Evaluation modules for the three-point sl2 loop algebra (Finite Groups and Algebraic Combinatorics)

メタデータ 言語: eng 出版者: 公開日: 2017-10-03 キーワード (Ja): キーワード (En): 作成者: メールアドレス: 所属: URL http://hdl.handle.net/2297/36712

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

Evaluation modules for the three-point slo loop algebra

Tatsuro Ito

Kanazawa University

Paul Terwilliger

University of Wisconsin

The equitable basis for sl2

Define

$$x=2e-h, \quad y=-2f-h, \quad z=h.$$

Then x, y, z is a basis for \mathfrak{sl}_2 and

$$[x,y] = 2x + 2y,$$

$$[y,z] = 2y + 2z,$$

$$[z,x] = 2z + 2x.$$

We call x, y, z the equitable basis for \mathfrak{sl}_2 .

Overview

- The tetrahedron algebra realization of the three-point sl2 loop algebra
- . The f.d. irreducible modules
- The evaluation modules
- \bullet The S_4 -action on the evaluation modules
- 24 bases for an evaluation module
- · Realization of the evaluation modules by polynomials in two variables

The equitable basis for sl₂

Warmup: The Lie algebra sl₂

Throughout, F will denote an algebraically closed field with characteristic 0.

Recall that si2 is the Lie algebra over F with a basis e, f, h and Lie bracket

$$[h, e] = 2e,$$
 $[h, f] = -2f,$ $[e, f] = h.$

The three-point sl₂ loop algebra

The three-point sl2 loop algebra is the Lie algebra over F consisting of the vector space

$$\mathfrak{sl}_2 \otimes \mathbb{F}[t, t^{-1}, (t-1)^{-1}], \qquad \otimes = \otimes_{\mathbb{F}}$$

where t is indeterminate, and Lie bracket

$$[u \otimes a, v \otimes b] = [u, v] \otimes ab.$$

52

The tetrahedron algebra 🛭

Definition [Hartwig+T] The tetrahedron algebra 🛭 is the Lie algebra over F that has gen-

 ${x_{ij} | i, j \in I, i \neq j}$ $I = {0, 1, 2, 3}$ and the following relations:

(i) For distinct $i, j \in I$,

$$x_{ij} + x_{ji} = 0.$$

(ii) For mutually distinct $h, i, j \in I$.

$$[x_{hi},x_{ij}]=2x_{hi}+2x_{ij}.$$

(iii) For mutually distinct $h, i, j, k \in I$,

$$[x_{hi}, [x_{hi}, [x_{hi}, x_{jk}]]] = 4[x_{hi}, x_{jk}].$$

sl₂ loop algebra

The equitable presentation for the three-point slo loop algebra

We now recall the equitable presentation for

To give the presentation we define a Lie algebra ⋈ by generators and relations, and display

an isomorphism from & to the three-point sl2

the three-point slo loop algebra.

loop algebra.

Theorem [Hartwig +T] There exists an isomorphism of Lie algebras

$$\psi: \boxtimes \to \mathfrak{sl}_2 \otimes \mathbb{F}[t, t^{-1}, (t-1)^{-1}]$$

that sends

$$x_{12} \mapsto x \otimes 1$$
, $x_{03} \mapsto y \otimes t + z \otimes (t-1)$,
 $x_{23} \mapsto y \otimes 1$, $x_{01} \mapsto z \otimes (1-t^{-1}) - x \otimes t^{-1}$,
 $x_{31} \mapsto z \otimes 1$, $x_{02} \mapsto x \otimes (1-t)^{-1} + y \otimes t(1-t)^{-1}$

where x, y, z is the equitable basis for \mathfrak{sl}_2 .

From now on we work with 2.

Finite-dimensional irred. ⊠-modules

Our goal is to describe the f.d. irreducible &modules.

For these modules there is a special case called an evaluation module.

It turns out that every f.d. irreducible Ø-module is a tensor product of evaluation modules.

After some general remarks we focus on the evaluation modules.

Decompositions

Let V denote a f.d. irreducible ⊠-module.

By a decomposition of V we mean a sequence $\{V_n\}_{n=0}^d$ of nonzero subspaces of V such that

$$V = \sum_{n=0}^{d} V_n \qquad \text{(direct sum)}.$$

We call d the diameter of the decomposition.

By the shape of this decomposition we mean the sequence $\{\dim(V_n)\}_{n=0}^d$.

The decompositions [i, j]

Hartwig showed:

- (i) Each generator x_{ij} is semisimple on V.
- (ii) There exists an integer $d \ge 0$ such that for each generator x_{ij} the set of distinct eigenvalues on V is

$$\{2n-d\,|\,0\leq n\leq d\}.$$

We let [i,j] denote the eigenspace decomposition for x_{ij} on V associated with the above ordering of the eigenvalues.

13

The trivial ⊠-module

Up to isomorphism there exists a unique \boxtimes -module V with dimension 1.

Every element of \boxtimes is 0 on V.

We call V the trivial \boxtimes -module.

How the decompositions [i, j] are related

14

The evaluation modules for

We now define the evaluation modules for M.

For $a \in \mathbb{F} \setminus \{0, 1\}$ we define a Lie algebra homomorphism

$$EV_a: \boxtimes \rightarrow \operatorname{sl}_2 \otimes \mathbb{F}[t, t^{-1}, (t-1)^{-1}] \rightarrow \operatorname{sl}_2$$

 $\psi \qquad u \otimes f(t) \rightarrow uf(a)$

For an \mathfrak{sl}_2 -module V we pull back the \mathfrak{sl}_2 -module structure via EV_a ; this turns V into a \boxtimes -module which we call V(a).

The shape of V

Hartwig showed that the shape of the decomposition [i, j] is independent of the pair i, j.

We call this common shape the shape of V.

15

The evaluation modules for \square , cont.

By an **evaluation module** for \boxtimes we mean the module $V_d(a)$ where

- (i) d is a positive integer;
- (ii) V_d is the irreducible \mathfrak{sl}_2 -module with dimension d+1.

The \boxtimes -module $V_d(a)$ is nontrivial and irreducible.

We call a the evaluation parameter for $V_d(a)$.

Characterizing the evaluation modules, I

Theorem For a nontrivial f.d. irreducible ⊠-module V TFAE:

- (i) V is isomorphic to an evaluation module for \boxtimes .
- (ii) V has shape (1, 1, ..., 1).

••

An S_A -action on \boxtimes -modules

For a \boxtimes -module V and $\sigma \in S_4$ there exists a \boxtimes -module structure on V, called V twisted via σ , that behaves as follows:

For $u\in \boxtimes$ and $v\in V$, the vector u.v computed in V twisted via σ coincides with the vector $\sigma^{-1}(u).v$ computed in the original \boxtimes -module V.

Sometimes we abbreviate ${}^{\sigma}V$ for V twisted via σ .

 S_4 acts on the set of \boxtimes -modules, with σ sending V to ${}^\sigma V$ for all $\sigma \in S_4$ and all \boxtimes -modules V.

Characterizing the evaluation modules, II

Theorem Let V denote a nontrivial f.d. irreducible \boxtimes -module.

Then for $a \in \mathbb{F} \setminus \{0, 1\}$ TFAE:

- (i) V is isomorphic to an evaluation module with evaluation parameter a.
- (ii) Each of the following vanishes on V:

$$ax_{01}+(1-a)x_{02}-x_{03}$$

$$ax_{10}+(1-a)x_{13}-x_{12}$$

$$ax_{23}+(1-a)x_{20}-x_{21}$$

$$ax_{32} + (1-a)x_{31} - x_{30}$$

20

The S_4 -action on \boxtimes -modules, cont.

The above S₄-action on \(\overline{\overline

The effect of this action on the evaluation parameter is described in the following two slides.

An S₄-action on ⊠

We identify the symmetric group S_4 with the group of permutations of ${\rm I\hspace{-.07cm}I}$.

 S_4 acts on the set of generators for \boxtimes by permuting the indices:

$$\sigma(x_{ij}) = x_{\sigma(i),\sigma(j)} \quad \sigma \in S_4.$$

This action leaves invariant the defining relations and therefore induces an action of S_4 on \boxtimes as a group of automorphisms.

21

An action of S_4 on $\mathbb{F}\setminus\{0,1\}$

Lemma There exists an action of S_4 on the set $\mathbb{F}\setminus\{0,1\}$ that does the following.

For $a \in \mathbb{F} \setminus \{0, 1\}$,

- (2,0) sends $a \mapsto a^{-1}$;
- (0,1) sends $a \mapsto a(a-1)^{-1}$;
- (1,3) sends $a \mapsto a^{-1}$.

The effect of S_4 on the evaluation parameter

Theorem For an integer $d \ge 1$, $\sigma \in S_4$, and $a \in \mathbb{F} \setminus \{0, 1\}$ the following are isomorphic:

- (i) The \boxtimes -module $V_d(a)$ twisted via σ ;
- (ii) The \boxtimes -module $V_d(\sigma(a))$.

25

The orbits of S_4 on $\mathbb{F}\setminus\{0,1\}$

We now describe the orbits for the S_4 -action on $\mathbb{F}\setminus\{0,1\}$.

Pick $a \in \mathbb{F} \backslash \{0,1\}$ and mutually distinct $i,j,k,\ell \in \mathbb{F}$

By the (i,j,k,ℓ) -relative of a we mean the scalar $\sigma(a)$ where $\sigma \in S_4$ sends the sequence (i,j,k,ℓ) to (2,0,1,3).

A subgroup G of S_4

Earlier we gave an action of S_4 on the set $\mathbb{F}\setminus\{0,1\}$.

Let G denote the kernel of this action.

It turns out that G consists of (01)(23), (02)(13), (03)(12) together with the identity element.

26

The orbits of S_4 on $\mathbb{F}\setminus\{0,1\}$, cont.

The relative function satisfies this recursion:

Lemma Pick $a \in \mathbb{F} \setminus \{0, 1\}$ and mutually distinct $i, j, k, \ell \in \mathbb{I}$.

Let α denote the (i, j, k, ℓ) -relative of a. Then

- α^{-1} is the (i, i, k, ℓ) -relative of α ;
- $\alpha(\alpha-1)^{-1}$ is the (i,k,j,ℓ) -relative of a;
- α^{-1} is the (i, j, ℓ, k) -relative of a.

The subgroup G of S_4 , cont.

Corollary For an integer $d \ge 1$, for $\sigma \in G$, and for $a \in \mathbb{F} \setminus \{0, 1\}$ the following are isomorphic:

- (i) The \boxtimes -module $V_d(a)$ twisted via σ ;
- (ii) The \boxtimes -module $V_d(a)$.

We will return to the subgroup G later in the talk.

27

The orbits of S_4 on $\mathbb{F}\setminus\{0,1\}$, cont.

Here is another way to view the relative function.

Lemma For $a \in \mathbb{F} \setminus \{0, 1\}$ and mutually distinct $i, j, k, \ell \in \mathbb{I}$ the following (i), (ii) coincide:

- (i) the (i, j, k, ℓ) -relative of a;
- (ii) the scalar

$$\frac{\hat{i}-l\hat{j}-l}{\hat{i}-\hat{k}\hat{j}-l}$$

where we define

$$\hat{0} = a$$
, $\hat{1} = 0$, $\hat{2} = 1$, $\hat{3} = \infty$.

The orbits of S_4 on $F\setminus\{0,1\}$, cont.

Here is an explicit description of the relative function.

Theorem Pick $a \in \mathbb{F} \setminus \{0,1\}$ and mutually distinct $i,j,k,\ell \in \mathbb{I}$.

Then the (i,j,k,ℓ) -relative of a is given in the following table.

(i,j,k,ℓ)			(i, j, k, ℓ) -relative
(2.0,1,3) (0.2,3,1)	(1,3,2,0)	(3.1.0.2)	$a \\ a^{-1} \\ 1 - a \\ (1 - a)^{-1} \\ a(a - 1)^{-1} \\ 1 - a^{-1}$
(0.2,1,3) (2.0,3,1)	(1,3,0,2)	(3.1,2.0)	
(1.0,2,3) (0.1,3,2)	(2,3,1,0)	(3.2,0.1)	
(0,1,2,3) (1.0,3,2)	(2,3,0,1)	(3.2,1,0)	
(2.1,0,3) (1.2,3,0)	(0,3,2,1)	(3.0,1.2)	
(1.2,0,3) (2.1,3,0)	(0,3,1,2)	(3.0,2.1)	

31

Location of η_i $(i \in I)$

24 bases for $V_d(a)$

For the time being we fix an integer $d \ge 1$ and a scalar $a \in \mathbb{F} \setminus \{0, 1\}$.

We consider the \boxtimes -module $V_d(a)$.

We are about to define 24 bases for this module.

32

The basis $[i, j, k, \ell]$ for $V_d(a)$

Lemma For mutually distinct $i,j,k,\ell\in I$ there exists a unique basis $\{u_n\}_{n=0}^d$ for $V_d(a)$ such that:

(i) for $0 \le n \le d$ the vector u_n is contained in component n of the decomposition $\{k, \ell\}$:

(ii) $\eta_i = \sum_{n=0}^d u_n$.

We denote this basis by $[i, j, k, \ell]$.

We have now defined 24 bases for $V_d(a)$.

The vectors η_i $(i \in I)$ in $V_d(a)$

For notational convenience, for $i \in I$ we fix a nonzero vector $\eta_i \in V_d(a)$ which is a common eigenvector for $\{x_{ij} | j \in I, j \neq i\}$.

3

The basis $[i, j, k, \ell]$ for $V_d(a)$

How the generators x_{rs} act on the 24 bases

Theorem For mutually distinct $i,j,k,\ell\in I$ and distinct $r,s\in I$ consider the matrix representing x_{rs} with respect to the basis $\{i,j,k,\ell\}$ of $V_d(a)$. The entries of this matrix are given in the following table. All entries not displayed are zero.

gen.	(n, n-1)-entry	(n,n)-entry	(n - 1, n)-entry
z _{ck}	Ö	d - 2n	0
I.H	0	2n - d	0
Thi.	0	2n d	2d - 2n + 2
T-ik	0	d - 2n	2n - 2d - 2
I'H	-2n	2n - d	0
x.,	2n	d - 2n	0
x _{ij}	2an	d - 2n	0
τμ	-2an	2n - d	0
x _{jk}	0	d - 2n	2(n - d - 1)a-1
x _k ;	o	2n - d	$2(d-n+1)\alpha^{-1}$
z _j .	$2\alpha n(\alpha - 1)^{-1}$	$(d-2n)(\alpha+1)(\alpha-1)^{-1}$	$2(d-n+1)(1-\alpha)^{-1}$
x ,,	2αn(1 - α)-1	$(d-2n)(\alpha+1)(1-\alpha)^{-1}$	$2(d-n+1)(a-1)^{-1}$

In the above table the scalar α denotes the (i, j, k, ℓ) -relative of a.

37

The matrix Z

The following matrix will play a role in our discussion.

For an integer $d \ge 0$ let Z = Z(d) denote the matrix in $\operatorname{Mat}_{d+1}(\mathbb{F})$ with entries

$$Z_{ij} = \begin{cases} 1, & \text{if } i+j=d; \\ 0, & \text{if } i+j\neq d \end{cases} \qquad (0 \leq i, j \leq d).$$

We observe

$$Z^2 = I$$
.

Some transition matrices

We now consider the transition matrices between our 24 bases.

In order to describe these, it is convenient to introduce a certain bilinear form on $V_d(a)$.

8

The transition matrices

Theorem Referring to $V_d(a)$, pick mutually distinct $i, j, k, \ell \in I$ and consider the transition matrices from the basis $[i, j, k, \ell]$ to the bases

$$[j,i,k,\ell],$$
 $[i,k,j,\ell],$ $[i,j,\ell,k].$

(i) The first transition matrix is diagonal with (r,r)-entry

$$rac{\langle \eta_j, \eta_\ell
angle}{\langle \eta_i, \eta_\ell
angle} lpha^r$$

for $0 \le r \le d$, where α is the (i, j, k, ℓ) -relative of a.

(ii) The second transition matrix is lower triangular with (r,s)-entry

$$\binom{r}{s}\alpha^{r-s}(1-\alpha)^s$$

for $0 \le s \le r \le d$, where α is the (i, j, k, ℓ) -relative of a.

(iii) The third transition matrix is the matrix \mathbf{Z} .

A bilinear form on $V_d(a)$

Lemma There exists a nonzero bilinear form \langle , \rangle on $V_d(a)$ such that

$$\langle w.u,v\rangle = -\langle u,w.v\rangle \qquad w\in \boxtimes, \quad u,v\in V.$$

The form is nondegenerate.

The form is unique up to multiplication by a nonzero scalar in \mathbf{F} .

The form is symmetric (resp. antisymmetric) when d is even (resp. d is odd).

We call \langle , \rangle a standard bilinear form for $V_d(a)$.

39

Realizing the evaluation modules for \(\text{U} \) using polynomials in two variables

Let z_0, z_1 denote commuting indeterminates.

let ${\bf F}[z_0,z_1]$ denote the ${\bf F}$ -algebra of all polynomials in z_0,z_1 that have coefficients in ${\bf F}$.

We abbreviate $A = \mathbb{F}[z_0, z_1]$.

We often view A as a vector space over F.

For an integer $d \ge 0$ let \mathcal{A}_d denote the subspace of \mathcal{A} consisting of the homogeneous polynomials in z_0, z_1 that have total degree d.

Thus $\{z_0^{d-n}z_1^n\}_{n=0}^d$ is a basis for A_d .

Realizing the evaluation modules

Note that

$$A = \sum_{n=0}^{\infty} A_d \qquad \text{(direct sum)}$$

and that

$$A_rA_s=A_{r+s}$$
 $(r,s\geq 0).$

We fix mutually distinct $\beta_i \in \mathbb{F}$ ($i \in \mathbb{I}$).

Then there exist unique $z_2, z_3 \in A$ such that

$$\sum_{i\in \mathbb{I}} z_i = 0, \qquad \sum_{i\in \mathbb{I}} \beta_i z_i = 0.$$

43

Some bases for A_d

Lemma For an integer $d \ge 0$ and distinct $i, j \in \mathbb{R}$ the elements $\{z_i^{d-n}z_j^n\}_{n=0}^d$ form a basis for A,

Comments on the z_i $(i \in I)$

Lemma For mutually distinct $i,j,k,\ell\in I$ we have

$$z_k = \frac{\beta_{\ell} - \beta_i}{\beta_k - \beta_{\ell}} z_i + \frac{\beta_{\ell} - \beta_j}{\beta_k - \beta_{\ell}} z_j,$$

$$z_{\ell} = \frac{\beta_i - \beta_k}{\beta_k - \beta_{\ell}} z_i + \frac{\beta_j - \beta_k}{\beta_k - \beta_{\ell}} z_j.$$

Example: Some bases for A_3

Some bases for A

Lemma For distinct $i, j \in I$ the elements

 $z_i^r z_i^s$ $0 \le r, s < \infty$

form a basis for A.

Derivations of A

Our next goal is to display a \boxtimes -module structure on A.

We will use the following terms.

By a derivation of A we mean an F-linear map $D: A \rightarrow A$ such that

$$D(uv) = D(u)v + uD(v) \qquad (u, v \in A).$$

A is a ⊠-module

Theorem There exists a unique ⋈-module structure on A such that:

- (i) each element of \boxtimes acts as a derivation on \mathcal{A} ;
- (ii) $x_{ij}.z_i = -z_i$ and $x_{ij}.z_j = z_j$ for distinct $i,j \in I$.

..

The decomposition [i,j] for A_d

Earlier in the talk we described the \boxtimes -module $V_d(a)$.

We now consider how things look from the point of view of \mathcal{A}_d .

Proposition For an integer $d \ge 0$ and for distinct $i, j \in \mathbb{I}$ the decomposition $\{i, j\}$ on \mathcal{A}_d is described as follows.

For 0 $\leq n \leq d$ the *n*th component is spanned by $z_i^{d-n}z_j^n$.

The eigenvectors for the x_{ij} on ${\cal A}$

Lemma for distinct $i, j \in I$ and integers $r, s \ge 0$ the element $z_i^r z_j^s$ is an eigenvector for x_{ij} with eigenvalue s - r.

50

The elements η_i $(i \in I)$ for A_d

For an integer $d \ge 1$ and $i \in I$ the element z_i^d is a scalar multiple of η_i .

Recall n; is defined up to scalar multiplication.

For the rest of talk we choose $\eta_i = z_i^d$.

The irreducible \(\omega\$-submodules of \(A \)

Proposition Referring to the ⊠-module A,

- (i) For $d \ge 0$ the subspace A_d is an irreducible \mathbb{R} -submodule of A.
- (ii) The ⊠-module A₀ is trivial.
- (iii) For $d \ge 1$ the \triangle -module A_d is isomorphic to $V_d(a)$ where

$$a = \frac{\beta_0 - \beta_1}{\beta_0 - \beta_3} \frac{\beta_2 - \beta_3}{\beta_2 - \beta_1}.$$

51

The basis $[i, j, k, \ell]$ for A_d

Proposition For an integer $d \ge 1$ and for mutually distinct $i, j, k, \ell \in \mathbb{I}$ the basis $[i, j, k, \ell]$ of A_{ℓ} is described as follows.

For $0 \le n \le d$ the nth component is

$$z_k^{d-n}z_\ell^n\binom{d}{n}\frac{(\beta_j-\beta_k)^{d-n}(\beta_j-\beta_\ell)^n}{(\beta_i-\beta_i)^d}.$$

The group G revisited

We saw earlier that if we twist the \boxtimes -module $V_d(a)$ via an element of G then the result is isomorphic to $V_d(a)$.

We now explain this fact using ${\cal A}.$

Some automorphisms of ${\cal A}$

Lemma For mutually distinct $i,j,k,\ell\in I$ there exists a unique automorphism of $\mathcal A$ that sends

$$\begin{aligned} z_i &\mapsto \frac{\beta_j - \beta_k}{\beta_i - \beta_k} z_j, & z_j &\mapsto \frac{\beta_i - \beta_\ell}{\beta_j - \beta_\ell} z_i, \\ z_k &\mapsto \frac{\beta_\ell - \beta_i}{\beta_i - \beta_k} z_\ell, & z_\ell &\mapsto \frac{\beta_k - \beta_j}{\beta_j - \beta_\ell} z_k. \end{aligned}$$

Some automorphisms of ${\cal A}$

Theorem The following hold for $\sigma \in G$:

- (i) There exists an automorphism g_{σ} of $\mathcal A$ that sends z_r to a scalar multiple of $z_{\sigma(r)}$ for all $r\in \mathbb I$.
- (ii) For $u \in \boxtimes$ the equation

$$\sigma(u) = g_{\sigma} u g_{\sigma}^{-1}$$

holds on \mathcal{A} .

(iii) The map g_{σ} is an isomorphism of \boxtimes -modules from $\mathcal A$ to $\mathcal A$ twisted via σ .

THE END