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On the holomorphic automorphism
group of a generalized complex ellipsoid

Akio KODAMA

Abstract

In this paper, we completely determine the structure of the holomor-
phic automorphism group of a generalized complex ellipsoid. This is a
natural generalization of a result due to Landucci. Also this gives an
affirmative answer to an open problem posed by Jarnicki and Pflug.
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1 Introduction

In this paper we study the structure of the holomorphic automorphism group
of a generalized complex ellipsoid

E(ng,...,nK;Do,- -, PK) i=

K
{(z""-»zm € 0™ x - x O3 3 a7 < 1}

k=0

in CN = C" x...x C"%, where n, ...,nx are positive integers and po, . . ., px
are positive real numbers, and N = ng+---+ng. In general this domain is not
geometrically convex and its boundary is not smooth. In the special case where
all the pj, = 1, this domain reduces to the unit ball BY in C" and the structure
of its holomorphic automorphism group Aut(BY) is well-known (cf. [7]). Also,
it is known that E(no,...,nk;po,.-.,Pk) is homogeneous if and only if pi, = 1
for all k (cf. [3], [6], [8]).

For convenience and with no loss of generality, in the following we will always
assume that pg = 1, p1,...,px # 1, n1,...,ng > 0. Moreover, after relabel-
ing the indices, if necessary, we may assume that there exist positive integers
ki,...,ks such that

Bitethy = K,
Ny 4-tkj_ 141 = * 0" = My 4tk 1<5<s,
Ny ool < Myophy 41, 1S J <5 —1,



where we put pg = 0.
Now let us choose an arbitrary generalized complex ellipsoid £ in CV and
write it in the form

(*) SZE(n07n17"'anK;lvplv"'apK)'

Here it is understood that 1 does not appear if ng = 0, and also this domain is
the unit ball B™ in C" = CV if K = 0.

The purpose of this paper is to establish the following theorem that gives a
full description of the holomorphic automorphism group of generalized complex
ellipsoids:

THEOREM Let £ be the generalized complex ellipsoid appearing in (x). Then
the holomorphic automorphism group Aut(E) of £ consists of all transformations

30:(207217"'721()'—>(§0721a"'7ZK)

of the form
Zo = H(z0), Zr = (20)Ur2o), 1<k<K

(think of zy as column vectors), where
(1) H € Aut(B™),

(2) vk(20) are nowhere vanishing holomorphic functions on B™ defined by

1 2 1/2Pk
Yi(z0) = <(|a||)2> , a=H"'(0) € Bm™,

1 —(zp,a)

where (-,-) denotes the standard Hermitian inner product on C™ and
0 € B™ s the origin of C™°,

(3) Ux € U(nyg), the unitary group of degree ny, and
(4) o is a permutation of {1,..., K} satisfying the following:

{0(/€1++kj,1+1)7,0(]€1++kj)} =
{ki+-+kji+1,.. k4 + ki), 1<j<s,

and o(p) = v can only happen when p, = p,.

In particular, considering the special case where ny =1 and 2 < p; € N for
all k, we obtain a natural generalization of Landucci [4; Corollary to Theorem)].
This also gives an affirmative answer to an open problem posed in Jarnicki and
Pflug [2; Remark 2.5.11].

In the next Section 2 we prove the Theorem and, in Section 3, we give a
concrete example illustrating our result.



2 Proof of the Theorem

As mentioned in the introduction, the structure of the holomorphic automor-
phism group of the unit ball BY in C¥ is well-known. So we prove the Theorem
in the case where K > 1.

For the given generalized complex ellipsoid £ in CY = C™ x ... x C"¥, let
us consider the subset G of Aut(£) consisting of all elements

®: (ZO7Z1a"'7ZK> | (207217---7ZK>
having the form
(21) 20 = H(ZO), ék = ’yk(Zo)Uka, 1 S k S K,

where H € Aut(B™), U, € U(ny) and ~v,(z0) are the same objects appearing
in the statement of the Theorem. Then one can see that G is a connected Lie
subgroup of the Lie group Aut(£) of dimension

K
d(&) :=n3 + 2ng + Z ng.
k=1

On the other hand, we know from Naruki [6] and Sunada [8] that Aut(£) is a
real Lie group of dimension d(£); hence, G is exactly the identity component of
Aut(€). In particular, G is a normal subgroup of Aut(£).

By making use of the concrete description in (2.1) of elements of G, it is an
easy matter to check that the G-orbit passing through the origin o € £ ¢ CN
is of lowest dimension in the set of all G-orbits, i.e.,

dim(G - 0) < dim(G - p) for any point p € E\ G - o.
Hence, recalling the normality of G in Aut(£), we obtain that
(2.2) g-(G-0)=G-0=1{(20,0,...,0) € C"™ x C™ x --- x C"¥; ||z] < 1}

for each element g € Aut(€). This combined with a well-known theorem of H.
Cartan (cf. [5; p. 67] assures us that every element g € Aut(€) can be expressed
as g = Yy - £y, where 1, € G and {, is a linear automorphism of £, that is, a
non-singular linear transformation of C"V leaving £ invariant. Hence, the proof
of our Theorem is now reduced to showing the following:

LEMMA Ewvery linear automorphism L : (zo,21,...,2K) — (Z0,21,...,2K)
of €& can be written in the form

(2.3) Zo = Azy, Zk = Ukzgy, 1< k<K,

where A € U(ng), Uy, € U(ng) and o is a permutation of {1,..., K} satisfying
the same condition (4) as in the Theorem.

Proof. We will show this Lemma by generalizing the argument used in the
proofs of [4; Proposition 2.1] and [1; Lemma 8.5.3]. It is clear that the linear



transformation L of CV written in the form (2.3) induces a linear automorphism
of £. So, taking an arbitrary linear automorphism L of £, we would like to show
that L can be described as in (2.3). To this end, we define the coordinate vector
subspaces Vi, Wy of CV by setting

Vi = {(20,21,- -, 2x) €CN 3 2, =0, j £k},
Wk:{(Z07Z13---7ZK)€CN;Zk:0}

for 0 < k < K; accordingly ﬂ#k W; =V, for 0 < k < K. Here, recalling our
assumption that K > 1 and all the p; # 1, we put

W = {(20,21,...,2) €CN ||lza| -+ |lzx || =0} and W =W NJE,

where O€ stands for the boundary of £. Then, by routine computations it follows
that 0 \ W is just the set consisting of all C*-smooth strongly pseudoconvex
boundary points of &£; consequently, L(WW) = W. This, combined with the
facts that W is invariant under the dilations 6, : z + rz (r > 0) on CV and
L(5,(2)) = 6,.(L(2)) on CV, yields at once that L(W) = W.

With respect to the coordinate system (zg,z21,...,2x) in CV, the linear
automorphism L can be expressed as L = (Lo, L1, ..., Lk). Recall here the fact
n (2.2). It then follows that

e cach Ly (1 < k < K) does not depend on the variable 2o,
and

e the restriction Loy, : Vo — Vo of Lo to Vy gives rise to a holomorphic auto-
morphism of the unit ball B°; and hence, it has to be a unitary transformation
of VO = Cno,

Therefore, one may assume that L has the form:
L(Z) = (ZO + 14(,217 e aZK)yLl(Zh e 7ZK), e ;LK(Zla SN 7ZK))

for z = (20, 21, . ..,2x) € CV, where A, L (1 < k < K) are all linear mappings.
Now we will proceed in steps.

1) There exists a permutation T of {1,..., K} such that L,g,)(Wy) = {0}

for every 1 < k < K. In particular, we have L(Wy) C W) for 1 <k < K.

Indeed, let 1 < k < K and assume that L;(W}) # {0} for all j,1 < j < K.
Then, considering the proper complex analytic subset A of W}, consisting of all
points z € W, with L;(z) = 0 for some j, 1 < j < K, we have

IL1(z%)] - [|[Lr(2°)|| > 0 for any point z° € Wy \ A.

However, since Wy, C W for every 1 < k < K and L(W) = W, this is absurd.
Therefore we have shown that, for every 1 < k < K, there exists at least one
integer j, 1 < j < K, such that L;(Wj) = {0}. Let us fix, once and for all, the
correspondence 7 : k — j. Then this 7 is injective. Indeed, assume contrarily
that 7(k) = 7(¢) =: jo for some k, ¢ with 1 < k # ¢ < K. Then, since CV =



Wy, + Wy, the sum of the vector subspaces W, and W;, and since L : CV — CV
is a linear isomorphism, we obtain a contradiction: C = L(CY) c W), S cN.
As a result, 7 is a permutation of {1,..., K} satisfying the condition required
in 1).

2) Let T be the permutation of {1,..., K} appearing in 1). Then we have

{T(kl+~-~+k’j,1—l—l),...,T(k‘l—l—“-—i-kj)} =
{ki+- - 4kji1+1,.. b+ 4k}, 1<j<s,

where we put kg = 0. Indeed, for every 1 < k < K, we have

LV = () L) C L)) N W

0<j<K,j#k 1<G<K,j#k
by 1); consequently,
(2.4) Lyay(Vk) CVey and Lp (Vi) ={0}, 1<j<K,j#k.

From now on, putting M = ny + --- + ng, we identify in the obvious way
CM = C™ x ... x C™¥ with the coordinate vector subspace Wy of CV. Then
the linear transformation L := (Ly,..., LK) : CM — CM induced by L is non-
singular; and hence, we see that L) (Vi) = Vy (1) in (2.4) and ny, = n, (). This,
together with the ordering among the integers ni,...,nx as in the previous
section, guarantees that 7 has to satisfy the condition in 2), as desired.

Let 0 := 7! be the inverse of 7 in 1). Then, by (2.4) L can be written in
the form

(2.5) L(Z) = (ZO + A(Zl, sy ZK), Ulzg(l), ey UKZg(K))

for z = (20,21,...,2K) € CV (think of 2z as column vectors), where Uy, are
non-singular nj x ng matrices for 1 < k < K. Here we wish to verify the
following:

3) For every 1 < k < K, we have Uy, € U(ng). To show this, we first
assert that A (z1,...,2x) = 0in (2.5). Indeed, the fact L(OE) = O yields that

K
20 + A (21, 26) 1P+ D Uz I =1, 2 € OE.
k=1
For any point z = (29, 21,...,2K) € O, write zg = (zé,...7zg°). Then, by

taking a suitable point Zy of the form

20:(51265'-'a€n0230)5 §j€Ca |§]|:1a 1S]§n07

we see that Re(zo, A (21,...,2K)) = 0; and hence,
K K

(26) =D Nzl + 1Az, 26) 12+ D Ukzoy I =0, 2 € OE.
k=1 k=1



Notice that this equality holds also for any point

K
(21,..,25) € CM with > flz ] <1,
k=1
because one can always find a point zy € C™ such that (zo,21,...,2K) € OE.
Now, in order to prove that A (z1,...,zx) = 0, take an arbitrary point z; € C™

with [|z1]| = 1 and set j = o~ 1(1), for simplicity. Then
—2?P1 4 22| A (21,0,...,0) |2 + 2% || Uz ||?P =0, 0<z<1.

Since all the pg # 1, this says that A (21,0,...,0) = 0. Analogously, for every

2 < k < K one can show that A(0,...,0,2,0,...,0) = 0 for z; € C™ with

|zx|| = 1. Obviously this means that A (z1,...,2x) =0 on CM, as asserted.
Next, put j = o(k) for a given k, 1 < k < K. It then follows from (2.6) that

[Ukzjl| =1 forall 2 € Vj, [lz;]] = 15

which implies that Uy € U(ny) for every 1 < k < K; verifying the assertion 3).

Summarizing the above, we have shown that L has the form
L(z) = (zo, Ui2o(1),- - -5 UKzU(K)), z=(20,21,...,25) € CN,

where Uy, € U(ng), 1 <k < K, and o is a permutation of {1,..., K} satisfying
the condition:

{U(kl+...+1€j,1+1)7...,o(k1+~--+k:j)} =
{k’l+"'+k3j—1+1,""k1+”'+kj}’ I<j<s.

Therefore, in order to complete the proof of the Lemma, we have only to show
the following assertion:

4) Let ki+---+kj_1+1 <p, v <ki+---+k;j, 1 <j<s. Theno(p) =v
can only happen when p, = p,. We verify this only in the case where j = 1,
since the verification in the general case is almost identical. Moreover, once the
proof of 4) for k; > 4 is accomplished, then that for 1 < k; < 3 follows by
a simple modification of it. Taking these into account, we will carry out the
proof of 4) in the case where j = 1 and k1 > 4. Clearly o(u) = v is possible
when p, = p,. So, assuming that o(p) = v for 1 < p, v < ki, pp # v, we wish
to prove that p, = p,. For this purpose, we first remark the following: Since
L(0€) = 9&, with exactly the same argument as in the proof of 3), we can see
that

Pu /Pu

(2.7) R EAS N I W (£ =1

1<k<ki, k#p 1< <k, j#v



for any point

(217'"7ZV—172V+17"'7Z1€1) with Z ||Zj||2pj <1
1<j<ki,j#v

Now, since k1 > 4, we can always choose an integer m, 1 < m < ki, in such a
way that

m#u, v and j:=o(m)#p, v
Then, putting zy = 0 for £ # j in (2.7), we obtain that

2512 4+ (1=l ]2)" ™ =1, izl < 1.
Accordingly, by taking the points zz¢ with 0 < x <1, ||2¢]| = 1, we have
g g ¥ i
2P g (1= )PP~ g<z <.

A simple computation shows that this can only happen when p,, = p; and
P = py; completing the proof of the Lemma. (]

Hence we have completed the proof of our Theorem.

3 An example

As a concrete example illustrating our result, we here give the following gener-
alized complex ellipsoid £ in C'! defined by

&= {(z,w17w2,w3,w4,w5,w6) ECXxCxCxCxC?xC?xC?;
|27 + [w1|*? + Jwa|* + [ws [ + [[wa]|* + lws||* + [Jws]|* < 1 }
So, with the notation of the introduction, we have:

K=6, ni=no=ng=1<ng=n5=2<ng=3, k1 =3, ko =2, kz3=1
and &=FE(1,1,1,1,2,2,3; 1,1/3,3/2,1/3,3/2,3/2,3/2).

And our Theorem tells us that every element ¢ of Aut(€) can be described as

zZ—a

ot = (&

e p(2)* 21wy 1y, p(2) 2 €20 2)5 p(2)¥ 2 E3w0 3),

p(2) P Uswy(ay, p(2)PUswosy, p(2)*Uswos) )

for u = (z, w1, we, w3, wy, w5, ws) € &, where

a, &, &1, &2, §3 € C with |af <1, [§] = [&] = |&] = |&] =1,
1—|al?

Usp, Us € U(2), Us € U3), p(z) = ——,
(1 — Ezz)

2| < 1,



and o is a permutation of {1,...,6} such that

{o(1),0(3)} = {1,3}, {0(4),0(5)} = {4,5}, 0(2) =2, o(6) =6.

Therefore we conclude that Aut(€) is a 23-dimensional Lie group with four
connected components.
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