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Abstract

Background: Silkmoth, Bombyx mori, is an ideal model insect for investigating the neural mechanisms underlying sex
pheromone-induced innate behavior. Although transgenic techniques and the GAL4/UAS system are well established in the
silkmoth, genetic tools useful for investigating brain function at the neural circuit level have been lacking.

Results: In the present study, we established silkmoth strains in which we could visualize neural projections (UAS-
mCD8GFP) and cell nucleus positions (UAS-GFP.nls), and manipulate neural excitability by thermal stimulation (UAS-
dTrpA1). In these strains, neural projections and nucleus position were reliably labeled with green fluorescent protein in a
GAL4-dependent manner. Further, the behavior of silkworm larvae and adults could be controlled by GAL4-dependent
misexpression of dTrpA1. Ubiquitous dTrpA1 misexpression led both silkmoth larvae and adults to exhibit seizure-like
phenotypes in a heat stimulation-dependent manner. Furthermore, dTrpA1 misexpression in the sex pheromone receptor
neurons of male silkmoths allowed us to control male sexual behavior by changing the temperature. Thermally stimulated
male silkmoths exhibited full sexual behavior, including wing-flapping, orientation, and attempted copulation, and precisely
approached a thermal source in a manner similar to male silkmoths stimulated with the sex pheromone.

Conclusion: These findings indicate that a thermogenetic approach using dTrpA1 is feasible in Lepidopteran insects and
thermogenetic analysis of innate behavior is applicable in the silkmoth. These tools are essential for elucidating the
relationships between neural circuits and function using neurogenetic methods.

Citation: Kiya T, Morishita K, Uchino K, Iwami M, Sezutsu H (2014) Establishment of Tools for Neurogenetic Analysis of Sexual Behavior in the Silkmoth, Bombyx
mori. PLoS ONE 9(11): e113156. doi:10.1371/journal.pone.0113156

Editor: Erjun Ling, Institute of Plant Physiology and Ecology, China

Received August 29, 2014; Accepted October 20, 2014; Published November 14, 2014

Copyright: � 2014 Kiya et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: This work was supported by the Sasakawa Scientific Research Grant (to T.K.), the Hokuriku Bank (to T.K.), and JSPS KAKENHI Grant Number 24780047
and 26850218 (to T.K.) and 22380034 (to M.I.).The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: kiya@staff.kanazawa-u.ac.jp

Introduction

Sex pheromones have an essential role in proper mate

recognition and efficient partner identification [1,2]. In general,

sex pheromones comprise a mixture of chemicals and/or peptides,

and function effectively when the ratios of their components are

appropriate [1,2]. The silkmoth, Bombyx mori, is an excellent

model organism for sex pheromone identification and neural

mechanisms of pheromone-induced innate behavior, because full

sexual behavior can be induced in males by a single sex

pheromone component, bombykol [2–8]. The female silkmoth

emits a blend of two pheromone components, bombykol and

bombykal, which have excitatory and inhibitory effects on male

sexual behavior, respectively [9–11]. Bombykol receptors

(BmOR1) are expressed only in the male antennae, and activation

of BmOR1-expressing neurons is sufficient to induce sexual

behavior [12,13]. Taking advantage of the simple but robust

silkmoth pheromone system and the relatively large size of the

silkmoth brain, neural mechanisms of sex pheromone-induced

sexual behavior have been extensively analyzed with electrophys-

iologic, optophysiologic, morphologic, and genetic methods [4–

8,14–25]. Recently, a novel molecular biologic technique using an

immediate early gene, Hr38, as a neural activity marker revealed

the distribution of cells activated by bombykol or bombykal

exposure in the male silkmoth brain [26]. These studies led us to

establish a neurogenetic method to visualize and manipulate a

defined subset of neurons involved in sexual behavior in a

reproducible manner and to elucidate the neural mechanisms with

cellular resolution.

The silkmoth, B. mori, is Lepidopteran insect for which a

transgenic technique is established [27]. In addition, establishment

of the powerful GAL4/UAS system enabled us to conduct

functional analyses of neural circuits at the molecular and cellular

levels, like studies of the vinegar fly, Drosophila melanogaster [28].

Furthermore, the piggyBac-based enhancer trap system provides

the opportunity to conduct non-biased genetic screening and

reveal novel neural mechanisms that govern sexual behavior [29].

Despite the long history of studies and effective molecular genetic

methods, tools useful for a neurogenetic approach in B. mori have

been lacking.
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A thermogenetic approach with a thermosensor protein

dTrpA1 and temperature-sensitive mutant of dynamin, Shibirets1,

has been used successfully in D. melanogaster [30–35]. Recent

progress in optogenetics allows us to control neural activity with

high time-resolution [36]. Compared to the optogenetic approach,

which is also applicable to silkmoth [25], the thermogenetic

approach is less invasive and easier to apply. Neural activity or

neural transmission can be activated or repressed simply by

changing the culture temperature of the insects [30,32–35]. In

addition, thermogenetics can be used to control activity of neurons

that reside deep inside the insect body. Because the silkmoth

cuticle is thick and opaque, and the head is too small to be

connected to optic stimulation fibers, establishing thermogenetic

tools is essential for investigating neural circuit function on

behavior under free-moving conditions.

In the present study, to establish methods for visualizing and

manipulating a subset of neurons, we generated and analyzed

silkmoth strains that expressed mCD8-fused green fluorescent

protein (GFP), GFP.nls, dTRPA1, or Shibirets1, under the control

of GAL4. We demonstrated that mCD8GFP and GFP.nls

localized to the plasma membrane and cell nucleus, respectively,

indicating that these strains are useful for visualizing neural

projection patterns and nucleus position. In addition, misexpres-

sion of dTrpA1, a thermosensor protein of D. melanogaster [30],

enabled us to control silkmoth behavior in a thermal stimulation-

dependent manner, providing evidence that thermogenetic neural

activation is effective in silkmoth. In contrast, misexpression of

Shibirets1, a temperature-sensitive dynamin of D. melanogaster
[31], was not effective in disturbing silkmoth behavior by changing

the temperature. The present study paves the way for analysis of

the neural mechanisms underlying the sexual behavior of

silkmoths using a neurogenetic approach.

Results

Visualization of the projection pattern of neurons is essential for

revealing functional neural connections. For this purpose, we

generated a silkmoth strain that can express membrane-tethering

GFP [mCD8GFP: mouse T cell receptor (CD8)-fused GFP] under

the control of GAL4 (UAS-mCD8GFP strain) [37]. Using a GAL4

driver strain that has ubiquitous GAL4 expression (Actin A3-
GAL4) [38], we expressed mCD8GFP throughout the body and

analyzed its expression pattern. Fluorescent signals were detected

from embryos to adult moths and were visible on the brain and

body surfaces under epifluorescent microscopy (Figure 1A–D).

Antibody staining of brains confirmed that GFP localized to the

cellular membrane (Figure 1E–F). We also examined mCD8GFP

expression in the sex pheromone (bombykol) receptor neurons

using the BmOR1-GAL4 strain [13]. BmOR1 is the bombykol

receptor gene expressed only in the male antennae, and the

BmOR1-GAL4 strain expresses transgenes in almost all (96.8%)

BmOR1-expressing cells [12,13,25]. Anti-GFP staining revealed

that BmOR1-expressing neurons specifically project to the toroid

of the macroglomerular complex of the antennal lobe, which is the

bombykol-responsive glomerulus (Figure 1G) [6]. Each projecting

axon was visible in this strain (arrowheads in Figure 1G). In the

antenna, each BmOR1-expressing neuron and its neurite were also

visible by anti-GFP staining (Figure 1H). These findings indicate

that this strain is useful for visualizing the neural projection pattern

and performing detailed analyses of neural connections.

In addition to visualizing the neural projections, it is essential to

establish methods for identifying the cellular position and

quantifying cell number. For this purpose, we generated a strain

that expressed GFP fused with nuclear localization signal (GFP.nls)

under the control of GAL4 (UAS-GFP.nls strain). Ubiquitous

expression of GFP.nls with Actin A3-GAL4 resulted in dot-like

fluorescent signals throughout the body from embryo to adult

(Figure 2A–E). Antibody staining also confirmed that the GFP

localized exclusively to the nuclei (Figure 2 F–H), and thus allowed

for identification of GFP-positive cell positions due to the

segregated GFP signals among cells. The ability to quantify

GFP-positive cells could be useful in future studies.

To investigate the functional roles of a defined set of neurons in

behavior, tools that can selectively activate or repress neural

activity or transmission in a temporary-regulated manner are

needed. Therefore, we generated the UAS-dTrpA1 strain

expressing dTrpA1 under the control of GAL4 and evaluated

the usefulness of dTrpA1 as a thermogenetic tool in silkmoth. We

selected dTrpA1 as a thermogenetic tool because the channel pore

of dTrpA1 begins to open at approximately 25uC, which is

compatible with silkmoth rearing. First, using second instar larvae

with ubiquitous misexpression of dTrpA1, we investigated the

behavioral response of these larvae to thermal stimulation

(Figure 3A–C and Video S1). In this assay, we used a thermal

cycler as a simple thermal stimulator and changed the larval

ambient temperature from 23uC (permissive temperature) to 40uC
(test temperature). The larvae exhibited systemic contraction and

became C-shaped upon the shift in temperature, probably due to

strong contraction of the body muscles. This phenotype was

reversible and all larvae behaved normally after the temperature

was returned to 23uC. In addition, this phenotype was observed

only in the larvae that possessed both Actin A3-GAL4 and UAS-

dTrpA1 genes (Video S1). These findings indicate that dTrpA1

effectively functions as a thermosensor channel, even under

heterologous conditions in silkmoth cells. To accurately measure

the behavioral threshold temperature of dTrpA1-expressing

larvae, we precisely controlled the ambient temperature using a

heat block to increase the temperature from 30uC to 37uC in 1uC
steps every 10 min, and observed the larval responses (Figure 3D).

Because preliminary experiments revealed that transgenic larvae

begin to show the temperature-sensitive phenotype between 30uC
to 35uC, we began this analysis at 30uC. Approximately half the

larvae showed a contractile response at 32uC and almost all larvae

(89%; 8 out of 9 larvae) showed a response at 33uC during a 10-

min observation time at each temperature, indicating a behavioral

threshold temperature of 32uC.

We also addressed whether the thermogenetic approach works

in adult moths. In adults, the seizure-like phenotype was observed

only when moths were incubated at higher temperatures than

larvae (Figure 3E–G and Video S2). Effective stimulation of adult

male moths required incubation at 40uC (65%; 15 out of 23 moths

responded). The difference in threshold temperatures between

larvae and adult moths might be due to varying levels of dTrpA1

expression in the body muscles at different developmental stages.

These thermal stimulation-induced behavioral phenotypes were

not observed in control strains possessing only Actin A3-GAL4 or

UAS-dTrpA1 (0 out of 8 moths responded, each). To further

evaluate the usefulness of the UAS-dTrpA1 strain, we examined

the effects of dTrpA1 misexpression in BmOR1-expressing cells

and tested whether we could control the sexual behavior by

thermal stimulation. In the silkmoth, BmOR1 is expressed only in

the male antennae, and activation of BmOR1-expressing neurons

is sufficient to induce full sexual behavior [12,13,25]. Within

1 min of incubation at 35uC, all responsive male moths exhibited

sexual behavior with vigorous wing-flapping and attempted

copulation (Figure 3H–J and Video S3) (61%; 22 out of 36 moths

responded). Incubation at higher temperature (40uC) did not

increase responsive rate. These results indicated that 35uC is
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sufficient to stimulate the antennal cells, suggesting that there are

cell-type and/or tissue-type differences in the threshold temper-

ature. Surgical removal of bilateral antennae from the base with a

fine scissor (N = 5) completely abolished the thermal stimulation-

dependent sexual behavior (0 out of 5 moths responded),

confirming the specificity of dTrpA1 function in the antennae.

In addition, no thermal stimulation-induced sexual behavior was

observed in control strains possessing only BmOR1-GAL4 or

UAS-dTrpA1 (0 out of 3 moths or 0 out of 18 moths responded,

respectively).

Finally, we examined whether a thermally-guided silkmoth

would precisely approach a thermal source similar to the innate

pheromone orientation behavior to female moths (Figure 3K, L,

and Video S4). Male silkmoths with misexpressed dTrpA1 in

BmOR1-expressing cells started female searching behavior upon

thermal stimulation (90%; 9 out of 10 moths showed behavior) and

reached the heat source (100%; 9 out of 9 moths reached the

heater). In contrast, control moths (wild-type) did not show

apparent sexual behavior in response to thermal stimulation (0 out

of 3 moths). These findings indicate that the thermogenetic

approach using dTrpA1 is effective for controlling innate sexual

behavior in silkmoths.

We also generated UAS-Shibirets1 expressing temperature-

sensitive mutant dynamin under the control of GAL4. Despite

thorough analyses, we observed no detectable phenotypes by

ubiquitous or bombykol receptor cell-selective Shibirets1 expres-

sion (0 out of 13 moths or 0 out of 16 moths, respectively). Because

the protein sequence of dynamin is largely different between the

fly, D. melanogaster, and the silkmoth, B. mori, Shibirets1

misexpression may have only a weak dominant-negative effect.

Figure 1. Visualization of cellular surface by mCD8GFP expression in silkmoths. (A–F) GFP fused with the membrane-tethering signal
polypeptide (mCD8GFP) was ubiquitously expressed by crossing UAS-mCD8GFP and Actin A3-GAL4 strains. GFP fluorescent images of the brains of
second instar larva (A) and male adult moth (B), and pupal body (C, D). Brightfield images (B9–D9). Red color in the eyes is due to DeRed expression by
the 3xP3 promoter used as a selection marker (B9, C9). L: Left brain hemisphere, R: Right brain hemisphere. (E, F) GFP expression was visualized with
antibody staining (green). Nuclear DNA was visualized with DAPI (blue). Pictures of maximum intensity projection (E and F) or a single optical plane
(E9 and F9) of confocal images of the whole brain (E and E9) and the antennal lobe (F and F9). Note that the GFP signal is detected at the cellular
surface. (G, H) Visualization of sex pheromone receptor neurons by crossing UAS-mCD8GFP and BmOR1-GAL4 strains. (G) GFP and glomerular structure
of the antennal lobe was visualized with anti-GFP and anti-synapsin antibody, respectively. Each neural projection was visible (arrowhead) and axon
terminals were correctly targeted to the bombykol-responsive glomeruli (toroid of the macroglomerular complex [MGC]). Gs: Ordinary glomeruli. (H)
Each receptor cell (arrowhead) and neurite (arrow) was visible. Scale bars: 100 mm (A, E–H), 1 mm (B–D).
doi:10.1371/journal.pone.0113156.g001
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Discussion

In the present study, we established useful silkmoth strains for

visualizing neural projection patterns and cell nucleus positions,

and regulating neural activity by thermal stimulation. The

silkmoth, B. mori, has long been used for sex pheromone studies:

identification of sex pheromone compounds [9–11], regulatory

mechanisms of pheromone biosynthesizing pathways [39], and

neural mechanisms of sex pheromone recognition and phero-

mone-induced sexual behavior [3–8,13,23,25]. Neurogenetic

methods for investigating functional relationships between neural

circuits and behavior, which can only be studied in living animals,

however, have been lacking. Therefore, the strains for neuroge-

netics established in the present study will be powerful tools for

revealing brain function at the circuit and/or cellular levels in

future studies, as discussed below.

Figure 2. Visualization of cellular position by nuclear-localizing GFP expression. GFP fused with the nuclear localization signal (GFP.nls)
was ubiquitously expressed by crossing Actin A3-GAL4 and UAS-GFP.nls strains. (A–E) GFP fluorescent images of embryo (A), the brains of second
instar larva (B) and male adult moth (C), and pupal body (D, E). Brightfield images (C9–E9). (F–H) GFP expression was visualized with antibody staining
(green). Nuclear DNA was visualized with DAPI (magenta). Pictures of maximum intensity projection (F, G) or a single plane (F9, G9, H) of confocal
images of the whole brain (F, F9) and the antennal lobe (G, G9). (H) Because GFP localizes exclusively to the nuclei, the cellular position is identifiable.
Scale bars: 1 mm (A, D, E), 100 mm (B, F, G), 500 mm (C), 5 mm (H).
doi:10.1371/journal.pone.0113156.g002
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First, in the present study, expression of GFP fused with plasma

membrane-tethering signal (mCD8GFP) and nuclear localization

signal (GFP.nls) in the silkmoth brain successfully targeted the

cellular membrane and nuclei, respectively. Each neurite in the

antenna and brain could be identified when mCD8GFP was

expressed in bombykol receptor cells. In addition, each nucleus

could be identified, even when GFP.nls was ubiquitously expressed

in the brain. Therefore, these strains are highly useful for revealing

neural projection patterns, cellular position, and cell numbers of a

defined set of neurons, in combination with promoter GAL4

strains and enhancer trap GAL4 strains.

Second, we demonstrated that the thermogenetic approach

using dTrpA1 is effective in silkmoth. To our knowledge, this is the

first report showing that ectopically expressed dTrpA1 is effective

in vivo in insects other than D. melanogaster. Because thermo-

genetic methods are non-invasive and easy to use for stimulating

deep brain cells, the UAS-dTrpA1 strain will be an essential tool

for investigating causal links between neural circuits and behavior

under free-moving conditions. Functional genetic screening using

dTrpA1 recently led to the identification of neural circuits that

regulate innate behaviors like sexual behavior and aggressive

behavior, as well as stereotypic behavior, such as walking

direction, in D. melanogaster [32–35]. Because a piggyBac-based

genetic screen is also possible in silkmoth [29], our findings

provide opportunities for conducting a functional genetic screen

and identifying the neural circuits that underlie sexual behavior. In

the male silkmoth, activation of bombykol receptor cells is

sufficient to induce all steps of sexual behavior, as reported

previously [13,25] and confirmed in the present study. In addition,

adult moths do not show any behavior other than sexual behavior.

Utilizing these simple and advantageous characteristics, we expect

future genetic studies will identify the essential neural circuits and

components underlying sexual behavior.

Third, the threshold temperature for behavior induction was

32,40uC in silkmoths with dTrpA1 misexpression, in contrast

with D. melanogaster, in which the threshold temperature for

behavior induction is 27,29uC [32–35]. A possible explanation

for this discrepancy is a species-specific difference in the cellular

environment between fly and silkmoth. The molecular mecha-

nisms that determine the temperature threshold of channel-gating

remain obscure in dTrpA1, but gating properties of thermal TRP

channels are known to be modified by external ligands, such as

capsaicin (TRPV1) and menthol (TRPM8) [40]. Therefore, it is

possible that the molecular environment surrounding dTrpA1

channels influences the gating properties in silkmoth cells. This

shift in the threshold temperature allowed us to rear dTrpA1-

expressing silkmoth larvae under normal temperature conditions

(25uC), eliminating the side effects and developmental delays

induced by low temperature rearing. Furthermore, the threshold

temperature for behavioral induction differed between develop-

mental stages, as well as between tissues. These differences could

derive from differences in the GAL4 expression levels, which

would result in differences in the dTrpA1 expression levels

between developmental stages and between tissues. Another

Figure 3. Control of silkmoth behavior by the thermogenetic approach. (A–G) The thermosensor protein, dTrpA1, was ubiquitously
expressed by crossing Actin A3-GAL4 and UAS-dTrpA1 strains. (A–C) Thermal stimulation induced systemic contraction in second instar larvae.
Phenotypes were analyzed at 23uC and 40uC. The convulsion-like phenotype was observed at 40uC (B) and was reversible by decreasing the
temperature to 23uC (C) (Video S1). (D) Cumulative curve of responsive larvae to incubation temperature. Vertical axis indicates ratio of larvae
showing contractile phenotype during the observation time (10 min for each temperature; N = 9). (E–G) A convulsion-like phenotype was induced in
male adult moths at 40uC (F), and was reversible at 25uC (G) (Video S2). (H–J) Sexual behavior was reversibly controlled by thermal stimulation in the
male moths with dTrpA1 misexpression in the bombykol receptor neurons (Video S3). (K, L) Thermogenetic activation of the bombykol receptor
neurons induced pheromone orientation behavior. When the thermal source (heater) was turned on, male transgenic moths began wing-flapping,
orienting to the heat source, and attempting copulation, and approached the heat source (Video S4).
doi:10.1371/journal.pone.0113156.g003
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possibility is that the molecular environment surrounding the

dTrpA1 channels differs between developmental stages and

between tissues. In future studies using other GAL4 drivers for

activating a subset of cells using dTrpA1, careful examination of

activation temperature is needed.

Recently, the Bombyx ortholog of the TrpA1 channel

(BmTrpA1) was reported to open at temperatures above 21uC
and to function as a thermosensor to induce the transgenerational

diapause phenotype [41]. The molecular mechanisms that

determine the properties of temperature-dependent channel-

gating and the species differences that match the life history and

habitat of each insect remain to be elucidated in future studies.

In conclusion, the strains established in the present study will be

essential tools for investigating the relationships between neural

circuits and behavior in silkmoths. These strains will help to

elucidate the neural basis of sexual behavior in silkmoth.

Materials and Methods

Silkmoth strains
The non-diapausing B. mori strain, w1-pnd, was used to

generate transgenic silkmoths. The generated transgenic silkmoths

were crossed to diapausing strain white/c for several generations

and maintained. Larvae were reared on an artificial diet (Nihon

Nosan Kogyo, Yokohama, Japan) at 25uC under a 12-h light/12-h

dark photoperiod cycle. In the initial experiments using larvae and

silkmoths that ubiquitously express dTrpA1, larvae and adults

were reared and maintained at 18uC until use. After confirming

that the activation threshold of dTrpA1 in silkmoth was greater

than 30uC, larvae were reared at 25uC. Adult moths were used

within 0 to 4 days after eclosion.

Generation of transgenic silkmoths
pBacMCS-UAS-SV40 was generated by subcloning a BglII-

ApaI fragment containing the SV40 terminator amplified by the

polymerase chain reaction using the primers (forward: 59-

GCAGATCTTCAGCCATACCACATTTGTAGA-39 and re-

verse: 59-GCGGGCCCTGAGTTTGGACAAACCACAACT-

39) from pBac-UAS-SV40/3xP3EGFP into pBacMCS-UAS
[42]. For the UAS-mCD8GFP, UAS-GFP.nls, and UAS-dTrpA1
constructs, NotI-NotI polymerase chain reaction fragments con-

taining mCD8GFP, GFP.nls, and dTrpA1 were subcloned

immediately downstream from the UAS of pBacMCS-UAS-
SV40. The AscI-AscI fragment containing the fibroin L chain
(FibL) promoter, EGFP, and FibL 39UTR amplified by polymer-

ase chain reaction using the primers (forward: 59-

GCGGCGCGCCGGTACGGTTCGTAAAGTTCA-39 and re-

verse: 59-GCGGCGCGCCTATATGGTATTATCGAATAC-39)

was subcloned into these constructs to generate pBac[UAS-
mCD8GFP-SV40], pBac[UAS-GFPnls-SV40], and pBac[UAS-
dTrpA1-SV40], respectively (Figures S1, S2). pUAST-mCD8GFP
[37] and D. melanogaster carrying UAS-GFP.nls and UAS-
dTrpA1 (Bloomington Drosophila Stock Center, Bloomington, IN)

were used as gene sources. Transgenic silkmoths were generated

by the piggyBac-mediated germ-line transformation methods, as

described previously [27]. At least three independent lines were

generated and analyzed for each strain.

Immunohistochemistry
The brains of male and female silkmoths were dissected and

fixed in 4% paraformaldehyde/phosphate-buffered saline over-

night at 4uC. The brains were washed three times in phosphate-

buffered saline containing 0.3% TritonX-100 (PBTX), blocked in

7% normal donkey serum in PBTX for 3 h at room temperature,

and incubated in rabbit anti-GFP antibody (1/200; Clontech,

Mountain View, CA), anti-synapsin monoclonal antibody (1/100;

Developmental Studies Hybridoma Bank, Iowa City, IA), and 1%

normal donkey serum for 1 week at 4uC. After several washes in

PBTX, signals were developed by incubation with fluorescein

isothiocyanate-conjugated anti-rabbit IgG (1/200; Cappel, Auro-

ra, OH) and TexasRed-conjugated anti-mouse IgG (1/200;

Cappel) for two overnights at 4uC. The nuclear DNA was stained

with 49,6-diamidino-2-phenylindole (DAPI) and pictures were

obtained using the confocal microscope LSM5 (Carl Zeiss,

Germany).

Supporting Information

Figure S1 Flowchart of piggyBac vector construction.
Example of pBac[UAS-dTrp-SV40] vector construction. Other

vectors were constructed in this same manner.

(TIF)

Figure S2 Schematic diagrams of piggyBac vectors used
to generate transgenic silkmoths.
(TIF)

Video S1 Behavioral response of larvae to thermal
stimulation. Effectiveness of thermogenetics using dTrpA1 was

verified using second instar larvae. Larvae possessing both Actin
A3-GAL4 and UAS-dTrpA1 (top left), only Actin A3-GAL4 (top

right), only UAS-dTrpA1 (bottom left), and no transgenes (bottom

right), were analyzed. The ambient temperature was changed

from 23uC to 40uC.

(MP4)

Video S2 Behavioral response of adult male moths to
thermal stimulation. Effectiveness of ubiquitous dTrpA1

misexpression in male silkmoths was analyzed. This movie shows

only males possessing both Actin A3-GAL4 and UAS-dTrpA1.

(MP4)

Video S3 Thermogenetic activation of bombykol recep-
tor cells was sufficient to induce courtship behavior.
Male moths with dTrpA1 misexpression in the bombykol receptor

cells were warmed at 35uC. Thermogenetic activation was

sufficient for reversible induction of courtship behavior.

(MP4)

Video S4 Thermally-guided transgenic silkmoths can
precisely approach a thermal source. To examine whether

thermogenetic activation of sex pheromone receptor cells is

sufficient to induce female searching behavior, wild-type males

(control: left) and transgenic males (BmOR1.dTrpA1: right) were

stimulated with a carbon heater. Upon turning on the heater,

transgenic moths exhibited courtship behavior and approached

the heater.

(MP4)
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