O(VEV?),
+[2u4(vslv )+ pé(v v )JHIH,
+[2u3+ pd(v_ v ) +V2uivslv ) JHTH -
H{=V2ub(v v =25 Ive) +pdl(v, fvg)
— (2 lv_vg MHIH_+H.c)— u2(HTH_+H.c) Re(u2)=— 2 Rg u2)(vs/v,)+O(VEV?),
—V2u3(HIH, +H.c)+O(VEVH). (90)

H3=V2(~Re(uf) (v, fvg) +Im(ug)(c- fug) + O(VEV?),

Im(uj)=—Re(ug)(c_lv)+O(VEV?),

Im(12)=[2 Re(uf)vsc_+ 2 Im(ud)v . vs

One can show that except forh, =(vsh2+v h? 42420 ¢ 1(2—0v2)+O(VEVD).  (97)
+v_h%)/(v2 +v2 +v2'? all the physical Higgs bosons uav +C-Jl(e= v )+ O(

can becgme heavy. So, this case satisfies the phenomer‘OIC)f;H'serting these mass parameters into the full potential, we
cal requirements.

5 C.. D We h ; d simil | ¢ have verified numerically that, except for one neutral physi-
th 23;" flt'ﬁ’ - Ve a\(;ef perdotrhm(ta S'g' ar aCnaysesd OF cal Higgs boson, all the physical bosons can become heavy.
€ rest of the cases and found that non@gf4, C12, and e limit in which the imaginary parts qi3, 2, u3,\4,
D cases satisfy our requiremefit we do not allow a large )
. andX\; vanish, the Pakvasa-Sugawara VEVs reduce t&the
hierarchy among the VEV's . .
invariant VEVs(6), as we can see also from

V. THE PAKVASA-SUGAWARA VACUUM c —[—4 Im(,ui)+lm()\4)v2++2\/§ IM(\7)v , vg]

The Pakvasa-Sugawa(BS VEVs [1] are given by X[v ARG pD) ]+ - -, 98

v_=c,=0, (9

where- - - stands for higher orders in the limit.
which is nothing but the cas€®; given in (69). As we men-
tioned, theS; invariant potentia9) does meet the require- VI. SUPERSYMMETRIC EXTENSION
ment that except for one neutral physical Higgs boson, all the
physical bosons can become heavy. On the other hand, the As in the case of the minimal supersymmetric standard
PS VEVs(91) are the most economic VEVs in the case of amodel (MSSM) we introduce twaS; doublet Higgs super-
spontaneou€P violation; only one phase, which should be fields, HY ,HP(i=1,2), and twoS; singlet Higgs super-
determined in the Higgs sector, enters into the Yukawa sedields, HS ,HS [10,11. The sameR-parity is assigned to
tor. Here we would like to analyze the most general casehese fields as in the MSSM. Then the most general renor-
with complex soft masses in contrast to the previous secmalizableS; invariant superpotential is given by
tions. The minimization conditions are

Wy = uHYHP + gHYHE . (99
0= —v g~ \20 , Re( )+ 26 IM(ju2)+ iV gy h, e
The S; invariant soft scalar mass terms i, 11],

(92
— 2 QYi2.1Qy2 2 D2, 1Qb2
Lo=—m2u(|AY|2+]AY]2) —m? o (AP 2+ |AD[2)
0= v (uf+u) ~ V20 Re( ) + c_Im(uf) 57 My R IR =R R
+ oV loh? (93) —mﬁg(lﬂé’lz)—mﬁg(lﬂglz), (100
—V2vRe(pud) — v Re(pd) + Vg 1 o0° (94 and theS; invariant B terms are,
0=2vgIm(u3) —c_Re(ud) +Van 19x3 , (95) Le=B1(AYAP+AYAD) +By(AYAD) +H.c., (10D
0=\2vsm(ud)+v Im(ud)—c_(u2—pu?) where hatted fields are scalar components. Given the super-
otential(99) along with theS; invariant soft supersymmetr

breaking (SSB sector (100 and (101), we can now write
down the scalar potential. For simplicity we assume that only
We solve(92) (96) to expressuf,u3,Im(u3),Reus, and  the neutral scalar components of the Higgs supermultiplets
Im(u2) in terms of VEVs. We find that in the leading order, acquire VEVs. The relevant part of the scalar potential is
they are given by then given by
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2 " 0U ~0U NUGD , UG D ~U D, (4D
V:(|M1|2+mHg)(|H1 |2+|H2 |2)+(|M1|2 ESSB:B4(H1H2+H2H1)+B5HS(H1+H2)

2 (IR . 2 0 ~D UL QU
+ meo) (IASP 24 [HE1%) + (| al*+ miu) (IHS2) +BeHs(Hy +Hz) +H.c. (104

In the following discussions, we assume that all the B pa-
(||2|2U|2 rameters are real. The resulting scalar potential can be ana-
lyzed, and one finds that a local minimum respectisig
symmetry, i.e.,

3
§g§+g§

1
2 ~
+ (|l >+ M) (%) + 5

+[AZ 2+ A 2= [ATP12 = [HZ°2—[HSP?)?
~[By(FOYA%P 4 AVAP) 1 By(HAL) + H.cl, (H)=(H2")=0u/2#0, (H1")=(H3")=vo/220,
(102) <|qcs)u>:l)su/\/§¢0, <ﬂgD>:USD/\/§¢O, (105

whereg; , are the gauge-coupling constants for h€l)y  can occur. To see this, we write down the minimization con-

andSU(2), gauge groups. As one can easily see, the scalajtions in this case, which can be uniquely solved:
potential V (102 has a continues global symmet8A(2)

XU(1) in addition to the locaBU(2), XU(1)y. As a re- (|ud2+ mau)=(BleD+ B4vspt V2Bgvsp)/vy
sult, there will be a number of pseudo-Goldstone bosons that !
are phenomenologically unacceptable. This is a consequence +O(VEV?), (106)

of S; symmetry. Therefore, we would like to bre&g sym-

metry explicitly. As in the nonsupersymmetric case, we (|/~L§|2+mau):(B3USD+ \/§B5vD)/vSU+O(VEV2),
would like to break it as softly as possible to preserve pre- S

dictions from S; symmetry, while breaking the global (107
SU(2)XU(1) symmetry completely. There is a unique 212 2

choice for that: Since the softest terms have the canonical (141! T Mp) (Buwy+Bawyt V2Bsvsy)lvp
dimension two, the sof; breaking should be in the SSB +O(VEV?), (108

sector. As for the soft scalar masses, we have an important
consequenc€l00 from S; symmetry that they are diagonal 2 2 .
in generations. Since we would like to preserve this, the only (3l + mHg)_(B3USU+ V2Bgvy)/vspt O(VEV?).
choice is to introduce the soff; breaking terms in thé3 (109
sector[11]. Moreover, looking at thé&; invariant scalar po-
tential V (102, we observe that it has again an Abelian dis-
crete symmetry

Inserting these solutions into the scalar potentl&l2) with
(104), we obtain the mass matrices for the Higgs fields. As in
the nonsupersymmetric case, we redefine the Higgs fields as

SpiHT P HYP, (103
HD’U=i(HD'U+HDvU) (110
which is the same &3). We assume that the s@} breaking = \/5 1 =z 7~
terms respect this discrete symmetty3, and add the fol-
lowing soft S; breaking Lagrangian: Then the mass matrices can be written as
|
, [[(BitBgupt V2Bguspl/vy —B;+By
M2 = (111
—B;+By [(B1+By)vy+2Bsusylivp
|
for the[HY ,(AP)™] basis, and Mys= (Bsvspt V2Bsvp)/vsy,
MUS 0 _Bg _\/EBS MU+:[(B:|_+B4)UD+ \/EBBUSD]/UU! (113)
0 My —V2Bs —B;—By
M2: M = B U +\/§B U /U y
—B3 —\/EBG MDS 0 DS [ 3Vsu 6 U] SD
—\2Bs —B;—By 0 Mp Mp+=[(B1+By)vy+V2Bsusyl/vp .- (114
+O(VEV?) (112 From the mass matriced11) and (112), we find that the
o . . lightest physical Higgs boson, the MSSM Higgs boson, can
for the[HY ,HY ,(AH2)T,(A2) "] basis, where be written as a linear combination
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hussu= (0oL +v5pH P+ A% + v A /v, S; invariant VEVs(6) can satisfy the phenomenological re-
(115 quirement of(i).
(i) Even for the most general quartic Higgs potential
wherev = (v +v3,+v3+v3p)Y?=246 GeV, and its mass with the most general re@, breaking masse1), the S}

is approximately given by invariant VEVs(6) can correspond to a local minimum and
satisfy the phenomenological requirement(iof
mh=3[(3/5)g7+051(v5+vsy—vh—vEp)*/v? (116 (iv) The Pakvasa-Sugawara VE\81) can be a local

o, 5 minimum in the case of the most general quartic Higgs po-
for u=s,B’s>v”. It can be shown that the masses of thetential with the most general compleS breaking masses
other physical Higgs bosons can be made arbitrarily heavyang can satisfy the phenomenological requiremertt)of
From(116), we see that the tree-level upper boundrgyis (v) In a minimal supersymmetric extension with &
exactly the same as in the MSSM. _ invariant, real softS; breaking masses in th® sector, the

Because of the very nature of the SSB terms, the explicihhenomenological requirement ¢iff can be satisfied with
breaking ofS; in the B sectof104) does not propagate to the ,q S, invariant VEVs (105, where the otheB parameters
other sector. Moreover, although the superpoteit8l and 50 5150 assumed to be real. ThBserms violate supersym-
the corresponding trilinear couplings do not resgBcbym-  etry as well asS, softly. This possibility to introducs,
metry (103, they cannot generat8; violating infinite B violating soft terms in theB sector only is consistent with
terms because they can generate oBlyinvariant terms, renormalizability. The lower bound of the lightest Higgs bo-

which are, however, automaticalf§} invariant. son is the same as in the MSSM.
It is a very difficult task to test the Higgs sector experi-
VII. CONCLUSIONS mentally. However, as we see frai7) and(60), in the case

. _— . f the S, invariant soft breaking with th&, invariant VEV
We recall that our investigations have been carried ou e, invariant soft breaking 8, invaria S

under the two phenomenological conditiofist) and (15). 6), there are basically only two masgmgH andmy_ fgr
Below we would like to summarize our conclusions: four neutral and two charged heavy Higgs bosons. This may

(i) The S, invariant Higgs potential9) does not satisfy bg experimgntally tested because their couplings to the fer-
the phenomenological requirement that except one neutr&apions are fixeds,].
physical Higgs boson all the physical Higgs bosons can be-
come heavy=10 TeV without having a problem with trivi-
ality. That is, for a phenomenological viable model we have J.K. would like to thank Manuel Drees and Manfred Lind-
to breakS; explicitly if we do not introduce further Higgs ner for useful discussions, and Walter Grimus for useful dis-
fields. cussions and his hospitality at the Universitlien. This

(il) Among the real nonequivalent s@ breaking masses work is supported by the Grants-in-Aid for Scientific Re-
(28), (29), and(31) that can be characterized according tosearch from the Japan Society for the Promotion of Science
discrete symmetries, only tH& invariant case€29) with the  (No. 1313521
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