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Abstract

Three magnetic relativistic Schrödinger operators are considered corresponding to
the classical relativistic Hamiltonian symbol with magnetic vector and electric scalar
potentials. We discuss their difference in general and their coincidence in the case of
constant magnetic fields, as well as whether they are covariant under gauge transfor-
mation. Then results are surveyed on path integral representations for their respective
imaginary-time relativistic Schrödinger equations, i.e. heat equations, by means of the
probability path space measure coming from the Lévy process concerned.

Mathematics Subject Classification (2010): 81Q10; 35S05; 60J65; 60J75; 47D50;
81S40; 58D30.
Keywords: relativistic Schrödinger operator; pseudo-differential operators; quantiza-
tion; Lévy process; path integral; imaginary-time path integtral; Feynman–Kac for-
mula; Feynman–Kac–Itô formula.

1 Introduction

In this note, we consider the relativistic Schrödinger operators corresponding to the
classical relativistic Hamiltonian symbol√

(ξ −A(x))2 +m2 + V (x) , (ξ, x) ∈ Rd ×Rd , (1.1)

which is the sum of the kinetic energy term involving magnetic vector potential A(x)
and the potential energy term of electric scalar potential V (x). There are in the liter-
ature three kinds of quantum relativistic Hamiltonians depending on how to quantize
the kinetic energy term

√
(ξ −A(x))2 +m2.
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We note first that they are in general different from one another, next observe
that they coincide when the vector potential A(x) is linear in x, so in particular,
in the case of constant magnetic fields, and finally discuss whether they are gauge-
covariant. Then, on this occasion, we would like to make survey on the results on
path integral representations for their respective imaginary-time unitary groups, i.e.
real-time semigroups. It will be of some interest to collect them in one place to observe
how they look like and different, though all the three are essentially connected with
the Lévy process.

2 Three magnetic relativistic Schrödinger oper-

ators

We consider the quantized operator H := HA+V corresponding to the classical Hamil-
tonian √

(ξ −A(x))2 +m2 + V (x) , (ξ, x) ∈ Rd ×Rd, (2.1)

for a relativistic particle of mass m under magnetic vector potential A(x) and electric
scalar potential V (x). This H is used for a spinless particle in electromagnetic fields in
the situation where we may ignore quantum-field theoretic effect like particles creation
and annihilation but should take relativistic effect into consideration.

In this note, we pay attention to the following three quantized operators H(1), H(2)

and H(3) corresponding to the classical relativistic Hamiltonian symbol (2.1). Their
difference is in how to define the first term on the right, HA, corresponding to the
symbol

√
(ξ −A(x))2 +m2.

For simplicity, it is assumed here and throughout this note that A(x) is a smooth
Rd-valued function and that V (x) is a real-valued function bounded below, and at the
same time the operator sum HA + V of HA and V is selfadjoint on their common
domain.

Definition 2.1 The first H(1) := H
(1)
A + V is defined with the first term on the right

H
(1)
A being the Weyl pseudo-differential operator through mid-point prescription (e.g.

Ichinose–Tamura [13], Ichinose [6, 8]):

(H
(1)
A f)(x) :=

1

(2π)d

∫ ∫
Rd×Rd

ei(x−y)·ξ
√(

ξ −A(
x+ y

2
)
)2

+m2f(y)dydξ

=
1

(2π)d

∫ ∫
Rd×Rd

ei(x−y)·(ξ+A(x+y
2

))
√
ξ2 +m2f(y)dydξ (2.2)
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Definition 2.2 The second H(2) := H
(2)
A + V is defined with term H

(2)
A being the

pseudo-differential operator modified by Iftimie–Măntoiu–Purice [13, 14, 15]:

(H
(2)
A f)(x) :=

1

(2π)d

∫ ∫
Rd×Rd

ei(x−y)·(ξ+
∫ 1

0
A((1−θ)x+θy)dθ)

√
ξ2 +m2f(y)dydξ. (2.3)

Here the integrals in (2.2), (2.3) on the right-hand side are oscillatory integrals with f
being a function in C∞

0 (Rd) or in S(Rd).

Definition 2.3 The third H(3) := H
(3)
A +V is defined with term H

(3)
A being the square

root of the nonnegative selfadjoint operator (−i∇−A(x))2 +m2:

H
(3)
A :=

√
(−i∇−A(x))2 +m2. (2.4)

ThisH
(3)
A does not seem to be defined as a pseudo-differential operator corresponding to

a certain tractable symbol. So long as it is defined through Fourier and inverse-Fourier
tansforms, the candiadte of its symbol will not be

√
(ξ −A(x))2 +m2.

The last H(3) is used, for instance, to study “stability of matter” in relativistic
quantum mechanics in Lieb–Seiringer [18].

Needles to say, we can show these three relativistic Schrödinger operators H(1),
H(2) and H(3) define selfadjoint operators in L2(Rd). They are bounded from below,
and, in general, different from one another but coincide with one another if A(x) is
linear in x. Let us observe these facts in the following.

Proposition 2.4 H
(1)
A , H

(2)
A and H

(3)
A are in general different.

Proof. That H
(1)
A ̸= H

(3)
A was shown by Umeda–Nagase [21, Lemma 7.1, p.851] to

watch through pseudo-differential calculus that (H
(1)
A )2 ̸= (H

(3)
A )2 = (−i∇− A(x))2 +

m2. By the same method we can show that H
(2)
A ̸= H

(3)
A .

Finally, one has H
(1)
A ̸= H

(2)
A for general A, because we have

A(
x+ y

2
) ̸=

∫ 1

0
A(x+ θ(y − x))dθ,

for instance, for d = 3, taking A(x) ≡ (A1(x), A2(x), A3(x)) = (0, 0, x23), so that∫ 1

0
A3(x+ θ(y − x))dθ =

∫ 1

0
(x3 + θ(y3 − x3))

2dθ =
y23 + y3x3 + x23

3

̸= (
x3 + y3

2
)2 = A3(

x+ y

2
). 2
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Theorem 2.5 If A(x) is linear in x, i.e. if A(x) = Ȧ · x with Ȧ being any d × d

real symmetric constant matrix, then H
(1)
A , H

(2)
A and H

(3)
A coincide. In particular, this

holds for uniform magnetic fields for d = 3.

Proof. Suppose A(x) = Ȧ · x. First, that H(1)
A = H

(2)
A can seen through∫ 1

0
A(θx+ (1− θ)y)dθ =

∫ 1

0
Ȧ · (θx+ (1− θ)y)dθ =

∫ 1

0
Ȧ · (y + θ(x− y))dθ

= Ȧ · x+ y

2
= A(

x+ y

2
),

which turns out to be midpoint prescription to yield the Weyl quantization.

To see that they also coincide with H
(3)
A , we need to show that (H

(1)
A )2 = (−i∇−

A(x))2 +m2. To do so, let f ∈ C∞
0 (Rd) or ∈ S(Rd) and note tȦ = Ȧ, then we have,

with integrals in the sense of oscillatory integrals,

((H
(1)
A )2f)(x)

=
1

(2π)2d

∫ ∫ ∫ ∫
ei(x−y)·(ξ+Ȧx+y

2
)+i(y−z)·(η+Ȧ y+z

2
)
√
ξ2 +m2

√
η2 +m2f(z)dydξdzdη

=
1

(2π)2d

∫ ∫ ∫ ∫
eiy·(−ξ+η)ei[x·(ξ+Ȧx

2
)−z·(η+Ȧ z

2
)]
√
ξ2 +m2

√
η2 +m2f(z)dydξdzdη

=
1

(2π)d

∫ ∫ ∫
δ(−ξ + η)ei[x·(ξ+Ȧx

2
)−z·(η+Ȧ z

2
)]
√
ξ2 +m2

√
η2 +m2f(z) dξdzdη

=
1

(2π)d

∫ ∫
ei(x−z)·ηei

1
2
(x·Ȧx−z·Ȧz)(η2 +m2)f(z) dzdη

=
1

(2π)d

∫ ∫
ei(x−z)·(η+Ȧx+z

2
)(η2 +m2)f(z) dzdη

=
1

(2π)d

∫ ∫
ei(x−z)·(η+A(x+z

2
))(η2 +m2)f(z) dzdη

=
1

(2π)d

∫ ∫
ei(x−z)·η[(η −A(

x+ z

2
))2 +m2]f(z) dzdη .

The last equality is due to the fact that symbol (ξ−A(x))2+m2 is polynomial of ξ, so
that the correspondingWeyl pseudo-differential operator is equal to (−i∇−A(x))2+m2.
2

Finally, we are going to see the three magnetic relativistic Schrödinger operators

H
(1)
A , H

(2)
A and H

(3)
A are bounded from below by the same lower bound, as in the

following theorem.

Theorem 2.6
H

(j)
A ≥ m, j = 1, 2, 3. (2.5)
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Proof. (Sketch) First, it is trivial for H
(3)
A . Next for H

(1)
A , we can show Kato’s

inequality, i.e. the following distributional inequality:

Re[(sgnf)H
(1)
A f ] ≥

√
−∆+m2 |f | (2.6)

for all f ∈ L2(Rd) with H
(1)
A f ∈ L1

loc(R
d), where sgnf is a bounded function in Rd,

dependent on f , defined by (sgnf)(x) = f(x)/|f(x)| if f(x) ̸= 0; = 0 if f(x) = 0. To

show (2.6), one has to use the expression (4.4) for H
(1)
A f in §4 instead of (2.2). Hence

we can conclude (2.5). For the detail, see Ichinose [6, Theorems 4.1, 5.1]. Finally for

H
(2)
A , it will be shown exactly by the same argument with the expression (4.13) for

H
(2)
A instead of (2.3). 2

Though gilding the lily, we ask which of these three magnetic relativistic Schrödinger
operators Nature will choose.

3 Gauge covariance for magnetic relativistic

Schrödinger operators

Among these three magnetic relativistic Schrödinger operatorsH
(1)
A , H

(2)
A andH

(3)
A , the

Weyl quantized one like H
(1)
A (in general, the Weyl pseudo-differential operator) is com-

patible well with path integral. But the pity is that, for general vector potential A(x)

H
(1)
A (and soH(1)) is in general not covariant under gauge transformation, namely, there

exists a real-valued function φ(x) for which it fails to hold that H
(1)
A+∇φ = eiφH

(1)
A e−iφ.

However, H
(2)
A (and so H(2)) and H

(3)
A (and so H(3)) are gauge-covariant, though

these three are not in general equal as seen in Proposition 2.4. The gauge-covariance

of the modified H
(2)
A in contrast to H

(1)
A in Ichinose–Tamura [13] was emphasized in

Iftimie–Măntoiu–Purice [14, 15, 16] . Let us observe some of these facts in the following.

Proposition 3.1 H
(2)
A and H

(3)
A are covariant under gauge transformation, i.e. it

holds for j = 2, 3 that for ∀φ ∈ S(Rd) H
(j)
A+∇φ = eiφH

(j)
A e−iφ. But H(1) is in general

not covariant under gauge transformation.

Poof. First, we see why H
(3)
A =

√
(−i∇−A(x))2 +m2 is gauge-covariant, because

the selfadjoint operator (−i∇−A(x))2 +m2 inside
√
· · · is gauge-covariant.
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Next, for H
(2)
A , by mean-value theorem

φ(y)− φ(x) =

∫ 1

0
(y − x) · (∇φ)(x+ θ(y − x))dθ

= −
∫ 1

0
(x− y) · (∇φ)((1− θ)x+ θy)dθ.

Hence

(H
(2)
A e−iφf)(x)

=
1

(2π)d

∫ ∫
Rd×Rd

ei(x−y)·(ξ+
∫ 1

0
A((1−θ)x+θy)dθ)

×
√
ξ2 +m2 e−iφ(x)+i

∫ 1

0
(x−y)·(∇φ)((1−θ)x+θy)dθf(y) dydξ

=
1

(2π)d
e−iφ(x)

∫ ∫
Rd×Rd

ei(x−y)·(ξ+
∫ 1

0
(A+∇φ)((1−θ)x+θy)dθ)

√
ξ2 +m2 f(y) dydξ

= e−iφ(x)(H
(2)
A+∇φf)(x).

Finally, to see non-gauge-invariance of H
(1)
A , we are going to use a second expression

for H
(1)
A as an integral operator to be given in the next section, (4.4). Then we show

that it does not hold for all φ that H
(1)
A+∇φ = eiφH

(1)
A e−iφ or that, taking A ≡ 0,

p.v.

∫
|y|>0

[e−iy·(∇φ)(x+ y
2
)f(x+ y)− f(x)]n(dy)

= eiφ(x)p.v.

∫
|y|>0

[(e−iφf)(x+ y)− (e−iφf)(x)]n(dy)

= p.v.

∫
|y|>0

[e−i(φ(x+y)−φ(x))f(x+ y)− f(x)]n(dy).

Indeed, this cannot hold, because it does not hold for all φ that φ(x + y) − φ(x) =
y · (∇φ)(x+ y

2 ). 2

4 Imaginary-time path integrals for magnetic

relativistic Schrödinger operators

Now, let H be one of the magnetic relativistic Schrödinger operators H(1), H(2), H(3)

in Definitions 2.1, 2.2, 2.3. In the same way as in the nonrelativistic case, start from
(real-time) relativistic Schrödinger equation i ∂∂tψ(t, x) = Hψ(t, x). Rotate it by −90o
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from real time t to imaginary time −it in complex t-plane (cf. Ichinose [7, sect.4, p.23]),
we arrive at the imaginary-time relativistic Schrödinger equation, i.e. heat equation
for H −m [formally putting u(t, x) := ψ(−it, x)]:

∂

∂t
u(t, x) = −[H −m]u(t, x), t > 0,

u(0, x) = g(x), x ∈ Rd.
(4.1)

The semigroup u(t, x) = (e−t[H−m]g)(x) gives the solution of this Cauchy problem.

We want to deal with path integral representation for each e−[H(j)−m]g (j = 1, 2, 3).
The relevant path integral is connected with the Lévy process in Ikeda–Watanabe [17],
Sato [19], Applebaum [1] on the space Dx := Dx([0,∞) → Rd) of the “càdlag paths”,
i.e. right-continuous paths X : [0,∞)→Rd having left-hand limits, and with X(0)=x.
The associated path space measure is a probability measure λx, for each x ∈ Rd, on
Dx([0,∞) → Rd) whose characteristic function is given by

e−t[
√

ξ2+m2−m] =

∫
Dx([0,∞)→Rd)

ei(X(t)−x)·ξdλx(X), t ≥ 0, ξ ∈ Rd. (4.2)

We are going to start on task of representing the semigroup e−t[H−m]g by path
integral. Before that, let us note that when the vector potential A(x) is absent, we can
represent u(t, x) by a formula looking the same as the Feynman–Kac formula for the
nonrelativistic Schrödinger equation:

u(t, x) = (e−t[
√
−∆+m2+V−m]g)(x) =

∫
Dx([0,∞)→Rd)

e−
∫ t

0
V (X(s))dsg(X(t))dλ(X). (4.3)

Now we turn to come to the case where the vector potential A(x) is present.

(1) First consider the case for the Weyl pseudo-differential operatorH(1) = H
(1)
A +V

in Definition 2.1. The part H
(1)
A can be rewritten as the integral operator:

([H
(1)
A −m]f)(x) = −

∫
|y|>0

[e−iy·A(x+ y
2
)f(x+ y)− f(x)

−I{|y|<1}y ·(∇− iA(x)) f(x)]n(dy)

= − lim
r↓0

∫
|y|≥r

[e−iy·A(x+ y
2
)f(x+ y)− f(x)]n(dy)

= −p.v.

∫
|y|>0

[e−iy·A(x+ y
2
)f(x+ y)− f(x)]n(dy). (4.4)
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Here n(dy) = n(y)dy is an m-dependent measure on Rd \ {0}, called Lévy measure
with density

n(y) =


2(m

2π )
(d+1)/2K(d+1)/2(m|y|)

|y|(d+1)/2 , m > 0,

Γ( d+1
2
)

π(d+1)/2
1

|y|d+1 , m = 0,
(4.5)

and appears in the Lévy–Khinchin formula:√
ξ2 +m2 −m = −

∫
|y|>0

[eiy·ξ − 1− iξ ·yI{|y|<1}]n(dy) = − lim
r→0+

∫
|y|≥r

[eiy·ξ − 1]n(dy).

(4.6)
Proof of (4.4). By the Lévy–Khinchin formula (4.6),

(H
(1)
A f)(x)

= (2π)−d
∫ ∫

ei(x−y)·(ξ+A(x+y
2

))
(
m− lim

r→0+

∫
|z|≥r

[eiz·ξ − 1]n(dz)
)
f(y)dydξ

= (2π)−d
[
m

∫ ∫
ei(x−y)·ξei(x−y)·A(x+y

2
) dydξ

− lim
r→0+

∫ ∫ ∫
|z|≥r

(ei(x−y+z)·ξ − ei(x−y)·ξ)n(dz)ei(x−y)·A(x+y
2

) f(y) dydξ
]

= m

∫
δ(x− y)ei(x−y)·A(x+y

2
)f(y) dy

− lim
r→0+

∫ ∫
|z|≥r

(δ(x− y + z)− δ(x− y))n(dz)ei(x−y)·A(x+y
2

) f(y) dy

= mf(x)− lim
r→0+

∫ ∫
|z|≥r

(e−iz·A(x+ z
2
)f(x+ z)− f(x))n(dz). 2

To represent e−t[H(1)−m]g by path integral, we need some further notations from
Lévy process.

For each path X(·), NX(dsdy) denotes the counting measure on [0,∞)× (Rd \ {0})
to count the number of discontinuities of X(·), i.e.

NX((t, t′]× U) := #{s ∈ (t, t′]; 0 ̸= X(s)−X(s−) ∈ U} (4.7)

with 0 < t < t′ and U ⊂ Rd\{0} being a Borel set. It satisfies
∫
Dx
NX(dsdy) dλx(X) =

dsn(dy). Put ÑX(dsdy) := NX(dsdy)− dsn(dy), which may be thought of as a renor-
malization of NX(dsdy). Then any path X ∈ Dx([0,∞) → Rd) can be expressed with
Nx(·) and ÑX(·) as

X(t) = x+

∫ t+

0

∫
|y|≥1

yNX(dsdy) +

∫ t+

0

∫
0<|y|<1

yÑX(dsdy). (4.8)
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Now we have the following path integral representation for e−t[H(1)−m]g.

Theorem 4.1 (Ichinose–Tamura [13], Ichinose [8])

(e−t[H(1)−m]g)(x) =

∫
Dx([0,∞)→Rd)

e−S(1)(t,X)g(X(t)) dλx(X),

S(1)(t,X) = i

∫ t+

0

∫
|y|≥1

A(X(s−) +
y

2
)·y NX(dsdy)

+i

∫ t+

0

∫
0<|y|<1

A(X(s−) +
y

2
)·y ÑX(dsdy)r (4.9)

+i

∫ t

0
dsp.v.

∫
0<|y|<1

A(X(s) +
y

2
)·y n(dy) +

∫ t

0
V (X(s))ds.

Proof. We only give a sketch. Put

(T (t)g)(x) :=

∫
Rd
k0(t, x− y)e−iA(x+y

2
)·(y−x)−V (x+y

2
)tg(y)dy, (4.10)

where k0(t, x− y) is the integral kernel of e−t(
√
−∆+m2−m). Then we can rewrite it as

(T (t)g)(x) =

∫
Dx

e−iA(x+X(t)
2

)·(X(t)−x)−V (x+X(t)
2

)tg(X(t))dλx(X) .

Do partition of [0, t]: 0 = t0 < t1 < · · · < tn = t, tj − tj−1 = t/n, and put

Sn(x0, · · · , xn) := i
n∑

j=1

A(
xj−1 + xj

2
) · (xj − xj−1) +

n∑
j=1

V (
xj−1 + xj

2
)
t

n
, (4.11)

where xj = X(tj)(j = 0, 1, 2, . . . , n); x = x0 = X(t0), y = xn = X(tn) ≡ X(t).
Substitute these n+ 1 points of path xj = X(tj) into Sn(x0, · · · , xn) to get

Sn(X) := Sn(X(t0), · · · , X(tn))

= i
n∑

j=1

A
(X(tj−1)+X(tj)

2

)
· (X(tj)−X(tj−1)) +

n∑
j=1

V
(X(tj−1)+X(tj)

2

) t
n

Then

(T (t/n)ng)(x) =

n times︷ ︸︸ ︷∫
Rd

· · ·
∫
Rd

n∏
j=1

k0(t/n, xj−1 − xj)e
−Sn(x0,···,xn)g(xn)dx1 · · · dxn

=

∫
Dx

e−Sn(X)g(X(t)) dλx(X). (4.12)

We can show
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Proposition 4.2 T (t/n)ng → e−t[H(1)−m]g in L2(Rd), n→ ∞.

(Proof is omitted. See [13].)

Now we are in a position to complete the proof of Theorem 5.1. By Proposition
4.2, we see the left-hand side of (4.12) converges to e−t[H(1)−m]g as n → ∞. On the
other hand, we see by Itô’s formula [see ∗) below] that the right-hand side converges
to

∫
Dx
e−S(X)g(X(t)) dλx(X) by Lebesgue convergence theorem. 2

∗) For instance, in tj−1 ≤ s < tj , we have by Itô’s formula,

A
(X(tj−1) +X(tj)

2

)
·
(
X(tj)−X(tj−1)

)
=

∫ tj+

tj−1

∫
|y|>0

[
A
(X(s−) +X(tj−1) + yI|y|≥1(y)

2

)
·
(
X(s−)−X(tj−1) + yI|y|≥1(y)

)
−A

(X(s−) +X(tj−1)

2

)
·
(
X(s−)−X(tj−1)

)]
NX(dsdy)

+

∫ tj+

tj−1

∫
|y|>0

[
A
(X(s−) +X(tj−1) + yI|y|<1(y)

2

)
·
(
X(s−)−X(tj−1) + yI|y|<1(y)

)
−A

(X(s−) +X(tj−1)

2

)
·
(
X(s−)−X(tj−1)

)]
Ñ(dsdy)

+

∫ tj

tj−1

∫
|y|>0

[
A
(X(s) +X(tj−1) + yI|y|<1(y)

2

)
·
(
X(s)−X(tj−1) + yI|y|<1(y)

)
−A

(X(s) +X(tj−1)

2

)
·
(
X(s)−X(tj−1)

)
−I|y|<1(y)

{(1
2
(y · ∇)A

)(X(s) +X(tj−1

2

)
·
(
X(s)−X(tj−1)

)
+y ·A

(X(s) +X(tj−1)

2

)}]
dsn(dy).

(2) Next we come to the case for the pseudo-differential operator modified by Iftimie–

Măntoiu–Purice : H(2) := H
(2)
A + V in Definition 2.2. By exactly the same argument

as used to show (4.4), we can show that

([H
(2)
A −m]f)(x) = −

∫
|y|>0

[e−iy·
∫ 1

0
A(x+θy)dθf(x+ y)− f(x)

−I{|y|<1}y ·(∇− iA(x)) f(x)]n(dy)

= − lim
r↓0

∫
|y|≥r

[e−iy·
∫ 1

0
A(x+θy)dθf(x+ y)− f(x)]n(dy)

= − p.v.

∫
|y|>0

[e−iy·
∫ 1

0
A(x+θy)dθf(x+ y)− f(x)]n(dy). (4.13)

10



Theorem 4.3 (Iftimie–Măntoiu–Purice [14, 15, 16])

(e−t[H(2)−m]g)(x) =

∫
Dx([0,∞)→Rd)

e−S(2)(t,X)g(X(t)) dλx(X),

S(2)(t,X) = i

∫ t+

0

∫
|y|≥1

( ∫ 1

0
A(X(s−)+θy)·y dθ

)
NX(dsdy)

+i

∫ t+

0

∫
0<|y|<1

( ∫ 1

0
A(X(s−)+θy)·y dθ

)
ÑX(dsdy) (4.14)

+i

∫ t

0
dsp.v.

∫
0<|y|<1

(∫ 1

0
A(X(s)+θy)·y dθ

)
n(dy)+

∫ t

0
V (X(s))ds.

The proof of Theorem 4.3 will be done in exactly the same way as that of Theorem
4.1. Indeed, we have only to replace A(X(s−) + y

2 )·y by
∫ 1
0 A(X(s−) + θy)·y dθ.

(3) Finally, we consider the case for the operator defined, in Definition 2.3, with

the square root of a nonnegative selfadjoint operator, H(3) := H
(3)
A + V .

On the one hand, we can determine by functional analysis, namely, by theory

of fractional powers (e.g. Yosida [22, Chap.IX,11, pp.259–261]) e−t[H
(3)
A −m] from the

nonnegative selfadjoint operator S := (−i∇ − A(x))2 + m2 =: 2mHNR
A + m2 where

HNR
A stands for the magnetic nonrelativistic Schrödinger operator 1

2m(−i∇ − A(x))2

without scalar potential. Indeed, we have

e−t[H
(3)
A −m]g =

{
emt

∫∞
0 ft(λ)e

−λSg dλ, t > 0,
0, t = 0

ft(λ) =

{
(2πi)−1

∫ σ+i∞
σ−i∞ ezλ−tz1/2dz, λ ≥ 0,

0, λ < 0 (σ > 0).
(4.15)

Here we quickly insert the Feynman–Kac–Itô formula (e.g. Demuth–van Casteren
[4], Simon [20]) for the magnetic nonrelativistic Schrödinger operator HNR := HNR

A +
V := 1

2m(−i∇−A(x))2+V (x) (m > 0), a more general formula than the Feynman–Kac
formula:

(e−tHNR
g)(x)

=

∫
Cx([0,∞)→Rd)

e−[i
∫ t

0
A(B(s))dB(s)+ i

2

∫ t

0
divA(B(s))ds+

∫ t

0
V (B(s))ds]g(B(t))dµx(B)

≡
∫
Cx([0,∞)→Rd)

e−[i
∫ t

0
A(B(s))◦dB(s)+

∫ t

0
V (B(s))ds]g(B(t)) dµx(B). (4.16)

This can provide a kind of path integral representation for e−t[H
(3)
A −m]g with the Wiener

measure, by substituting the Feynman–Kac–Itô formula (4.16) for V = 0 with t = 2mλ
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into e−λ(S−m2) = e−2mλHNR
A in the integrand of equation (4.15) for e−t[H

(3)
A −m]g. Then,

to represent e−t[H(3)−m]g for V ̸= 0, we might apply the Trotter–Kato product formula

e−t[H(3)−m] = s- lim
n→∞

(e−(t/n)[H
(3)
A −m]e−(t/n)V )n, (4.17)

to the sum H(3) − m = (H
(3)
A − m) + V to express the semigroup e−t[H(3)−m] as a

“limit”, where convergence of the right-hand side usually takes place in strong sense
as indicated, but now even, in operator norm, by the recent results on operator norm
convergence in Ichinose–Tamura [9], Ichinose–Tamura–Tamura–Zagrebnov [12] (also
[10, 11]). However it is not clear whether this procedure could further yield a path

integral representation for e−t[H(3)−m]g.
On the other hand, it does not seem possible to represent e−t[H(3)]−m]g by path

integral through directly applying Lévy process, as we saw in the cases for e−t(H(1)−m)g

and e−t(H(2)−m)g, because H
(3)
A does not seem to be explicitly expressed by a pseudo-

differential operator of a certain tractable symbol. It was in this situation that the
problem of path integral representation for e−t[H(3)]−m]g was studied first by DeAngelis–
Serva [3] and DeAngelis–Rinaldi–Serva [2] with use of subordination /time-change of
Brownnian motion, and recently more extensively in Hiroshima–Ichinose–Lőrinczi [5]

not only for the magnetic relativistic Schrödinger operator H
(3)
A but also for Bernstein

functions of the magnetic nonrelativistic Schrödinger operator even with spin.
To proceed, let us briefly explain about subordination (e.g. Sato [19, Chap.6, p.197],

Applebaum [1, 1.3.2, p.52]). Subordination is a transformation, through random time
change, of a stochastic process to a new one which is a non-decreasing Lévy process
independent of the original one, what is called subordinator. The new process is said
to be subordinate to the original one.

As the original process, take B1(t), the one-dimensional standard Brownian motion,
so that B1 ≡ B1(·) is a function belonging to the space C0([0,∞) → R) of real-valued
continuous functions on [0,∞) satisfying B1(0) = 0, equipped with the Wiener measure

µ10 such that e−t ξ
2

2 =
∫
C0([0,∞) →R) e

iξB1(t)dµ10(B
1).

Let m > 0, and for each B1 and t ≥ 0, put

T (t) ≡ T (t, B1) := inf{ s > 0 ; B1(s) +
√
ms =

√
mt}. (4.18)

Then T ≡ T (·) is a monotone, non-decreasing function on [0,∞) with T (0) = 0, belong-
ing to D0([0,∞)→R) and so becoming a one-dimensional Lévy process, called inverse
Gaussian subordinator. This correspondence defines a map T̂ of C0([0,∞) → R)
into D0([0,∞) → R) by T̂B1(·) = T (·, B1). Let ν0 be the probability measure
on D0([0,∞) → R) defined by ν0(G) = µ0(T̂

−1G) first for cylinder subsets G ⊂
D0([0,∞)→R) and then extended for more general subsets.
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Proposition 4.4 (e.g. [1, p.54, Example 1.3.21], and Exercise 2.2.10, p.96; cf. Theo-
rem 2.2.9, p.95])

e−t[
√
2mσ+m2−m] =

∫
D0([0,∞)→R)

e−T (t)σdν0(T ), σ ≥ 0. (4.19)

This proposition implies that the characteristic function of the measure ν0 is given
by

e−tϕ(ρ) =

∫
D0([0,∞)→R)

eiT (t)ρdν0(T ), ρ ∈ R , (4.20)

ϕ(ρ) = (
m

2
)1/2

√
m2 + 4ρ2 −m

(
√
m2 + 4ρ2 +m)1/2 +

√
2m1/2

− (2m)1/2ρ

(
√
m2 + 4ρ2 +m)1/2

i .

To see this, first analytically extend
√
2mσ +m2 to the right-half complex plane z :=

σ + iρ, σ > 0, ρ ∈ R, and then we have ϕ(ρ) = limσ→+0

√
2m(σ + iρ) +m2 −m, of

which the right-hand side is calculated as in (4.20).

We are in a position to give a path integral representation for e−t[H(3)−m]g.

Theorem 4.5 [3, 2; 5]

(e−t[H(3)]−m]g)(x) =

∫ ∫
Cx([0,∞)→Rd)
×D0([0,∞)→R)

e−S(3)(t,B,T )g(B(T (t))) dµx(B)dν0(T ),

S(3)(t, B, T ) = i

∫ T (t)

0
A(B(s)) dB(s) +

i

2

∫ T (t)

0
divA(B(s))ds+

∫ t

0
V (B(T (s)))ds,

≡ i

∫ T (t)

0
A(B(s)) ◦ dB(s) +

∫ t

0
V (B(T (s)))ds, (4.21)

where µx is the Wiener measure on Cx([0,∞) → Rd).

Proof of Theorem 4.5. (Sketch) We use Proposition 4.4 and the Feynman–Kac–Itô

formula (4.16). Note that H
(3)
A =

√
2mHNR

A +m2. By Spectral Theorem for the

nonnegative selfadjoint operator HNR
A , we have HNR

A =

∫
Spec(HNR

A )
σ dE(σ), where

E(·) is the spectral measure associated with HNR
A . Then for f, g ∈ L2(Rd)

⟨f, e−t[H
(3)
A −m]g⟩ =

∫
Spec(HNR

A )
e−t[

√
2mσ+m2−m] ⟨f, dE(σ)g⟩,
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where ⟨·, ·⟩ stands for the inner product of the Hilbert space L2(Rd). By Propositopn
4.4 and again by Spectral Theorem,

⟨f, e−t[H
(3)
A −m]g⟩ =

∫
Spec(HNR

A )

∫
D0([0,∞)→R)

e−T (t)σdν0(T ) ⟨f, dE(σ)g⟩

=

∫
D0([0,∞)→R)

⟨f, e−T (t)HNR
A g⟩ dν0(T ).

Applying the Feynman–Kac–Itô formula (4.16) (with V = 0) to e−T (t)HNR
A g on the

right, we have

⟨f, e−t[H
(3)
A −m]g⟩

=

∫
D0([0,∞)→R)

dν0(T )

∫
Rd
dxf(B(0))

∫
Cx([0,∞)→Rd)

e−i
∫ T (t)

0
A(B(s))◦dB(s)g(B(T (t)))dµx(B)

=

∫
Rd
dxf(x)

∫ ∫
Cx([0,∞)→Rd)
×D0([0,∞)→R)

e−i
∫ T (t)

0
A(B(s))◦dB(s)g(B(T (t))) dµx(B)dν0(T ),

where note B(0) = x. This proves the assertion when V = 0.
When V ̸= 0, with partition of [0, t]: 0 = t0 < t1 < · · · < tn = t, tj − tj−1 = t/n,

we can express e−t[H(3)−m]g = e−t[(H
(3)
A −m)+V ] by the Trotter–Kato formula (4.17).

Rewrite the product of these n operators by path integral with respect to the product
of two probability measures ν0(T ) · µx(B) and note that T (0) = T (t0) = 0, B(0) =
B(T (t0))=x, then we have

⟨f, (e−(t/n)[H
(3)
A −m]e−(t/n)V )ng⟩

=

∫
Rd
dx

∫
D0([0,∞)→R)

dν0(T )

∫
Cx([0,∞)→Rd)

f(B(0))

×e
−i

∑n

j=1

∫ T (tj)

T (tj−1)
A(B(s))◦dB(s)

e
−
∑n

j=1
V (B(T (tj))

t
n g(B(tn)) dµx(B).

We see, as n→ ∞, that the left-hand side converges to ⟨f, e−t[H
(3)
A −m]g⟩, and the right-

hand side also converges to the goal formula by the Lebesgue theorem, as integral by
dx · ν0(T ) · µx(B). Hence or similarly we can also get (4.21). 2

Finally, as summary, we will collect the three path integral representation formulas
in Theorems 4.1, 4.3, 4.5, below, so as to be able to easily see x-dependence. To do so,
make change of space, probablity measure and paths by translation:

Dx→D0, λx→λ0, X(s)→X(s)+x, B(s)→B(s)+x, B(T (s))→B(T (s))+x, then
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(4.9) : (e−t[H(1)−m]g)(x) =

∫
D0([0,∞)→Rd)

e−S(1)(t,X)g(X(t) + x) dλ0(X),

S(1)(t,X) = i

∫ t+

0

∫
|y|≥1

A(X(s−) + x+
y

2
)·y NX(dsdy)

+i

∫ t+

0

∫
0<|y|<1

A(X(s−) + x+
y

2
)·y ÑX(dsdy)

+i

∫ t

0

ds p.v.

∫
0<|y|<1

A(X(s) + x+
y

2
)·y n(dy) +

∫ t

0

V (X(s) + x)ds ;

(4.14) : (e−t[H(2)−m]g)(x) =

∫
D0([0,∞)→Rd)

e−S(2)(t,X)g(X(t) + x) dλ0(X),

S(2)(t,X) = i

∫ t+

0

∫
|y|≥1

(∫ 1

0

A(X(s−)+x+θy)·y dθ
)
NX(dsdy)

+i

∫ t+

0

∫
0<|y|<1

(∫ 1

0

A(X(s−)+x+θy)·y dθ
)
ÑX(dsdy)

+i

∫ t

0

ds p.v.

∫
0<|y|<1

(∫ 1

0

A(X(s)+x+θy)·y dθ
)
n(dy)+

∫ t

0

V (X(s)+x)ds ;

(4.21) : (e−t[H(3)]−m]g)(x) =

∫ ∫
C0([0,∞)→Rd)
×D0([0,∞)→R)

e−S(3)(t,B,T )g(B(T (t))+x) dµ0(B)dν0(T ),

S(3)(t, B, T ) = i

∫ T (t)

0

A(B(s)+x)·dB(s)+
i

2

∫ T (t)

0

divA(B(s)+x)ds+

∫ t

0

V (B(T (s))+x)ds,

≡ i

∫ T (t)

0

A(B(s) + x) ◦ dB(s) +

∫ t

0

V (B(T (s)) + x)ds

5 Acknowledgments

Thanks are due to Fumio Hiroshima for some useful comments on the issue around
Proposition 4.4. The research is supported in part by JSPS Grant-in-Aid for Scientific
Research No. 20540161, No. 21340037 and No. 23540191.

References
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14. Iftimie, V.; Măntoiu, M.; Purice, R. : Magnetic pseudodifferential operators,
Publ. Res. Inst. Math. Sci. Kyoto Univ. 43, 585–623 (2007).

16
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2008.
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19. Sato, K.-I.: Lévy Processes and Infinite Divisibility, Cambridge University Press
1999.

20. Simon, B. : Functional Integration and Quantum Physics, 2nd ed., AMS Chelsea
Publishing, Providence, RI, 2005.

21. Umeda, T. ; Nagase, M. : Spectra of relativistic Schrödinger operators with
magnetic vector potentials, Osaka J. Math. 30 (1993), 839–853.

22. Yosida, K. : Functional analysis, Springer-Verlag New York Inc., New York, 2nd
ed. 1968.

17


