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Superconductivity as Symmetry Breaking.

Classical Treatment
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The superconductivity is discussed from the viewpoint of the symmetry breaking in the framework of the classical
field theory. The classical Schrodinger field of an electron is assumed to be a Grassmann algebra. The interaction with a
radiation field is introduced through the gauge field theory. In the Nambu representation, the Lagrangian of the system is
invariant under the rotation about the z axis in the spin space, so that the Goldstone theorem suggests that the condensation
occurs on the x—y plane. In the absence of any external field, the system is invariant under the phase transformation. This
symmetry breaks due to the condensation, and then the massless Goldstone boson which is the supercurrent will follow.
The presence of the photon field, however the photon field itself becomes massive due to the gauge symmetry breaking

(Higgs phenomenon), which is the Messner effect.

Since the BCS microscopic theory was established in
1957, this field has progressed well. But it seems that we
are still at a distance from the deep understanding of super-
conductivity, when we think of the recent observations of
high temperature superconductors of which the mechanism
is not yet established. Before investigating such a specialized
subject, it will be summarized the theory of superconductiv-
ity from the viewpoints of the recent advance of theoretical
physics, especially from the gauge field theory.

The BCS theory begins with Cooper’s idea that, if the in-
teraction between electrons is attractive, however small it is,
the many electron system will move to a new ground state of
which the energy is lower than that of the former. Here we
have two aspects. The first problem is concerned with the
attractive interaction between electrons. In the ordinary BCS
superconductor, this attractive interaction is motivated by the
electron—phonon interaction, so that the critical temperature
becomes proportional to this phonon frequency. The critical
temperature is hard to be above 30 or 40 degrees. The high
temperature superconductors of copper oxide are apparently
not this case, so that theorists are seeking for a new mech-
anism of the attractive electron—electron interaction. This
viewpoint is important when we design new superconduct-
ing materials.

The other, more important aspect lies in the condensation
mechanism. The attractive force between electrons yields
pairs; the so-called Cooper pair is no longer a fermion, but
can rather be considered as a boson. We may say the new
ground state previously mentioned is due to the bose con-
densation. The neat way to take into account this pair for-
mation was invented by Nambu.>¥ In his representation, the
Lagrangian describing electron systems is invariant under the
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rotation around the ¢ axis, in the fictitious spin space. Then
the Neother theorem ensures the current conservation, espe-
cially the charge conservation. Thus the Goldstone theorem
suggests the condensation of electrons in the o!—o? space.
This advanced view really originated from Nambu’s work of
superconducting. In the present work these will be discussed
in the framework of the classical field theory. If the theory
is presented quantum mechanically from the beginning, we
fear that the story will be hindered by extra and unwanted
complexities. Since the superconductivity is a macroscopic
phenomenon, even if it be quantum mechanical in its origin,
the essential part of it can still be presented in classical terms.

The present treatment proceeds as follows: The prepara-
tive discussions up to introducing the photon field by means
of the gauge field theory are passed to the appendix. The clas-
sic electron field is manipulated in terms of the Grassmann
algebra. Since the superconductivity is essentially the sym-
metry breaking in the gauge invariance, it is crucial to build
up the gauge-invariant Lagrangian including the photon field.
The text begins by writing this gauge-invariant Lagrangian.
The Nambu representation, of which the original form is two-
dimensional is extended to four-dimensional. This does not
mean a relativistic treatment, but it makes manipulations con-
siderably easier. The superconducting mechanism in which
the condensation of the Cooper pairs arises and then is fol-
lowed by the supercurrent (the Goldstone boson) is clearly
shown in this representation. In addition to supercurrent,
the Meissner effect is interpreted as a Higgs phenomenon,
or the symmetry breaking of the electron field which makes
photon massive; in other words, the magnetic field obtains
the exponentally decaying term.

General

We start from the gauge-invariant total Lagrangian for the
many electron system:
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This is derived in the appendix. The notations are standard.
The terms, u and u™* are the classical electron field which
are the Grassmann variables (anti-commuting c-numbers)
and obey the Schrodinger equation. The photon field is
introduced by the use of the gauge field theory. The Coulomb

gauge is employed, so that the electro-magnetic fields are

transverse, and the longitudinal part of the electric field gives
the instantaneous electron—electron interaction.
In order to discuss the dynamical equation of the electron
field u, we need the Hamiltonian of this system.
Hamiltonian. The canonical momentum, 7T to u, is
defined by Eq. 1a in the appendix:

—
S @
Then the Hamiltonian density is
H=70u—L
= %(a,-u;; +ieAug)( Qg — ieAiug)}
+3 80 o) ~ SIEY ~ B, ()

where the coupling constant of the electron—electron inter-
action is assumed constant g (a delta-function type), since
in the system under consideration a ‘strong shielding effect
is expected. However the sign of g is not yet fixed. Then
the nilpotent character of the Grassmann functions requires
a new degree of freedom; then the spin coordinates are rea-
sonably introduced as a new degree of freedom, which are
designated by the lower indices, ¢ or ¢’ in the above equa-
tion. The spin indices will be later given by 1 and 2, which
refer to up and down respectively.

In the Absence of External Field. The Hamiltonian in
the absence of external field is thus written as

PR U
H= [ @rl- s u0uo + S 8isuo)uizuo)l, ()

where, to get the kinetic terms, the integration by parts was
carried out.

The equation of motion of the field is given by the use of the
Poisson bracket which will be called the classic commutator,
indicated by the suffix C. In our case, for the dynamical
variables, A and B described by the Grassmann variables, the
Poisson bracket is defined as

0OA OB 0OA OB
= Pudm  omou ®

Note: supposing the Lagrangian or Hamiltonian be written in
the normal order, the differentiations with respect to u® and
u are the left-handed and the right-handed differentiations,
respectively. Then the equation of motion of u, is obtained
as

[A7B]C

Superconductivity as Symmetry Breaking

iOou=[ug,Hlc
_Oug TH _Ouo HY
" Oug Our;,  Oul Ous
BN
_0H
T Ou,
1 2 *
=——0u+guglg g . (6)
2m
Rewriting, we have
1 *
iBotto + — Pug = GUoUG UG . @)
2m
Similarly
o,
— iOotyr + —— O Uy = gUg UGUe. ®)
©2m

The same results can be obtained from the Euler—Lagrange
equation by the use of the Lagrangian density, the integrand
in Eq. 1 in the absence of the radiation field.

The above Lagrangian and Hamiltonian are obviously in-
variant under the phase transformation (the global gauge
transformation) with a constant «,

u—ue "t —ute, )

Then the Neother theorem ensures the current conservation
as in Eq. A36 and the charge defined by

G= / Erufue, 10)
which is apparent from that
ihcoG = [G,H]c =0. an

Now we try to estimate the following commutators:

Oug Ouly  Ouly Oug
d .
= B / d3ru0ug
=Ug, (12)
and
* _Oupz 0G  Oug 0G
Lug, Gle Oug Oul,  Ouly Ouu
—
0
=—/d3-rugugﬂ
=—ug. (13)

These non-vanishing results imply the condensation of u, or
u} and that the elementary excitation of which the energy is
zero will arise with k= 0, called the Goldstone boson.

Nambu Formalism

Nambu presented a nice method by which the mechanism
of superconductivity was made clear.*® The original form
of the Nambu representation begins with adopting a spinor
representation:
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For the later investigations we note Pauli matrices,

1_ (0 1 [0 —i 3 (1 0
2=(10)7=(7 %) o6 1) 0o
and related ones,

ot = %(01 +io?), o = %(01 —io?). (16)

However, in the present investigation, we use an extended
representation which exhausts all the possible elements; its
usefulness will be clear in the later investigation:

123
o=| 2 |. (17
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The electron—electron interaction is described in the orig-
inal Nambu representation as

1 * s 1 *
5 8UgloligUg! zig(ﬁb 03¢)2 or
1 " I
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The former corresponds to the interaction between particle-
hole pairs useful for the usual Hartree—Fock calculation, but
the latter to the one between the Cooper pairs. In the present
work the latter is preferable. This is also rewritten in @
representation as

(18)
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Using the above, we can write the Lagrangian density in
Eq. 1 in a compact form:

Zom (2" D)5 - (D BT (D D (DS D DS D)
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It is seen that the Lagrangian is perfectly symmetrized in @
representation. This is one of the useful points of the four-
dimensional representation.

Thus the total Lagrangian in the absence of the external
field is '

F= %{i(di*aoqﬁ)
—ﬁ(&-di*)?(aiq)) — %g(di*fdi)(@*z_ D)}. (22)

The Euler-Lagrange equation given as

0.Z  oF
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yields the equation of motion,
iBo D+ ﬁfa,?ds - —;—g[2+¢-(45*2_ D) +Z P(P* T P)]=0.
(23)

This is the matrix equation, which is explicitly given in the
following:

Ui U uy 0
* *
. Uy 1 Y] —Uy 0 * ok 1
0o +—0; —guou —guiu, =0.
uy 2m | —uf & & 2
U Uy uy 0
(24)

These are of course the same as those obtained by the prim-
itive method. For example, the first line of the above can
be read: The particle u; couples the hole u through the
potential of the particle pair, uou;. This is the fundamental
scheme of the single particle dynamics in the superconduc-
tor, and suggests the necessity of the spinor representation of
Nambu.

The Hamiltonian formalism works as well. Let us define
the canonical momentum to & as

Lo i,

za(aoqb)zi(p : 25

Then we have the Hamiltonian density:

H =11, D)—F
= Z—I-m(a,»qﬁ*)z%a,-q)) + %g(qs*z:* DYP S D). (26)

The spatial integral of the above is the Hamiltonian, /Z The
partial integration of the first term in the second line is made
for the next manipulation. The equation of motion of @ thus
obtained as

i8® =[D,He
_0® 9H 90 HO _ 9H
T 0P AP P 0D AP+
=—%238,-245+%g[2+45(45*2_ D)+3~ H(D*Z D)]. (27)

This is identical to that in Eq. 24.
Symmetry Breaking

The transformation in Eq. 9 is now written as
¢ — e"i"s"‘(p o P e TP, (28)

These relations are easily verified by expanding the expo-
nential parts and, after matrix multiplication, summing up
terms again.

Thus we understand that the Nambu representation is
a spinor representation in the fictitious X space. The
Lagrangian Eq. 22 or Hamiltonian Eq. 26 is seen to be invari-
ant under the transformation Eq. 28, i.e., under the rotation
about the =* axis.

Let us remember the Neother thorem and the Goldstone
theorem. The invariant charge in Eq. 10 is now written by
the use of Eq. 20 as
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G= %/dz'r@*?@. (29)

It is instructive to estimate commutators'®
[P D, P* Plo=—2P*S' D),
("I &, D" Dl =2AD*S” D), (30)

of which the space integrals are the Goldstone commutators.
The non-vanishing results imply that the symmetry beaking
arises on the =*—=~ plane.

In order to take the above effects into account non-pertur-
batively, the terms

(DT D)+ n(P*Z” D)

are subtracted from and added to the Lagrangian to modify
the free Lagrangian. Then the Lagrangian density in Eq. 22
is rewritten as

=L+ T,
L =i( D" D) — -z-lr;(a,-qs*)z%a,-@ —{p(P* D)
+(P"E” D)},
Z'= —%g(czs*z* DN DI D)+ p(D S D)+ (P T D),

(GD

where p and 7 called gap energies characteristic in the theory
of superconductivity. They are expressed as

p=v+%f<cb*z* @), 77=v+%f(45*2+¢). (32)

where f (>0) is the electron—electron repulsion, (---) repre-
sents an average and v is the single particle interaction not
written explicitly in the original Lagrangin (the solid-state
physicists sometimes include this in the kinetic term). Pre-
cisely speaking, it is an attractive interaction between nuclei
and electrons. Two terms in the right hand side of Eq. 32
have almost canceling effect with each other, but we may
expect that a slightly attractive contribution will remain. If
we use Eqgs. 17 and 20, it is found that

(D*E™ ®) =2wou1), (P D)=2{uju;), (33)
so that p and 7 are interpreted as the mass terms for particle
and hole pairs, respectively. When u,u; and uF 15 will con-
dense to amount constant values, the dynamical equations in
Eq. 24 are no longer invariant for the phase transformation.
Here #° is thus regarded as the free part of Lagrangian in
which the Cooper pairs behave freely in the mean fields. One
may say this is a simple linearization process, and .#’ ex-
presses the electron correlation. However such an argument
is rather shallow.

In the quantum field theory, these parameters are deter-
mined under the condition that the Green’s function for the
effective Hamiltonian removes the first order self-energy
part.

In the present investigation, this linearization is performed
by determining the proper values of p and 7 such that the
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remaining correlation part is optimized in the following way.
The problem is: What happen in this case?
The correlation potential is rewritten as

V=—p®'=® — n®*S D+ %g(qﬁ*f DNP*Z™ D), (34)

then optimized with respect to 2* @ and Z~ @ respectively,

- .
Vo w1 * *— _
Vo 1

——6(2_ ) =—nd +§g¢ (X D)=0, (36)

where the Grassmann character of @ is used. If we want to
know precisely what is going onin our system, itis instructive
to investigate the procedures separately, i.e., first, the case of
p only active (say, the hole pairs condense) is considered. It
follows from Eq. 35 that

(S By = %’3 37

=a. (38)

One may be apt to confuse the relation Eq. 37 as a tautol-
ogy of Eq. 32. It is really not, but one should understand
the gap equation in the ordinary treatment. Let us under-
stand Eq. 37 to be the relation determining the condensation
of the hole pairs. The left hand side, (@*=~ @), is deter-
mined from p, which is the function of a tentative average,
(@*SP). Namely Eq. 37 is an integral equation. The sign
of (@*=~ @) should be positive, as indicated by Eq. 38,
and p is evaluated from the dynamical equation to be neg-
ative since it is a kind of stabilization energy, so that the
relation Eq. 38 determines the sign of g to be negative, as
BCS claimed.
Let us write:

(D' D) =d*+(P T DY, (39)

which means that the density of hole pair shifts to finite values
of &%, and (@*=~ @)’ is now physical, or is an operator (in
the quantum theory). Substituting the above expression into
Vin Eq. 34 with = 0 yields
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V= —p(¢*2+ D)+ %g(¢*2+¢)(@2_ D)
= —%ga2(45*2+d5)+ %g(d?*f D)d* +(P*Z D]
= 8(PT PN DS B, 40)

where Eq. 38 was used. Thus the bilinear term, (®*=* @)
has been completely lost, i.e., the particle-pair (@*=* @)
becomes massless (supercurrent). This is an interesting phe-
nomenon: if one field condenses, other fields perpendicular
to it become massless.”

In the case of 77 only active, the procedure proceeds simi-
larly. From Eq. 36 we obtain

(P D)o = 2?77 (41)

= 42)
Now pairs in the particle state condense. If we put
(PP =D +(DE DY, 43)
the pair (@*Z* @)’ is physical. Substituting this into Vyields
V=—n(®*Z” d)+ %g(@"?f D)NPE D)
= —%gaz(di*z_ D)+ %g[bz (DT D) (D D)
= %g(¢*2+ D) (D™=~ P). 44)

Thus the hole-pair (D*=~ @) has been lost, which becomes
massless.

If p and 7 are cooperatively active, substituting Egs. 38
and 42 in V of Eq. 34, we get immediately

V= lsdB e (TS RY (ST BY.  (45)

Namely the both pairs become massless, namely all of the
electrons bear supercurrent.

In the Presence of an External Field. The situation con-
siderably changes and we turn to the Higgs phenomena.*
We must deal with the gauge invariant Lagrangian in Egs.
21 or 1, and the preceding phase transformation is now in-
terpreted as a gauge transformation. We turn our attention to
the term involving A? in the above equations, and prefer the
original expression in Eq. 1 to that in Eq. 21:

ﬁ(&-u* +ieAu*)(Ou + ieAiu)
= —1—{—u*6-2u+ieA~ " O — ieQu” A} + iu*qu (46)
= 2m ' i AT o

Here the spin indices are omitted for simplicity and the total
derivative is neglected by imaging the surface integral. First
we are interested in ™ and u in the last term. These might
condense to amount, by combining Eqs. 33, 38, and 42,
approximately

W= W) = % 47

%7

Now
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W =ut— W) and W =u—(u) 48)

are physical. We thus observe that A? gains a constant coef-
ficient, %(u*)o(u)():%ab, in other words, the photon field
becomes massive. .

This treatment, which seems reasonable to explain the
Messner effect, in turn requires that ™ and u themselves
would be massive. Up to now we have limited our consider-
ation to the pair, i.e., the pair condensation or the supercur-
rent carried by the pair. In the present case dealing with the
Meissner effect we must investigate the individual particles.
The situation is now a little more complicated. From the
mixed terms, for example, A;u™0;u, we have %A,@iu which
would indicate the propagating field A; could turn to u, or
the massless gauge field A; eats the massive u to make itself
massive. This is qualitatively discussed as follows: Utilizing
the gauge-invariant character of the Lagrangian in Eq. 1, at
any space-time, we rotate continuously the whole system in
the fictitious spin space to a position such that only a special
combination, ca. u+u™ is non-vanishing, this being called
uy, and another combination, u, vanishes. Then, among
the terms in Eq. 46, the terms relating to the former remain
and the cross terms vanish. Imaging the term with mass not
written in Eq. 46, we can conclude that the photon field gets
mass, while on the other hand one of the Goldstone bosons
has disappeared.

Finally we want a rough estimation of the Meissner effect.
This phenomenon can be understood from the viewpoint of
a screening effect. The spatial part of Eq. 24 in the appendix
is written as

OF;=.9 or VxB=]. 49)

Assuming that almost all the electrons are condensed, or that
u and u™ are rigid, we can neglect the spatial derivatives of
them:

&2
V xB= —ﬁAns7 (50)

where ny=ab/2 in the present treatment. Operating VX on
both sides, gives (note V-A=0)

2 e
VB =" nB. (s1)
mc

For simplicity, the one-dimensional variation in the half-
plane being considered x>0, the solution of the form

Hg

i 271712
B =Bge , A=|— (52)

is obtained. Assuming n,~10?*/cm? we have a penetration
depth, 1 ~10~% cm. This is the Meissner effect.

Conclusion

In the standard textbooks of many-body problems, we find
the statement that the superconductivity is a typical exam-
ple of the gauge-symmetry breaking, but it is hard to find a
satisfactory explanation for this. The discussions of super-
conductivity from this viewpoint have been done quantum
mechanically, for example, by Leplae at al.'” and Cremer.'?
However we believe the essential part is very simple, as
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stated in the present work. The concept of symmetry break-
ing is closely related to the recently advanced gauge field
theory, so that the superconductivity can be re-viewed as an
interesting example in this region. We have pointed out that
thé appearance of a supercurrent is not the Bose conden-
sation itself, but a cooperative phenomenon which follows
from the Bose condensation. The Meissner effect is directly
related to the Bose condensation. As has been mentioned
in the introduction, the superconductivity is a macroscopic
quantum phenomenon. Even if we treat this classically, the
so-called quantum mechanical effect is almost taken into
account through the Grassmann character of the classical
electron field. However the pure quantum mechanical effect
arised from the commutation relation is not yet involved.

According to the author’s opinion, the fundamental struc-
ture of the theory of supercinductivity has been already well
established, and need not to be altered even after the recent
discovery of the high-temperature superconductor.'® The
critical temperature seems to mainly depend on the chem-
ical structure of the material in question.

The author remembers the delightful seminar on the
many-body problems with excellent professors: S. Hori,
E. Yamada, and M. Kimura. M. Kimura once suggested
the four-dimensional Nambu representation from which the
present idea started, then E. Yamada gave a effective com-
ment about the phase of one of the elements.

Appendix

Here we prepare the preliminary treatments for the text.

Lagrangian.  The Lagrangian density (sometimes we call it
Lagrangian without confusion) of the Schrodiger field for electron
is given as

P i Do) — 2—111—(31-14*)(a,-u), (A1)

P i) — 5 (OO, (A2)

7= %i{u*aou o) — ﬁ(aiu*)(a,ju), (A3)

where the units fi=c=1 are used, and p=90/0r. These are differ-
ent from one another by the total derivative, i8o(u™ ), which does
not affect the resulting equation of motion. We can use any one
for making mathematics easier. Throughout the present work, the
summation convention for repeated indices is used. In Egs. A1, A2,
and A3 we assume u and ™ are Grassmann odds,”” since the clas-
sical version of the anticommuting fermion operator is a Grassmann
variable,” i.e., the anti-commuting c-number. Hereafter the greek
suffix 4=0,1,2,3 and the latin suffix i=1,2,3.
From the Euler-Lagrange equation,

0.7 (A4
_ 2 4
y (a (aﬂu*)) oz, (A%)
we can obtain the Schrédinger equation:
, 1 »
iGou+ —0;u=0. (AS)
2m

In order to avoid confusion arisen from the anti-commuting property
of Grassmann algebra, we set the manipulation rules as follows:
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First, let us put fields in the normal order, i.e., the starred fields are
left followed by the unstarred ones. Next, unless otherwise stated,
the functional differentiation with respect to the starred field is the
left differentiation, while the differentiation by the unstarred field is
the right differentiation. Notice that differentiation through a field
requires an additional minus sign for each step. The differentiation
with respect to u leads

— iOou” + —l—ﬁizu* =0. (A6)
2m

Gange Transformation.*® Letus try the gauge transformation,
u—ue”,  u—ute, (A7)

where A is a function of the space-time x;,. For infinitesimal

transformations, the variations are

6u=—iAu,b Sut =iAu", (A8)
and
S(0uu™) =iA Ouu™) +iA QA u”. (A10)
Then varying the Lagrangian,
0L
8.L= B —ou 8(6,; )(5(814)
« 0L 0F
+6u” Em —+3(0u )8(3 ) (Al1)

and using the Euler-Lagrange Eq. A4 for the first and third terms,
we have

0L , . 0F
0L= 3,4 m(*l/‘ u)+ a(a'uu)

[—iA (Buu) — i(Bu A )ul + (u — u™)

, 0z 8.7
=—iAdy (————a(aﬂu)u) +iA —8(8,4 )8yu
0L 0L *
_ A%;u_) z(a,,A)a(a )u+(u—>u ), (Al2)

where the first term that is the total differential will vanish through
the surface integration, and the second and third terms cancel with
each other, with the last term remaining. Thus we obtain

0z

—i(OuA) s u+i(OuA)u” (A13)

0L
O(Ouu)

Then using the explicit form of the Lagrangian for the
Schrédinger field in Eqs. A1, A2, and A3 yields

O0.F= oM u+(B6:A )Z—Irﬁ [0 u — u” (iOu)]

=OuAMy, (A14)
where
Jo=u"u, (A15)
Ji = =[O — 1" (D). (A16)
2m
And then J, will satisfy the continuity equation,
Oudy =0Jo— 0:J; =0 (A17)

It is stressed that the result Eq. A14 suggests that the Lagrangian
Eqgs. Al, A2, and A3 is not invariant under the gauge transformation.
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In order to recover the invariance character of Lagrangian, we
introduce a field A, which is a commuting c-number function of
the space-time, and write the interaction Lagrangian as

e% = *eJ”AIu
=—eu*uly + i% [(Oi™u — u™ OulA;, (A18)
where the coupling constant e is introduced only for dimensional
adjustment and therefore at this step it need not be the electron
charge. k
As usual we carry out the gauge transformation for Ay as,
1
Ay —>AM+%8,¢A, 0Ay = gaﬂA, (A19)
followed by
5$ = —e(éjlu)A‘u — J‘ualuA -

The second term cancels the previous 6. in Eq. A14, but we have
the first term still remain, which should be removed. To this end
OJy is examined:

(A20)

SJo=0W ) =(Suu+u"du

=iAdu"u—iAu u=0, (A21)
and
8Ji=-——8 (O™ Yu — u™ Oiu]
2m
= 1 G u, (A22)
m
where Eq. A8 was used. Thus
S L+6.F =— %eAi(a,-A Y u, (A23)

which will be canceled by introducing the additional Lagrangian,
4,

B=—Latty, (A24)
2m
The manipulation
¢ &
85 =—"—A;8Au"u=—A(0;A)u"u, (A25)
m m
recovers the invariant character of the Lagrangian:
0L+ 0L +0.%4=0. (A26)

Referring to the field Ay, we prepare the gauge-invariant
Lagrangian,
1
H=—1Fu,

i (A27)

with
Fluv = a,uAv - avA‘u . (A28)

Thus we obtain the total Lagrangian,

L =L+ A+ L+

=i(u*30u—3ou* -u)reu” qu—L(&-u*)(&uHAJk—LeZA,gu*u
2 2m 2m

1
_ZF%W

= %(u* Oou— Oou”™ 1) +eu” uAo — ﬁ (O™ +ieAiu™ ) (O — ieAu)

_lp

4" #
(A29)

Bull. Chem. Soc. Jpn., 71, No. 1 (1998) 55

The term eu*uAo in the above is a source of the instantaneous
electron—electron interaction (ca. 1/r), under the Coulomb gauge.
The term,

D; = 0; — ieA; (A30)

is called the covariant differentiation, since 6(D;), behaves as u
does. It is seen that, by the use of Egs. A9, A10, and A19,

O(DHu=056(8; — ieA)u
=0 (Ou) — ie(5A)u — ieAi(du)
=—iA(0; — ieA)u

=—iA (D). (A31)

In the course of the present procedure, the inhomogeneous
Maxwell equations are obtained by varying % with A;. Namely,
the Euler-Lagrange equation

0.7 0L
— - ——| =0 A32
8Au [a(aVAﬂ)] ’ (A32)
gives
OvFuv=u"u+ ii [(Duw®Yu — u™* (D))
2m
=eTy (A33)
where .7}, are, corresponding to J, in Eqs. A15 and A16,
Fo= u'u s (A34)
Fi=—i L[(D,-u*)u — u" (D). (A35)
2m
Then it is obvious that
uTu =0, (A36)

which means the covariant current conservation in the presence of
electromagnetic field.

Coulomb Gauge.”  We have not yet mentioned about the
gauge of A,. Hereafter the Coulomb gauge is employed, which
will be done by a suitable choice of A in Eq. A19. First of all,
since the Lagrangian does not contain dyAo, we regard Ao as a
dependent variable which will be determined later. Then we impose
the transversality condition on A:

V-A=0, namely A=A" (A37)
Noting that
0 E. E  Es
Fuy= :2 33 "%3 _g? , (A38)

—E3; —By B 0
we can come back to the usual Maxell equations. When u=0,

Eq. A33 is simply

V-E=e%. (A39)

Since

E=—-VAo— DA,
the Eq. A40 becomes, due to the transversality condition of A,

(A40)

VA = —eF5. (Ad1)

In the Coulomb gauge, we regard Ap as a function of p, given by a
solution of the Laplace equation,

ev%(x/.l) 3.7

Ao(xu)=/mr—_—r7—|d r, (A42)
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since

21 g r—r). (A43)
r=r]
Let us decompose
E=E"+E' (Ad44)
in which the transverse component is
E" = -8A (A45)
and the longitudinal component is
E'=-VA, (A46)

Clearly E'is irrotational (V x E'=0) and divergence-free. The partial
integration yields
/ E“-E'd’r = / BoA-VAydr =0, (A47)

namely the cross term vanishes, so that, without changing the re-
sulting Lagrangian

L= / Zdr, (A48)
we obtain
1 1
B=— Fy=5E —B)
= %[(E")Z +(EY —BY. (A49)
Furthermore
/ (E'Ydr= / (VAo)-(VA))Er
= / V-(AoVAQ)dr — / AoVAdr
= / FeAod’r (AS50)

where in the final step Eq. A42 was used. Then using Eq. A45, we
obtain

L3 = —%/dSI'FzV

_ [l oo 1/ 3 / 3 1 Fo(r,%0) Fo(r’, x0)
= [@rsiEy - B [&r e

(AS1)

Superconductivity as Symmetry Breaking

Here it is recognized that the electron—electron interaction buried
in E has appeared with the factor % We thus obtain the total
Lagrangian as

L= /d3r{%(u* Oou — Oou™ +u) — %(8,-14* +ieAu" YO —ieAu)}

—l/d3r/d3r'+ x ™ (r, xo)ulr,xo)u™ (', xo)ul’ ,xo)
2 zT|r—r'

4 I
+ / d3r%[(E")2—B2]. (A52)
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