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The equitable basis for sl

Define

xr = 2e - h, y=-2f-h, z=h.

Then z,y, 2z is a basis for sl and

[z.9] = 2x+ 2y,
[v.2l = 2y+ 22,
[z,z] = 2z+4 22.

We call z,y. z the equitable basis for sly.

Overview

o The tetrahedron algebra realization of the
three-point sl; loop algebra

e The f.d. irreducible modules

o The evaluation modules

o The Ss-action on the evaluation modules

e 24 bases for an evaluation module

o Realization of the evaluation modules by
polynomials in two variables

The equitable basis for sl;

warmup: The Lie algebra sl

Throughout, F will denote an aigebraically closed
field with characteristic 0.

‘ Recall that sl is the Lie algebra over F with 3

basis e, f,h and Lie bracket

[h- e] = 231 [hl .f] = —2f’
le,f1=h.

The three-point sl loop algebra
The three-point sl; loop algebra is the Lie
algebra over F consisting of the vector space

sh& R, (t-1)71), 3=QFf
where t is indeterminate, and Lie bracket

[u®a,v@b) = [u,v] & ad.
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The equitable presentation for the
three-point si, loop algebra

We now recall the equitable presentation for
the three-point sl loop algebra.

To give the presentation we define a Lie alge-
bra [ by generators and relations, and display
an isomorphism from & to the three-point sl
loop algebra.

X and the three-point
sl> loop algebra

Theorem [Hartwig +T] There exists an iso-
morphism of Lie algebras

W:R—slh@Ft,t}, (t—1)7Y

that sends

r1a— %1, Tz yositz@(t—1).
s y@1 Tz (- -zt
zn— 281, z—rx(l-)'+y2(1-07"

where z,y, z is the equitable basis for sl.

From now on we work with 5.

The tetrahedron algebra ®

Definition [Hartwig+T] The tetrahedron al-
gebra ® is the Lie algebra over F that has gen-
erators .

{z;jli,jel,i;&j} I1={0,1.2,3}
and the following relations:

(i) For distinct i,j €L,

zij t zji = 0.

(i) For mutually distinct h,i,j €L

lzhis 5] = 224 + 2245.

(iii) For mutually distinct h,i,j,k € k,

[zhii [zhiv [xhi'zjk“] = 4IIMr Ijk]'

Finite-dimensional irred. ¥-modules

Our goal is to describe the f.d. irreducible -
modaules.

For these modules there is a special case called
an evaluation module.

It turns out that every f.d. irreducible ®@-module
is a tensor product of evaluation modules.

After some general remarks we focus on the
evaluation modules.

11

The algebra ¥

Decompositions

Let V denote a f.d. irreducible B-modute.

By a decompaosition of V we mean a sequence
{Va}i_, of nonzero subspaces of V such that

d
v=3Y Va (direct sum).

n=0
We call d the diameter of the decomposition.
By the shape of this decomposition we mean

the sequence {dim(V;.)}¢—¢.

12
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The decompositions i, j]
Hartwig showed:
(i) Each generator z,; is semisimple on V'.
(i) There exists an integer d > O such that for

each generator z;; the set of distinct eigenval-
ues on Vis

{2n-d|0<n < d}.

We let [i,j] denote the eigenspace decompo-
sition for x;; on V associated with the above
ordering of the eigenvalues.

The trivial ¥-module

Up to isomorphism there exists a unique X-
module V with dimension 1.

Every element of ® is QO on V.

We call V the trivial ®-module.

16

How the decompositions [i, j}
are related

14

The evaluation modules for
We now define the evaluation modules for &.

For a € F\{0, 1} we define a Lie algebra homo-
morphism

EVa:® — shFt}@-1)1 — sip
" u® f(t) — uf(a)

For an sly-module V we pull back the sla-module
structure via EV,; this turns V" into 2 @ module
which we call V(a).

17

The shape of V

Hartwig showed that the shape of the decom-
position [i,j] is independent of the pair i, j.

We call this common shape the shape of V.

15

The evaluation modules for 8, cont.

B8y an evaluation module for 8 we mean the
moduie V(a) where

(i) d is a positive integer;

(ii) V, is the irreducible sl>-module with dimen-
siond+ 1.

The ®-module V4(a) is nontriviat and irreducible.

We call a the evaluation parameter for ¥ (a).



<t
0

Characterizing the evaluation
modules, I

Theorem For a nontrivial f.d. irreducible &-
module V TFAE:

(i) V is isomorphic to an evaluation module for
K.

(ii) V has shape (1,1,...,1).

19

An S,-action on B-modules

For a B-module V and o € S4 there exists a 8-
moduie structure on V, catled V twisted via
o, that behaves as follows:

For u € ® and v € V, the vector u.r computed
in V twisted via o coincides with the vector
o~ 1(u).v computed in the original B-module
V.

Sometimes we abbreviate °V for V twisted via
g.

S4 acts on the set of ®-modules, with o send-
ing 1" to ?V for all o € S4 and all @-modules
V.

Characterizing the evaluation
modules, 11

Theorem Let 1" denote a nontrivial f.d. irre-
ducible ®-module.

Then for a € F\{0,1} TFAE:

(i) V is isomorphic to an evaluation module
with evaluation parameter a.

(ii) Each of the following vanishes on V:

axg) + (1 - a)xp2 — To3,
az1g+ (1 - a)z33 - 212,
az23 + (1 - a)z20 — 221,
az32 + (1 — a)z3; — T30

The Ss-action on 8&modules, cont.

The above Ss-action on B-modules sends eval-
uation modules to evaluation modules.

The effect of this action on the evaluation pa-
rameter is described in the following two slides.

23

An Ss-action on B

We identify the symmetric group Sy with the
group of permutations of §.

Sa acts on the set of generators for 8 by per-
muting the indices:

a(z,'j) = Zo(i).0 (i) a € S4.
This action leaves invariant the defining refa-

tions and therefore induces an action of S5 on
® as a group of automorphisms.

21

An action of S; on F\{0,1}

Lemma There exists an action of S4 on the
set F\{0,1} that does the following.

For a € F\{0,1}.
e (2,0) sends arra”};
e (0,1) sends a — afa —1)"};

e (1,3) sends a+— a1
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The effect of S; on the
evaluation parameter

Theorem For an integer d 2> 1, o € S, and
a € F\{0, 1} the following are isomorphic:

(i) The ®-module Vy(a) twisted via o

(ii) The 8-module Vy(o(e)).

The orbits of S4 on F\{0,1}

We now describe the orbits for the S4-action
on F\{0,1}.

Pick a € F\{0, 1} and mutually distinct ,3,k. £ €
L

By the (i,j,k, £)-relative of a we mean the
scalar o(a) where o € Sy sends the sequence
(i,3,k,0) to (2.0,1,3).

A subgroup G of S4

Earlier we gave an action of S4 on the set
F\{0,1}.

Let G denote the kernel of this action.

It turns out that G consists of

(01)(23), (02)(13), (03)(12)
together with the identity element.

The orbits of S; on F\{0,1}, cont.
The relative function satisfies this recursion:

Lemma Pick a € F\{0, 1} and mutually distinct
ijkteL

Let a denote the (i, j, k, £)-relative of a. Then
o a1 is the (j,i,k, £)-relative of a;
e a(a — 1)1 is the (i, k, j, £)-relative of a;

e a~! is the (i,j,¢, k)-relative of a.

The subgroup G of S;, cont.

Coroliary For an integer d > 1, for o0 € G, and
for a € F\{0, 1} the following are isomorphic:

(i) The B-module Vy(a) twisted via o

(ii) The B-module Vy(a).

We will return to the subgroup G later in the
tatk.
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The orbits of S4 on F\{0,1}, cont.

Here is another way to view the relative func-
tion.

Lemma For a € F\{0, 1} and mutually distinct
%,7,k,2 € I the following (i), (ii) coincide:

(i) the (i, j, k, £)-relative of a;

(ii) the scalar

»

-t
By

X

)

~)

)
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where we define
0=a,1=02=1 3=
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The orbits of S, on F\{0,1}, cont.

Here is an explicit description of the relative
function.

Theorem Pick a € F\{0.1} and mutually dis-
tinct i,j,k. €l

Then the (i, j, k, £)-relative of a is given in the

31

Location of 7; (i €1)

24 bases for Vy(a)

For the time being we fix an integer d > 1 and
a scalar a € F\{0,1}.

We consider the ®-module Vy{a).

We are about to define 24 bases for this mod-
ule.

The basis [i, j, k, £ for Vy(a)
Lemma For mutually distinct i,j, k,£ € 1 there
exists a unique basis {un}d_, for Vy(a) such

that:

(i) for 0 < n < d the vector u, is contained in
component n of the decomposition (k,:

(i) m = Tpoun-
We denote this basis by [i, 3, k, .

We have now defined 24 bases for Vy(a).

35

The vectors 1; (i € T) in V;(a)

For notationat convenience, for i € I we fix a
nonzero vector 7; € Vg(a) which is a common
eigenvector for {z;;|j €Li# i}.

The basis [i, j, k,£] for Vi(a)

36
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How the generators z,, act
on the 24 bases

Theorem For mutuaily distinct i,3,k,Z € I and
distinct r,s € I consider the matrix represent-
ing z,s with respect to the basis [i,j,k,4 of
Vi(a). The entries of this matrix are given in
the following table. All entries not displayed

are zero.

gen. | (n.n - 1)-entry (n,u)-entry Sn — 1, n)-entry
Ia [4] TTd-2m [4 )
Tes Qo 2n-d 0

Tui 0 TTT2nd H-Zm¥e
Tu [ d -2 n-24d-2

T ~2n n-d [

EN 2n d- 2n ]

ER) ~2an d-2n []

Ty -2an m-d (]

e ] d-2n 2n—d-1)o "
£ 1] 2n-d 2d-n+1)at
In 2an(a -1y 7 {d-nYla+1Xa- 1) 2d-n+1)1-a)"
; 2an(l - a)* (d-2n)(a+1)}1-a)' 20d-n+1Na-1)"

In

the above table the scalar a denotes the

(i, j, k, £)-retative of a.
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The matrix Z

The following matrix will play a role in our
discussion.

For an integer d > 0 let Z = Z(d) denote the
matrix in Matg4(F) with entries

Z":{o, if i+j#zd

1, if iti=d
it (0<i,j<d).

We observe

Z22=1.

40

Some transition matrices

We now consider the transition matrices be-
tween our 24 bases.

In order to describe these, it is convenient to
introduce 3 certain bilinear form on Vy(a).

The transition matrices

Theorem Referring to Vy(a). pick mutually
distinct i,4,k, £ € 1 and consider the transition
matrices from the basis {i,j,k, ] to the bases

L. k.4, {i, k. 5,4, li.5. 6 k).

(i) The first transition matrix is diagonal with
(r,r)-entry

(ﬂjvm) o

(%m0} v
for 0 < r < d, where a is the (i, j, k, £)-relative
of a.

(i) The second transition matrix is tower tri-
angular with (r,s)-entry

(a1 - a*

8

for 0 < s < r < d, where a is the (i,j,k,&)-
relative of a.

(iii) The third transition matrix is the matrix
z.
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A bitinear form on Vy(a)

Lemma There exists a nonzero bilinear form
(,) on Vy(a) such that

(w.u,v) = —{u,w.v) welB, uveV.

The form is nondegenerate.

The form is unique up to muitiplication by a
nonzero scalar in F.

The form is symmetric (resp. antisymmetric)
when d is even (resp. d is odd).

We call {, ) a standard bilinear form for Vy(a).

Realizing the evaluation modules
for ® using polynomials in two
variables

Let zg, z; denote commuting indeterminates.

tet F{zg, z1] denote the F-algebra of ail polyno-
mials in zg, 21 that have coefficients in F.

We abbreviate A = F[2g, 23]

We often view A as a vector space over F.
For an integer d > O let A4 denote the subspace
of A consisting of the homogeneous polynomi-

als in zg, z; that have total degree d.

Thus {z8 "27}4_ is a basis for Ag.

n=0

42
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Realizing the evaluation modules

Note that
oc
A=Y A4 (direct sum)

n=0

and that

AAs= Ay,  (ns20)

We fix mutually distinct 3; € F (i € 1).

Then there exist unique z,z3 € A such that

Y#u=0, ) Aiz=0

icl icl

43

Some bases for Ay
Lemma For an integer d > 0 and distinct i,j €

I the elements {zf"‘z;‘}ﬁ=n form a basis for
Ay

46

Comments on the z; (i €1)

temma For mutually distinct i,j,k,2 € I we
have

Be—38;i_ , Be— B

* = BB BB
o BB BB

By — Be B—-8 7

Example: Some bases for A3

47

Some bases for A

Lemma For distinct i,j € I the elements
z:—'z; 0<rs<o0
form a basis for A.

a5

Derivations of A

Our next goal is to display a @-module struc-
ture on A.

We will use the following terms.

By a derivation of A we mean an F-linear map
D : A-— A such that

D(uv) = D(u)v + uD(v) (u,v € A).
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A is a X-module

Theorem There exists a unique B-module struc-
ture on A such that:

(i) each element of & acts as a derivation on
A,

(i) Tij-Zi = —% and Tij.25 = z5 for distinct i,j €
L

49

The decomposition (i, j} for A,

Earlier in the talk we described the ®-module
Vd(ﬂ).

We now consider how things look from the
point of view of A,.

Proposition For an integer d > 0 and for dis-
tinct i,j € I the decomposition {i, j] on A, is
described as follows.

For 0 < n < d the nth component is spanned
by zd n

n
i zj.

52

The eigenvectors for the z;; on A
Lemma for distinct 1,5 € I and integersr.s > 0

the element 22} is an eigenvector for z;; with
eigenvalue s —r.

The elements 5; (i€ ) for Ay

For an integer d > 1 and i € I the element z§
is a scalar multiple of ;.

Recall 7, is defined up to scalar multiplication.

For the rest of talk we choose n; = z{.

53

The irreducible 8-submodules of A

Proposition Referring to the E-module A,

(i) For d > O the subspace A, is an irreducible
R-submodule of A.

(ii) The B-module Aq is trivial.

(iii) For ¢ > 1 the B-module Ay is isomorphic
to V(a) where

51

The basis [i,,k,8 for Ag

Proposition For an integer d > 1 and for mu-
tually distinct ,j,k,£ € I the basis [i,7,k,4 of
Ay is described as follows.

For 0 < n < d the nth component is

—n_nydy (B; = B2 ™B; - 8"
tonap () L0
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The group G revisited
We saw earlier that if we twist the ®-module
Vy(e) via an element of G then the result is

isomorphic to Vy(a).

We now explain this fact using A.

Some automorphisms of A

Lemma For mutually distinct i, j,k,£ € 1 there
exists a unique automorphism of A that sends

BB, LGP,
He T z; 8,-—ﬂ¢z"
L Be=5; _ B
Tt T BB

Some automorphisms of A
Theorem ‘fhe following hold for o € :

(i) There exists an automorphism g, of A that
sends zr to a scalar muitiple of z,,) for all

. relL

(ii) For » € ® the equation
o(u) = goug;*

holds on A.

(iii) The map go is an isomorphism of 8-modules
from A to A twisted via o.

THE END
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