（Z）－Selective enol triflation of α－alkoxyacetoaldehydes：Application to synthesis of（Z）－allylic alcohols via cross－coupling reaction and［1，2］－wittig rearrangement

メタデータ	言語：eng
	出版者：
	公開日：2017－10－03
	キーワード（Ja）：
	キーワード（En）：
	作成者：
	メールアドレス：
	所属：
URL	https：／／doi．org／10．24517／00010748

This work is licensed under a Creative Commons Attribution－NonCommercial－ShareAlike 3.0 International License．

(Z)-Selective Enol Triflation of α-Alkoxyacetoaldehydes:

Application to Synthesis of (\boldsymbol{Z})-Allylic Alcohols via Cross-Coupling Reaction and [1,2]-Wittig Rearrangement

Fumiya Kurosawa, Takeo Nakano, Takahiro Soeta, Kohei Endo, and Yutaka Ukaji*
Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192
E-mail:ukaji@staff.kanazawa-u.ac.jp

Abstract

The stereoselective transformation of α-alkoxyacetoaldehydes to the corresponding (Z)-vinyl triflates was achieved by treatment with phenyl triflimide and DBU. The stereochemistry was explained by the "syn-effect," which was attributed primarily to an $\sigma \rightarrow \pi^{*}$ interaction. The β alkoxy vinyl triflates obtained were applied to the stereoselective synthesis of structurally diverse (Z)-allylic alcohols via transition metal-catalyzed cross-coupling reaction and [1,2]-Wittig rearrangement.

INTRODUCTION

Stereoselective synthesis of alkenes has been studied extensively. The (Z)-alkenes, especially, are versatile two-carbon units present in many biologically active compounds and are useful starting materials for chemical transformations, although their preparation is usually more difficult than that for the E-isomers. One reason is that (Z)-alkenes are generally thermodynamically less stable. ${ }^{1}$

Cross-coupling reaction is quite useful method to prepare alkenes stereospecifically from the corresponding vinyl halides. Vinyl triflates have been also used as synthetic intermediates toward transition metal-mediated cross-coupling reactions in addition to vinyl cation and alkylidene carbene precursors. ${ }^{2,3,4}$ For cross-coupling reactions, stereoselective preparation of (Z)-vinyl triflates is essential for the subsequent transformation to (Z)-alkenes. For 1,3-dicarbonyl compounds, Z-selective preparation of vinyl triflates was achieved. ${ }^{2 d, 5}$ Chelation-controlled preparation of (Z)vinyl triflates from α-alkoxy ketones also has been reported. ${ }^{6}$ Recently, Cu -catalyzed electrophilic vinyl triflation of alkynes was reported to afford (Z)-triflates. ${ }^{7}$ For preparation of vinyl triflates from aldehydes, a mixture of (Z) - and (E)-vinyl triflates was formed through the use of triflic anhydride ($\mathrm{Tf}_{2} \mathrm{O}$) and 4-methyl-2,6-(di-t-butyl)pyridine (DTBMP). ${ }^{8}$ Alternatively, trimethylsilyl enol ethers could be converted to vinyl triflates by treatment with methyllithium and $\mathrm{Tf}_{2} \mathrm{O},{ }^{9}$ however, (Z)selective preparation of trimethylsilyl enol ethers from an aldehyde is then an issue. ${ }^{10}$

Previously, a series of isomerization reactions and elimination reactions using a base were performed to investigate the stereochemistry of the isomerized and eliminated products. The results showed that sterically unfavorable (Z)-alkenes were formed predominantly. These results were explained by the action of a "syn-effect," ${ }^{11}$ caused primarily by $\sigma \rightarrow \pi^{*}$ interactions. ${ }^{12,13}$ Oxygensubstituted substrates always produced excellent Z-selectivities. For example, conformation $\mathbf{T}_{\mathbf{1}}$ was preferred to conformation \mathbf{T}_{2} during deprotonation of α-alkoxyacetoaldehyde due to the low donor ability of the C-O bond compared with the C-H bond, affording the corresponding (Z)-vinyl ethers predominantly as shown in Scheme 1. ${ }^{12 \mathrm{~b}}$

Scheme 1. Transition State Model for Deprotonation of α-Alkoxyacetoaldehydes in the Presence of Triisopropylsilyl Triflate $\left(E=\boldsymbol{i}-\mathrm{Pr}_{3} \mathbf{S i}, \mathbf{X}=\mathbf{O T f}\right)^{12 b}$

Furthermore, [1,2]-Wittig rearrangement ${ }^{14}$ of the resulting (Z)-vinyl ethers proceeded after the initial 1,4-eliminative ring opening reaction of vinyl oxiranes and 1,4-elimination of allylic sulfones and allylic benzoates to give (2Z)-2,4-pentadien-1-ol derivatives in a highly stereoselective manner (Scheme 2). ${ }^{12 \mathrm{c}, 12 e, 12 \mathrm{f}}$ These results demonstrate that the greatest Z-selectivity based on the "syneffect" for oxygen-substituted substrates could be applied to stereoselective $\mathrm{C}-\mathrm{C}$ bond formation.

Scheme 2. Previous Example of Stereoselective Transformation by the Combination of "SynEffect" and [1,2]-Wittig Rearrangement ${ }^{12 f}$

Investigation of isomerization reactions revealed that α-alkoxyacetoaldehydes were converted to the corresponding (Z)- β-alkoxy silyl enol ethers with excellent Z-selectivity. ${ }^{12 \mathrm{~b}, 15}$ Thus, a (Z)- β alkoxy vinyl triflate could be prepared if the enolate is trapped by a triflic-cationic species instead of a silyl cation. In addition, the resulting (Z)-vinyl triflate should be accompanied by sequential stereoselective $\mathrm{C}-\mathrm{C}$ bond formation via cross-coupling reaction in combination with [1,2]-Wittig rearrangement (Scheme 3). The present report describes the stereoselective enol triflation of α alkoxyacetoaldehydes, followed by cross-coupling reaction and [1,2]-Wittig rearrangement to afford various (Z)-allylic alcohols stereoselectively.

Scheme 3. Strategy toward Synthesis of (Z)-Allylic Alcohols

RESULTS AND DISCUSSION

First, the enol triflation reaction of (α-benzyloxy)acetoaldehyde (1A) using triflic anhydride ($\mathrm{Tf}_{2} \mathrm{O}$) (1.2 equiv) and 2,6-di-tert-butyl-4-methylpyridine (DTBMP) was conducted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under reflux conditions for $2 \mathrm{~d} .{ }^{8 \mathrm{c}}$ However, very little of the desired vinyl triflate was obtained, while 48% of $\mathbf{1 A}$
was recovered (Table 1, Entry 1). The desired vinyl triflate also was not obtained when DBU (2.0 equiv) was used as the base in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt (Entry 2). When phenyl triflimide $\left(\mathrm{PhNTf}_{2}\right)$ was used instead of $\mathrm{Tf}_{2} \mathrm{O},{ }^{16}$ the reaction proceeded rapidly. The stereoselectivity of the resulting vinyl triflate was high ($Z / E=95 / 5$) (Entry 3). DBU was chosen as the base because no reaction occurred using other bases such as DTBMP and $\mathrm{Et}_{3} \mathrm{~N}$. Other β-benzyloxy-type vinyl triflates 2B-2D were also obtained stereoselectively from the corresponding α-alkoxyacetoaldehydes 1B-1D (Entries 4-6). Furthermore, α-(propargyloxy)acetoaldehyde 1E could be stereoselectively transformed into the corresponding vinyl triflate 2E stereoselectively (Entry 7); using 2.5 equiv of DBU improved the chemical yield (Entry 8).

Table 1. Enol Triflation of α-Alkoxyacetoaldehydes 1

	 1						
Entry	R ${ }^{1}$		triflating reagent	base	Time	Yield/\%	Z / E^{a}
1^{b}	Ph	A	$\mathrm{Tf}_{2} \mathrm{O}$	DTBMP	2 d	trace	--
2			$\mathrm{Tf}_{2} \mathrm{O}$	DBU	12 h	--	--
3			PhNTf_{2}	DBU	10 min	84	95/5
4	2-MeC ${ }_{6} \mathrm{H}_{4}$	B	PhNTf_{2}	DBU	10 min	84	95/5
5	4-(MeO) $\mathrm{C}_{6} \mathrm{H}_{4}$	C	PhNTf_{2}	DBU	10 min	82	95/5
6	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	D	PhNTf_{2}	DBU	10 min	88	94/6
7	$i-\mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{C}$	E	PhNTf_{2}	DBU	10 min	37	92/8
8^{c}			PhNTf_{2}	DBU	10 min	71	95/5

${ }^{a}$ The ratios were determined by $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra.
${ }^{b}$ DTBMP (1.2 equiv) under $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ reflux.
${ }^{c}$ DBU (2.5 equiv).

Next, the cross-coupling reaction was investigated using (Z)- β-alkoxy vinyl triflate 2. Introduction of a phenyl group was accomplished via Suziki-Miyaura coupling with $\mathrm{PhB}(\mathrm{OH})_{2}$ and using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as a catalyst ${ }^{17}$ to give the β-alkoxy styrenes with retention of Z-stereochemistry as shown in Table 2.

Table 2. Coupling Reactions of Vinyl Triflates 2

		$\begin{array}{r} \mathrm{PhB}(\mathrm{OH})_{2}(1 . \\ \mathrm{Pd}_{2}\left(\mathrm{PPH}_{3}\right)_{4}(\mathrm{O} \\ \hline \mathrm{Na}_{2} \mathrm{CO}_{3} \mathrm{aq} / \mathrm{Etc} \\ 80^{\circ} \mathrm{C}, \mathrm{~T} \end{array}$	$\xrightarrow[\text { toluene }]{\text { quiv) }}$	3Aa		
Entry	R^{1}	$2(Z / E)^{a}$	Time	3	Yield/\%	Z / E^{a}
1^{b}	Ph	A (94/6)	40 min	Aa	69	95/5
2	$2-\mathrm{MeC}_{6} \mathrm{H}_{4}$	B (94/6)	30 min	Ba	49	93/7
3	4-MeOC6 H_{4}	C (94/6)	1 h	Ca	74	95/5
4	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	D (97/3)	20 min	Da	65	95/5
5^{c}	$i-\mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{C}$	E (95/5)	45 min	Ea	79	97/3

${ }^{a}$ The ratios were determined by $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra.
${ }^{b} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (0.03 equiv).
${ }^{c} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(0.10\right.$ equiv) at a reaction temperature of $60^{\circ} \mathrm{C}$.

Suzuki-Miyaura coupling reaction of vinylic borane compounds generated in situ was performed as shown in Eq. $1 .{ }^{18}$ The diene 3Ab was obtained with nearly full retention of stereochemistry. ${ }^{19}$

Sonogashira coupling was also examined (Table 3). ${ }^{20}$ 3,3-Dimethyl-1-butyne was used as a substrate for the transformation to give Z-enynes 3Ac and 3Ec in high chemical yield with high stereoselectivity.

Table 3. Sonogashira Coupling Reaction of Vinyl Triflates 2

Entry	R^{1}	$\mathbf{2}(Z / E)^{a}$	Time	$\mathbf{3}$	$\mathrm{Yield} / \%$	Z / E^{a}
1	Ph	$\mathbf{A}(95 / 5)$	20 min	$\mathbf{A c}$	88	$95 / 5$
2^{b}	$i-\mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{C}$	$\mathbf{E}(95 / 5)$	1 h	$\mathbf{E c}$	98	$96 / 4$

${ }^{a}$ The ratios were determined by $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra.
${ }^{b} 3,3$-Dimethyl-1-butyne (2 equiv); CuI (0.1 equiv).

Next, an alkyl group was introduced via alkyl boron reagent generated in situ from styrene and 9BBN. ${ }^{21}$ However, the reaction was sluggish and a mixture of the desired product, benzyl vinyl ether, and inseparable byproducts was obtained in poor yield. After intensive investigation, Kumada-Tamao-Corriu coupling reaction of $\mathbf{2 A}$ using $n-\mathrm{BuMgCl}$ in the presence of $\mathrm{NiCl}_{2}(\mathrm{dppp})^{22}$ resulted in the addition of a primary alkyl group. Although slight isomerization was observed, the corresponding vinyl ether 3Ad was obtained with high Z-selectivity (Table 4, Entry 1). In contrast, the coupling reaction of propargyloxy triflate $\mathbf{1 E}$ underwent extensive isomerization to give a $c a$. 2/1 mixture of 3Ed (Entry 2).

Table 4. Introduction of an Alkyl Group via Kumada-Tamao-Corriu Coupling

Entry	R^{1}	$\mathbf{2}(Z / E)^{a}$	Time	$\mathbf{3}$	Yield $/ \%$	Z / E^{a}
1	Ph	$\mathbf{A}(94 / 6)$	15 min	Ad	81	$91 / 9$
2	$i-\mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{C}$	$\mathbf{E}(95 / 5)$	2 h	Ed	38	$68 / 32$

${ }^{a}$ The ratios were determined by $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra.

After establishing a procedure for addition of substituents via cross-coupling reaction of vinyl triflates 2, the [1,2]-Wittig rearrangement of vinyl ethers 3 was investigated. For benzyl-type ethereal substrates 3Aa, 3Ba, 3Da, 3Ab, and 3Ac the rearrangement proceeded to give the
corresponding (Z)-allylic alcohols stereoselectively (Table 5, Entries 1, 2, 4, 6, and 7). In the case of of (4-methoxyphenyl)methyl ether 3Ca, a specific reaction conditions were required. When the 3Ca was treated with $n-\operatorname{BuLi}$ (3.0 equiv) in THF, the rearrangement did not proceed cleanly and yielded the allylic alcohol 4Ca in low yield of 19% with $92 / 8$ selectivity. By the addition of $N, N, N^{\prime}, N^{\prime}-$ tetraethylenediamine (TMEDA) using an excess amount of $n-\mathrm{BuLi}, 4 \mathrm{Ca}$ was obtained in enhanced chemical yield (Entry 3). Although the reaction of propargylic ethers 3Ea and 3Ec provided rearranged alcohols at slightly lower chemical yields, excellent Z-stereoselectivity was realized (Entries 5 and 8). Using a vinyl ether with a primary alkyl group at the β-position, treatment with n BuLi gave a complex mixture. In this case, the addition of TMEDA using an excess amount of n BuLi was also effective to realize the rearrangement affording (Z)-allylic alcohol 4Ad in good chemical yield (Entry 9).

Table 5. [1,2]-Wittig rearrangement of vinyl ethers 3 to allylic alcohols 4

Entry	R^{1}	R^{2}	3	$(Z / E)^{a}$	Time	Yield/\%	Z / E^{a}
1	Ph	Ph		(95/5)	15 min	86	98/2
2	$2-\mathrm{MeC}_{6} \mathrm{H}_{4}$	Ph	Ba	(>98/2)	4 min	54	>98/ 2
$3^{b, c}$	4-MeOC6 H_{4}	Ph		(95/5)	10 min	47	97/3
4	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	Ph		(96/4)	4 min	63	97/3
5	$i-\mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{C}$	Ph		(>98/2)	4 min	56	>98/2
6	Ph	t - $\mathrm{BuCH}=\mathrm{CH}$		$(87 / 13)^{d}$	4 min	85	95/5
7	Ph	t - $\mathrm{BuC} \equiv \mathrm{C}$		(93/7)	3 min	49	93/7
8	$i-\mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{C}$	t - $\mathrm{BuC} \equiv \mathrm{C}$		(96/4)	4 min	31	>98/ 2
$9^{b, c}$	Ph	$n-\mathrm{Bu}$		(91/9)	10 min	81	89/11

${ }^{a}$ The ratios were determined by $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra.
${ }^{b} n$-BuLi (8 equiv) and TMEDA (1 equiv) were added.
${ }^{c}$ Temperature was adjusted from $-78{ }^{\circ} \mathrm{C}$ to rt over 10 min .
${ }^{d}$ Ratio of $(1 Z, 3 E)$-isomer/other isomers was $87 / 13$.

In summary, a useful synthetic scheme for (Z)-allylic alcohols was established based on the novel (Z)-selective vinyl-triflation of α-alkoxyacetoaldehydes followed by cross-coupling and [1,2]Wittig rearrangement. This synthetic scheme allowed the preparation of a wide array of structurally diverse (Z)-allylic alcohols in a stereoselective manner. These (Z)-allylic alcohols are versatile synthetic intermediates for stereospecific transformations such as Katsuki-Sharpless and related epoxidations and Simmons-Smith cyclopropanation. ${ }^{23,24}$ The synthetic method presented here can be used in place of the technique using (Z)-allylic alcohols with triple bonds, which could not be prepared by conventional Lindlar reduction of diynols. ${ }^{25}$

EXPERIMENTAL SECTION

General Method. ${ }^{1}$ H NMR spectra were recorded on a 400 MHz NMR spectrometer. Chemical shifts δ are reported in ppm using TMS as an internal standard. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), coupling constant (J) and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 100 MHz NMR spectrometer. The chemical shifts are reported relative to $\mathrm{CDCl}_{3}(\delta=77.0 \mathrm{ppm})$. The wavenumbers of maximum absorption peaks in IR spectra are presented in cm^{-1}. HRMS (EI positive, ESI-TOF) spectra were measured with quadrupole and TOF mass spectrometers. All of the melting points were measured with a micro melting point apparatus. THF was freshly distilled from sodium diphenylketyl. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled and stored over drying agents. Anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ was purchased and stored over drying agents.

2-((2-Methylbenzyl)0xy)ethanol. To a suspension of $\mathrm{NaH}(2.4 \mathrm{~g}, 60 \%$ in mineral oil, 60 mmol$)$ in THF (160 mL) was added ethylene glycol ($10.0 \mathrm{~mL}, 180 \mathrm{mmol}$) in THF $(40 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. After 30 min of stirring, 1-(chloromethyl)-2-methylbenzene (9.66 g 60 mmol) in THF $(40 \mathrm{~mL})$ and n-Bu ${ }_{4} \mathrm{NI}(1.11 \mathrm{~g}, 1.2 \mathrm{mmol})$ were added, and the mixture was refluxed for 1 d . Water was added and aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (hexane $/ \mathrm{AcOEt}=$ 3/1) to give 2-((2-methylbenzyl)oxy)ethanol (7.08 g, 64\%) as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{brs}, 2 \mathrm{H}), 3.46-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{dd}, J=9.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 7.05-$
$7.14(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.22(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 18.7, 61.7, 71.4, 71.5, 125.7, 127.9, 128.6, 130.2, 135.7, 136.6. IR (neat): $3421,2865,1459,1355,1102,893,745 \mathrm{~cm}^{-1}$. HRMS (ESITOF): calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$189.0891, found 189.0887.

2-((2-Methylbenzyl)oxy)acetaldehyde (1B). To a solution of oxalyl chloride ($1.27 \mathrm{~mL}, 15 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added DMSO $(1.42 \mathrm{ml}, 20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 5 min of stirring, 2-((2-methylbenzyl)oxy)ethanol $(1.66 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added dropwise. After 15 min , the reaction mixture was added $\mathrm{Et}_{3} \mathrm{~N}(7.0 \mathrm{~mL}, 50 \mathrm{mmol})$ and allowed to warm to rt . After 1 h of stirring, the insoluble substrate in the reaction mixture was filtered off through a bed of Celite and solvent was evaporated. The residue was purified by silica gel column chromatography (hexane/ $\mathrm{AcOEt}=3 / 1$) to give $\mathbf{1 B}(1.16 \mathrm{~g}, 71 \%)$ as an oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): 2.28(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 7.06-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.23(\mathrm{~m}, 1 \mathrm{H})$, $9.61(\mathrm{t}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 18.7, 71.9, 75.2, 125.8, 128.3, 128.9, 130.4, 134.7, 136, 9, 200.5. IR (neat): 3029, 2867, 1736, 1492, 1460, 1376, 1104, $746 \mathrm{~cm}^{-1}$. HRMS (ESITOF): calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$187.0735, found 187.0740.
In a similar manner, 2-alkoxyacetoaldehyde $\mathbf{1 A},{ }^{26} \mathbf{1 C},{ }^{27}$ and $\mathbf{1 D}{ }^{28}$ were prepared from ethylene glycol.

Ethyl 2-((3-(Triisopropylsilyl)prop-2-yn-1-yl)oxy)acetate. To a solution of 3-(triisopropylsilyl)prop-2-yn-1-ol ${ }^{29}(3.19 \mathrm{~g}, 15 \mathrm{mmol})$ and HMPA ($10.4 \mathrm{~mL}, 60 \mathrm{mmol}$) in THF (15 mL) was added $\mathrm{MeMgBr}\left(15 \mathrm{~mL}\right.$ of 1.0 M solution in THF, 15 mmol) dropwise at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. After 10 min of stirring, ethyl bromoacetate ($2.51 \mathrm{~g}, 15 \mathrm{mmol}$) in THF (5 mL) was added, and the resulting solution was warmed $50^{\circ} \mathrm{C}$, and stirred for 1 h . The reaction mixture was quenched with a satd aq solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. After insoluble substance was filtered off through a bed of Celite, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The crude product was purified by silica gel column chromatography (hexane/AcOEt $=20 / 1$) to give ethyl 2-((3-(triisopropylsilyl)prop-2-yn-1-yl)oxy)acetate (1.92 g, 49%) as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.00(\mathrm{~s}, 21 \mathrm{H}), 1.23(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, 4.29 (s, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.0, 14.1, 18.5, 58.9, 60.9, 65.7, 89.1, 101.7, 170.0. IR (neat): 2944, 2865, 2171, 1754, 1463, 1204, 1121, 1000, 883, $677 \mathrm{~cm}^{-1}$. HRMS (EI): calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}\left[\mathrm{M}^{+}\right]$298.1964, found 298.1981.

2-((3-(Triisopropylsilyl)prop-2-yn-1-yl)oxy)acetaldehyde (1E). To a solution of ethyl 2-((3-(triisopropylsilyl)prop-2-yn-1-yl)oxy)acetate ($1.92 \mathrm{~g}, 7.4 \mathrm{mmol}$) in toluene (50 mL) was added DIBAL-H (7.4 mL of 1.0 M solution in toluene, 7.4 mmol) dropwise over 5 min at $-78^{\circ} \mathrm{C}$ under N_{2} atmosphere. After $5 \mathrm{~min}, \mathrm{MeOH}(7 \mathrm{~mL})$ was added and the reaction mixture was warmed to room temperature. A satd aq solution of potassium sodium tartrate was added and the resulting mixture was stirred for 3 h . After insoluble substance was filtered off through a bed of Celite, the aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The crude product was purified by silica gel column chromatography (hexane/ $\mathrm{AcOEt}=6 / 1$) to give $\mathbf{1 E}(1.00 \mathrm{~g}, 53 \%)$ as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.07(\mathrm{~s}, 21 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 9.77(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.0, 18.5, 59.5, 74.3, 89.5, 101.6, 200.1. IR (neat): 2943, 2891, 2865, 2716, 1739, $1463,1382,1366,1242,1114,1009,883,678 \mathrm{~cm}^{-1}$. HRMS (EI): calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}^{+}\right]$ 254.1702, found 254.1706 .
(Z)-2-(Benzyloxy)vinyl Trifluoromethanesulfonate (2A). To a solution of $\mathbf{1 A}$ ($597 \mathrm{mg}, 4.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$, $\mathrm{DBU}(1.21 \mathrm{~g}, 8.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and $\mathrm{PhNTf}_{2}(1.71 \mathrm{~g}, 4.8$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added at rt under Ar atmosphere. After reaction completion (monitored by TLC), the reaction was quenched with a phosphate buffer solution (pH 7). The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and solvent was evaporated. The crude product was purified by silica gel column chromatography (hexane $/ \mathrm{AcOEt}=6 / 1$) to give $\mathbf{2 A}(948 \mathrm{mg}, 84 \%, Z / E=95 / 5$ mixture from ${ }^{1} \mathrm{H}$ NMR) as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 4.94 (s, 2H), $6.00(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.04(\mathrm{~d}, ~ J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.42(\mathrm{~m}, 5 \mathrm{H})$. Selected data of (E)-isomer; $4.77(\mathrm{~s}, 2 \mathrm{H}), 6.57(\mathrm{~d}$, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 75.3, 118.6 $(J=320.7$ $\mathrm{Hz}), 118.9,123.7,127.7,128.7,129.7,138.5$. IR (neat): 3134, 3067, 3035, 2938, 2883, 1684, 1497, 1421, 1211, $1141987,847,698 \mathrm{~cm}^{-1}$. HRMS (EI): calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}\left[\mathrm{M}^{+}\right]$282.0174, found: 282.0170.

In a similar manner, (Z)-vinyl triflates $\mathbf{2 B}-2 \mathbf{E}$ were obtained from $\mathbf{1 B} \mathbf{- 1 E}$.
(Z)-2-((2-Methylbenzyl)oxy)vinyl Trifluoromethanesulfonate (2B). Compound 2B (749 mg, $84 \%, Z / E=95 / 5)$ was obtained as an oil from 1B ($493 \mathrm{mg}, 3.0 \mathrm{mmol}$), DBU ($913 \mathrm{mg}, 6.0 \mathrm{mmol}$), and $\operatorname{PhNTf}_{2}(1.29 \mathrm{~g}, 3.6 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.36(\mathrm{~s}, 3 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 5.99(\mathrm{~d}, J$
$=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 4 \mathrm{H})$. Selected data of (E)-isomer; $2.33(\mathrm{~s}$, $3 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): 18.7,74.0,118.6(J=320.7 \mathrm{~Hz}), 118.9,126.0,128.9,129.0,130.7,133.4,137.1,138.3$. IR (neat): 3136, 3025, 2956, 2890, 1683, 1421, 1352, 1221, 1141, 986, 744, $693 \mathrm{~cm}^{-1}$. HRMS (EI): calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}\left[\mathrm{M}^{+}\right]$296.0330, found: 296.0336.
(Z)-2-((4-Methoxybenzyl)oxy)vinyl Trifluoromethanesulfonate (2C). Compound 2C (244 mg, $82 \%, Z / E=95 / 5)$ was obtained as an oil from 1C ($180 \mathrm{mg}, 1.0 \mathrm{mmol}$), DBU ($304 \mathrm{mg}, 2.0 \mathrm{mmol}$), and $\mathrm{PhNTf}_{2}(429 \mathrm{mg}, 1.2 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $3.82(\mathrm{~s}, 3 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 5.97(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$. Selected data of (E)-isomer; $4.69(\mathrm{~s}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 55.2, $75.1,114.1,118.6(J=320.7 \mathrm{~Hz}), 118.8,127.6,129.6,138.3,159.9$. IR (neat): $3135,3005,2941,2840,1684,1614,1517,1420,1246,1211,1142,825,692 \mathrm{~cm}^{-1}$. HRMS (EI): calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}\left[\mathrm{M}^{+}\right]$312.0279, found: 312.0282.
(Z)-2-((4-Chlorobenzyl)oxy)vinyl Trifluoromethanesulfonate (2D). Compound 2D (139 mg, $88 \%, Z / E=94 / 6)$ was obtained as an oil from 1D ($92 \mathrm{mg}, 0.5 \mathrm{mmol}$), DBU ($152 \mathrm{mg}, 1.0 \mathrm{mmol}$), and $\mathrm{PhNTf}_{2}(214 \mathrm{mg}, 0.6 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $4.91(\mathrm{~s}, 2 \mathrm{H}), 6.01(\mathrm{~d}, J=3.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.02(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.42(\mathrm{~m}, 4 \mathrm{H})$. Selected data of (E)-isomer; $4.74(\mathrm{~s}, 3 \mathrm{H}), 6.56(\mathrm{~d}$, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 74.5, 118.6 $(J=320.7$ $\mathrm{Hz}), 119.2,128.9,129.0,129.7,134.0,138.4$. IR (neat): 3321, 3134, 2942, 2884, 1684, 1600, 1495, 1211, 1142, 966, 812, $693 \mathrm{~cm}^{-1}$. HRMS (EI): calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{ClF}_{3} \mathrm{O}_{4} \mathrm{~S}\left[\mathrm{M}^{+}\right]$315.9784, found: 315.9786.
(Z)-2-((3-(Triisopropylsilyl)prop-2-yn-1-yl)oxy)vinyl Trifluoromethanesulfonate (2E). Compound 2E ($82 \mathrm{mg}, 71 \%, Z / E=95 / 5$) was obtained as an oil from 1E ($76 \mathrm{mg}, 0.3 \mathrm{mmol}$), DBU ($114 \mathrm{mg}, 0.75 \mathrm{mmol}$), and $\mathrm{PhNTf}_{2}(129 \mathrm{mg}, 0.36 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.07 (s, $21 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 6.10(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$. Selected data of (E)-isomer; $4.47(\mathrm{~s}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.0, 18.4, 61.1, 91.4, 99.9, 118.7 ($J=320.7 \mathrm{~Hz}$), 119.6, 136.9. IR (neat): 3137, 2946, 2868, 2170, $1685,1425,1245,1117,1045,1009,951,883,845,706,681 \mathrm{~cm}^{-1}$. HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{SSi}\left[\mathrm{M}^{+}\right]$386.1195, found: 386.1169 .
(Z)-(2-(Benzyloxy)vinyl)benzene (3Aa). ${ }^{30}$ To a solution of 2A (282 mg, $\left.1.0 \mathrm{mmol}, Z / E=94 / 6\right)$ in toluene (15 mL) and EtOH (2.5 mL) was added 2 M aq solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(15 \mathrm{~mL})$. After $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(37 \mathrm{mg}, 0.03 \mathrm{mmol})$, and $\mathrm{PhB}(\mathrm{OH})_{2}(156 \mathrm{mg}, 1.3 \mathrm{mmol})$ were added, the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 30 min under Ar atmosphere. ${ }^{17 \mathrm{~b}}$ The reaction mixture was cooled to rt and insoluble substance was filtered off through a bed of Celite. The aqueous layer of the filtrate was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and solvent was evaporated. The crude product was purified by silica gel column chromatography (hexane $/ \mathrm{AcOEt}=20 / 1$) to give $\mathbf{3 A a}(144 \mathrm{mg}, 69 \%, Z / E=95 / 5$) as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $5.00(\mathrm{~s}, 2 \mathrm{H}), 5.27(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-$ 7.39 (m, 8H), 7.63 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$. Selected data of (E)-isomer; 4.91 (s, 2H), 5.96 (d, $J=12.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 74.9, 106.3, 125.8, 127.2, 128.0, 128.2, 128.3, 128.6, 135.8, 137.2, 146.2.

In a similar manner, (Z)-vinyl ethers 3Ba-3Ea were obtained from 2B-2E.
(Z)-1-Methyl-2-((styryloxy)methyl)benzene (3Ba). Compound 3Ba ($55 \mathrm{mg}, 49 \%, Z / E=93 / 7$) was obtained as an oil from 2B (148 mg, $0.50 \mathrm{mmol}, Z / E=94 / 6), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(29 \mathrm{mg}, 0.025 \mathrm{mmol})$, and $\mathrm{PhB}(\mathrm{OH})_{2}(79 \mathrm{mg}, 0.65 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.38(\mathrm{~s}, 3 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 5.26(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.38(\mathrm{~m}, 7 \mathrm{H}), 7.61(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$. Selected data of (E)-isomer; $2.33(\mathrm{~s}, 3 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}), 5.98(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 18.9, 73.6, 106.1, 125.7, 126.0, 128.18, 128.22, 128.27, 128.29, 130.4, 135.1, 135.9, 136.5, 146.2. IR (neat): 3024, 2927, 1650, 1493, 1447, 1365, 1265, 1120, 1086, 779, 746, $694 \mathrm{~cm}^{-1}$. HRMS (EI): calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}\left[\mathrm{M}^{+}\right]$224.1201, found 224.1200.
(Z)-1-Methoxy-4-((styryloxy)methyl)benzene (3Ca). Compound 3Ca (156 mg, 74\%, Z/E = 95/5) was obtained as an oil from 2C $(260 \mathrm{mg}, 0.88 \mathrm{mmol}, Z / E=94 / 6), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(51 \mathrm{mg}, 0.04 \mathrm{mmol})$, and $\mathrm{PhB}(\mathrm{OH})_{2}(139 \mathrm{mg}, 1.14 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $3.81(\mathrm{~s}, 3 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 5.25$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.60(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H})$. Selected data of (E)-isomer; $3.78(\mathrm{~s}, 3 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 5.95(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 55.3, 74.6, 106.1, 113.9, 125.7, 128.16, 128.24, 129.0, 129.2, 135.9, 146.1, 159.5. IR (neat): 3031, 2933, 2836, 1650, 1613, 1513, 1447, 1366, 1250, 1174, 1031, 823, 780, $696 \mathrm{~cm}^{-1}$. HRMS (EI): calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$240.1150, found 240.1143.
(Z)-1-Chloro-4-((styryloxy)methyl)benzene (3Da). Compound 3Da (79 mg, $65 \%, Z / E=95 / 5$) was obtained as an oil from 2D (190 mg, $0.60 \mathrm{mmol}, Z / E=97 / 3), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(35 \mathrm{mg}, 0.03 \mathrm{mmol})$, and $\mathrm{PhB}(\mathrm{OH})_{2}(95 \mathrm{mg}, 0.78 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 4.93 (s, 2H), $5.28(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.23(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.36(\mathrm{~m}, 7 \mathrm{H}), 7.60(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$. Selected data of $(E)-$ isomer; $4.87(\mathrm{~s}, 2 \mathrm{H}), 5.95(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): 74.1, 106.7, 125.9, 127.1, 128.2, 128.3, 128.5, 128.8, 133.8, 135.6, 145.9. IR (neat): 3085, 3031, 2928, 2972, 1651, 1600, 1492, 1447, 1403, 1365, 1266, 1200, 1088, 1014, 806, 779, $695 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}\left[\mathrm{M}^{+}\right] 244.0655$, found 244.0656.
(Z)-Triisopropyl(3-(styryloxy)prop-1-yn-1-yl)silane (3Ea). Compound 3Ea (74 mg, 79\%, 97/3) was obtained as an oil from 2E ($116 \mathrm{mg}, 0.3 \mathrm{mmol}, Z / E=95 / 5$), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(35 \mathrm{mg}, 0.03 \mathrm{mmol}, 10$ $\mathrm{mol} \%$), and $\mathrm{PhB}(\mathrm{OH})_{2}(48 \mathrm{mg}, 0.39 \mathrm{mmol}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.07(\mathrm{~s}, 21 \mathrm{H}), 4.56(\mathrm{~s}$, $2 \mathrm{H}), 5.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.36(\mathrm{~m}, 2 \mathrm{H})$, 7.58-7.61 (m, 2H). Selected data of (E)-isomer; $4.54(\mathrm{~s}, 2 \mathrm{H}), 5.99(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 11.1, 18.5, 60.4, 89.4, 101.8, 107.3, 125.9, 128.1, 128.4, 135.6, 144.6. IR (neat): 2942, 2864, 2725, 2174, 1652, 1493, 1462, 1450, 1356, 1274, 1086, 1034, 999, 883, 777, 693, 678, $666 \mathrm{~cm}^{-1}$. HRMS (EI): calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{OSi}\left[\mathrm{M}^{+}\right] 314.2066$, found 314.2070.
((((1Z,3E)-5,5-Dimethylhexa-1,3-dien-1-yl)oxy)methyl)benzene (3Ab). To a solution of 3,3-dimethyl-1-butyne ($123 \mathrm{mg}, 1.5 \mathrm{mmol}$) in THF (1 mL) was added 9-BBN $(3.0 \mathrm{~mL}$ of 0.5 M solution in THF, 1.5 mmol) and stirred $1 \mathrm{~d} .{ }^{18}$ To the solution, 2 M aq solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(5 \mathrm{~mL})$ and $\mathbf{2 A}$ $(141 \mathrm{mg}, 0.5 \mathrm{mmol}, Z / E=94 / 6)$ in THF $(1 \mathrm{~mL})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(29 \mathrm{mg}, 0.025 \mathrm{mmol}$, $)$ in EtOH (1 mL) were added and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was cooled to rt and insoluble substance was filtered off through a bed of Celite. The aqueous layer of the filtrate was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and solvent was evaporated. The crude product was purified by silica gel column chromatography (hexane/benzene $=1 / 1$) to give $\mathbf{3 A b}(59 \mathrm{mg}, 61 \%, 1 Z, 3 E /$ others $=87 / 13$) as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.04(\mathrm{~s}, 9 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 5.07(\mathrm{dd}, J=6.0,11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.60(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.36$, (dd, $J=11.0,15.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.24-7.35 (m, 5H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 29.7, 33.2, 74.0, 108.0, 117.6, 127.4, 127.9, 128.5, 137.4, 142.7, 144.0. IR (neat): 3034, 2959, 2863, 1654, 1615, 1455, 1365, 1285, 1267, 1194, 1131, 1090, 1071, 975, $734 \mathrm{~cm}^{-1}$. HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}\left[\mathrm{M}^{+}\right]$216.1514, found 216.1509.
(Z)-(((5,5-Dimethylhex-1-en-3-yn-1-yl)oxy)methyl)benzene (3Ac). To a solution of $\mathrm{Et}_{3} \mathrm{~N}(252 \mathrm{mg}$, 2.5 mmol), 3,3-dimethyl-1-butyne ($62 \mathrm{mg}, 0.75 \mathrm{mmol}$) and 2A $(141 \mathrm{mg}, 0.5 \mathrm{mmol}, Z / E=95 / 5)$ in $\mathrm{MeCN}(1 \mathrm{~mL})$ was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(29 \mathrm{mg}, 0.025 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$ and $\mathrm{CuI}(5 \mathrm{mg}, 0.026$ $\mathrm{mmol})$ at rt under Ar atmosphere and the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for $20 \mathrm{~min} .{ }^{20 \mathrm{~b}}$ The reaction mixture was cooled to rt and insoluble substance was filtered off through a bed of Celite and solvent of the filtrate was evaporated. The crude product was purified by silica gel column chromatography (hexane/ $\mathrm{AcOEt}=10 / 1$) to give $\mathbf{3 A c}\left(94 \mathrm{mg}, 88 \%, Z / E=95 / 5\right.$) as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.27(\mathrm{~s}, 9 \mathrm{H}), 4.55(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 6.29(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.28-7.36 (m, 5H). Selected data of (E)-isomer; $1.23(\mathrm{~s}, 9 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 5.01(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.83(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 28.2, 31.1, 72.9, 74.0, 86.8, 102.1, 127.2, 127.9, 128.5, 137.0, 153.2. IR (neat): 3065, 3034, 2967, 2927, 2866, 2222, 1632, 1455, 1364, 1264, 1123, 1051, 730, $696 \mathrm{~cm}^{-1}$. HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}\left[\mathrm{M}^{+}\right]$214.1358, found 214.1359.

In a similar manner, (Z)-vinyl ethers $\mathbf{3 E c}$ was obtained from 2E.
(Z)-(3-((5,5-Dimethylhex-1-en-3-yn-1-yl)oxy)prop-1-yn-1-yl)triisopropylsilane
(3Ec). Compound 3Ec ($88 \mathrm{mg}, 98 \%, Z / E=96 / 4$) was obtained as an oil from 2E ($116 \mathrm{mg}, 0.3 \mathrm{mmol}, Z / E$ $=95 / 5), \mathrm{Et}_{3} \mathrm{~N}(152 \mathrm{mg}, 1.5 \mathrm{mmol}), 3,3$-dimethyl-1-butyne ($\left.49 \mathrm{mg}, 0.6 \mathrm{mmol}\right), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20 \mathrm{mg}$, 0.017 mmol), and $\mathrm{CuI}(6 \mathrm{mg}, 0.03 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.07(\mathrm{~s}, 21 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H})$, $4.54(\mathrm{~s}, 2 \mathrm{H}), 4.61,(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$. Selected data of (E)-isomer; $4.42(\mathrm{~s}$, $2 \mathrm{H}), 5.03,(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.0, 18.5, $28.2,31.1,60.1,72.6,87.4,89.7,101.3,102.2,151.5$. IR (neat): $3043,2965,2944,2866,2726$, 2230, 2176, 1634, 1564, 1462, 1359, 1264, 1229, 1115, 1028, 998, 883, 727, $678 \mathrm{~cm}^{-1}$. HRMS (EI): calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{OSi}\left[\mathrm{M}^{+}\right] 318.2379$, found 318.2370.
(\boldsymbol{Z})-((Hex-1-en-1-yloxy)methyl)benzene (3Ad). To a solution of 2A $(141 \mathrm{mg}, 0.5 \mathrm{mmol}, Z / E=$ $94 / 6)$ in toluene (3 mL), $\mathrm{NiCl}_{2}(\mathrm{dppp})(28 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $n-\mathrm{BuMgCl}(1.1 \mathrm{~mL}$ of 0.91 M solution in THF, 1.0 mmol) were added and the reaction mixture was stirred at rt for 30 min under Ar atmosphere. ${ }^{22 \mathrm{~d}}$ The reaction was quenched with a satd aq solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and insoluble substance was filtered off through a bed of Celite. The aqueous layer of the filtrate was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and solvent was evaporated. The crude product was purified by silica gel column chromatography (hexane/ $\mathrm{AcOEt}=10 / 1$) to give $\mathbf{3 A d}(77 \mathrm{mg}, 81 \%, Z / E=91 / 9)$ as an oil. ${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.87-0.91 (m, 3H), 1.25-1.37 (m, 4H), 2.09-2.15 (m, 2H), 4.39 (dt, $J=6.0,7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 6.00(\mathrm{dt}, J=6.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.36(\mathrm{~m}, 5 \mathrm{H})$. Selected data of $(E)-$ isomer, $1.90-1.95(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.88(\mathrm{dt}, J=12.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 13.9, 22.3, 23.7, 31.9, 73.5, 108.0, 127.2, 127.7, 128.4, 137.8, 144.3. IR (neat): 3065, 3031, 2956, 2926, 2871, 1668, 1463, 1362, 1271, 1209, 1129, 1095, 1027, 732, 695 cm^{-1}. HRMS (EI): calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}\left[\mathrm{M}^{+}\right]$190.1358, found 190.1362 .

In a similar manner, vinyl ethers 3Ed were obtained from 2E.
(3-(Hex-1-en-1-yloxy)prop-1-yn-1-yl)triisopropylsilane (3Ed). Compound 3Ed (44 mg, 38\%, $Z / E=68 / 32$) was obtained as an oil from 2E ($77 \mathrm{mg}, 0.2 \mathrm{mmol}, Z / E=95 / 5$), $\mathrm{NiCl}_{2}(\mathrm{dppp})(11 \mathrm{mg}$, $0.02 \mathrm{mmol})$ and $n-\mathrm{BuMgCl}(0.43 \mathrm{~mL}$ of 0.94 M solution in THF, 0.4 mmol$) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): 0.86-0.91(\mathrm{~m}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 21 \mathrm{H}), 1.30-1.35(\mathrm{~m}, 4 \mathrm{H}), 2.05-2.11(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 4.48$ $(\mathrm{dt}, J=6.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$. Selected data of (E)-isomer; 1.89-1.95 (m, 2H), $4.37(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{dt}, J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right):(Z)$-isomer; 11.1, 13.9, 18.5, 22.3, 23.6, 31.9, 59.5, 88.3, 102.6, 109.1, 143.0; (E)-isomer; $11.1,13.9,18.5,22.0,27.3,32.6,57.4,88.2,102.3,106.3,144.3$; IR (neat) $3035,2943,2865,2175$, 1666, 1617, 1463, 1382, 1353, 1274, 1134, 1092, 997, 919, 883, 731, $677 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF): calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{OSiNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right] 317.2277$, found 317.2268.
(Z)-1,3-Diphenylprop-2-en-1-ol (4Aa). ${ }^{31}$ To a solution of 3Aa ($63 \mathrm{mg}, 0.3 \mathrm{mmol}, Z / E=95 / 5$) in THF (3 mL) was added $n-\mathrm{BuLi}\left(0.56 \mathrm{~mL}\right.$ of 1.62 M solution in hexane, 0.9 mmol) at $0^{\circ} \mathrm{C}$ under Ar atmosphere and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min . The reaction was quenched with water. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and solvent was evaporated. The crude product was purified by silica gel column chromatography (hexane/ $\mathrm{AcOEt}=6 / 1$) to give $\mathbf{4 A a}(48$ $\mathrm{mg}, 86 \%, Z / E=98 / 2$) as an oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.97$ (brs, 1 H), 5.64 (d, $J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.94(\mathrm{dd}, J=11.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.47(\mathrm{~m}, 10 \mathrm{H})$. Selected data of (E)-isomer: $5.40(\mathrm{~d}, J=6.9 \mathrm{~Hz} 1 \mathrm{H}), 6.39(\mathrm{dd}, J=16.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): 70.0,126.3,127.5,127.8,128.3,128.7,128.8,131.4,133.2,136.3,143.1$.

In a similar manner, (Z)-allylic alcohols 4Ba, 4Da, 4Ea, 4Ab, 4Ac, and 4Ec were obtained from the corresponding (Z)-vinyl ethers 3Ba, 3Da, 3Ea, 3Ab, 3Ac, and 3Ec, respectively.
(Z)-3-Phenyl-1-(o-tolyl)prop-2-en-1-ol (4Ba). Compound 4Ba (28 mg, 54\%, $Z / E=>98 / 2$) was obtained as a solid from 3Ba ($52 \mathrm{mg}, 0.23 \mathrm{mmol}, Z / E=>98 / 2$) and $n-\operatorname{BuLi}(0.42 \mathrm{~mL}$ of 1.65 M solution in hexane, 0.69 mmol$) . \mathrm{Mp} 84-86^{\circ} \mathrm{C}$ (from AcOEt). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.89(\mathrm{~d}$, $J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 5.72(\mathrm{dd}, J=4.1,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{dd}, J=9.2,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}$, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.37(\mathrm{~m}, 8 \mathrm{H}), 7.58(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 18.9 , $67.6,125.4,126.3,127.4,127.6,128.3,128.7,130.6,131.5,132.6,135.6,136.4,141.5$. IR (KBr): $3274,3022,2925,1492,1458,1209,1039,997,870,770,751 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}$, 85.68; H, 7.19. Found: C, 85.59; H, 7.33.
(Z)-1-(4-Chlorophenyl)-3-phenylprop-2-en-1-ol (4Da). Compound 4Da ($50 \mathrm{mg}, 63 \%, Z / E=$ $97 / 3$) was obtained as an oil from 3Da ($80 \mathrm{mg}, 0.33 \mathrm{mmol}, Z / E=96 / 4$) and $n-\operatorname{BuLi}(0.61 \mathrm{~mL}$ of 1.65 M solution in hexane, 1.0 mmol). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.98(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.62$ (dd, $J=9.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{dd}, J=11.5,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.39(\mathrm{~m}$, $9 \mathrm{H})$. Selected data of (E)-isomer; $6.33(\mathrm{dd}, J=16.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 69.4, 127.6, 127.7, 128.4, 128.70, 128.73, 131.8, 132.7, 133.4, 136.1, 141.5. IR (neat): $3337,3057,3023,2927,1597,1491,1446,1408,1213,1091,1046,1013,867$, 827, 801, 771, $701 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}\left[\mathrm{M}^{+}\right]: 244.0655$. Found: 244.0652.
(Z)-1-Phenyl-5-(triisopropylsilyl)pent-1-en-4-yn-3-ol (4Ea). Compound 4Ea (40 mg, 56\%, $>98 / 2$)) was obtained as an oil from 3Ea ($72 \mathrm{mg}, 0.23 \mathrm{mmol},>98 / 2$) and $n-\operatorname{BuLi}(0.42 \mathrm{~mL}$ of 1.65 M solution in hexane, 0.69 mmol$){ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.01(\mathrm{~s}, 21 \mathrm{H}), 1.97(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.17$ (dd, $J=5.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{dd}, J=8.7,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-$ $7.30(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.1, 18.6, 59.5, 86.9, 107.3, 127.6, 128.3, 129.0, 130.9, 131.2, 136.0. IR (neat): 3343, 3059, 3025, 2942, 2864, 2170, 1494, 1462, 1383, 1026, 883 , $701,677 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{OSi}\left[\mathrm{M}^{+}\right]$314.2066, found 314.2068.
(2Z,4E)-6,6-Dimethyl-1-phenylhepta-2,4-dien-1-ol (4Ab). Compound 4Ab (47 mg, 85\%, $2 Z, 4 E / 2 E, 4 E=95 / 5$) was obtained as an oil from 3Ab ($55 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 Z, 3 E /$ others $=87 / 13$) and $n-\operatorname{BuLi}(0.45 \mathrm{~mL}$ of 1.65 M solution in hexane, 0.75 mmol$) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.06 (s, 9H), 1.88 (brs, 1H), $5.51(\mathrm{dd}, J=10.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=9.2, \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=11.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dd}, J=15.6,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.42(\mathrm{~m}, 5 \mathrm{H})$. Selected data of (E, E)-isomer: $1.02(\mathrm{~s}, 9 \mathrm{H}), 5.96$ (dd, $J=15.6,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.26$ (dd, $J=15.6$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}): 29.4, 33.5, 69.9, 119.5, 125.8, 127.4, 128.5, 130.6,
130.9, 143.4, 149.0. IR (neat): 3340, 3030, 2959, 2901, 2864, 1650, 1602, 1452, 1389, 1362, 1037, 1020, 985, 950, 743, $698 \mathrm{~cm}^{-1}$. HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}\left[\mathrm{M}^{+}\right]$216.1514, found: 216.1515. (Z)-6,6-Dimethyl-1-phenylhept-2-en-4-yn-1-ol (4Ac). Compound 4Ac (21 mg, 49\%, Z/E = 93/7) was obtained as an oil from 3Ac ($43 \mathrm{mg}, 0.20 \mathrm{mmol}, Z / E=93 / 7$) and $n-\mathrm{BuLi}(0.36 \mathrm{~mL}$ of 1.65 M solution in hexane, 0.6 mmol$){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.29(\mathrm{~s}, 9 \mathrm{H}), 2.18(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.59(\mathrm{dd}, J=10.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dd}, J=8.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(J=10.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-$ $7.46(\mathrm{~m}, 5 \mathrm{H})$. Selected data of (E)-isomer: $1.22(\mathrm{~s}, 9 \mathrm{H}), 5.22-5.24(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=15.6,6.0$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 28.2, 30.9, 72.0, 75.1, 104.8, 110.4, 125.7, 127.6, 128.5, 142.67, 142.71. IR (neat): 3342, 2968, 2928, 2866, 2213, 1602, 1493, 1475, 1453, 1362, 1266, 1203, 1036, 1003, 854, 744, $698 \mathrm{~cm}^{-1}$. HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}\left[\mathrm{M}^{+}\right]$214.1358, found: 214.1355.
(Z)-8,8-Dimethyl-1-(triisopropylsilyl)nona-4-en-1,6-diyn-3-ol (4Ec). Compound 4Ec (14 mg, $31 \%, Z / E=>98 / 2$) was obtained as an oil from 3Ec ($45 \mathrm{mg}, 0.15 \mathrm{mmol}, Z / E=96 / 4$) and n-BuLi (0.27 mL of 1.65 M solution in hexane, 0.45 mmol). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.07(\mathrm{~s}, 21 \mathrm{H})$, $1.26(\mathrm{~s}, 9 \mathrm{H}), 2.08(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J=8.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{dd}, J=10.6,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, 5.93 (dd, $J=10.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.1, 18.6, 28.2, 30.8, 60.7, 74.2, 86.3, 105.8, 106.4, 112.0, 139.4. IR (neat): 3383, 2945, 2865, 2212, 2170, 1616, 1463, 1385, 1363, 1266, 1038, 883, $678 \mathrm{~cm}^{-1}$. HRMS (EI): calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{OSi}\left[\mathrm{M}^{+}\right] 318.2379$, found 318.2384.
(Z)-1-(4-Methoxyphenyl)-3-phenylprop-2-en-1-ol (4Ca). To a solution of 3Ca (21 mg, 0.09 mmol, $Z / E=95 / 5$) and $N, N, N^{\prime}, N^{\prime}$-tetraethylenediamine (TMEDA) ($15 \mu \mathrm{~L}, 0.09 \mathrm{mmol}$) in THF (1 mL) was added n - $\mathrm{BuLi}(0.45 \mathrm{~mL}$ of 1.60 M solution in hexane, 0.72 mmol$)$ at $-78^{\circ} \mathrm{C}$ under Ar atmosphere and the reaction mixture was warmed to rt over 10 min . The reaction was quenched with water. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and solvent was evaporated. The crude product was purified by silica gel column chromatography (hexane/ $\mathrm{AcOEt}=8 / 1$) to give $\mathbf{4 C a}(10$ $\mathrm{mg}, 47 \%, Z / E=97 / 3)$ as an oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.82(\mathrm{~s}, 3 \mathrm{H}), 5.60(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.95(\mathrm{dd}, J=11.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d} J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.38(\mathrm{~m}$, 7 H), the signal of OH proton was not clearly observed. Selected data of (E)-isomer; 5.25 (d, $J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{32}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 55.3, 69.7, 114.0, 127,4, $127.6,128.3,128.8,130.9,133.4,135.4,136.4,159.2$. IR (neat): 3371, 3057, 3021, 2956, 2934,

2835, 1610, 1509, 1463, 1302, 1247, 1173, 1032, 831, $699 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$ [M^{+}]: 240.1150. Found: 240.1148.

In a similar manner, (Z)-allylic alcohol 4Ad was obtained from the corresponding (Z)-vinyl ether 3Ad.
(Z)-1-Phenylhept-2-en-1-ol (4Ad). ${ }^{25}$ Compound 4Ad ($57 \mathrm{mg}, 81 \%, Z / E=89 / 11$) was obtained as an oil from 3Ad ($70 \mathrm{mg}, 0.37 \mathrm{mmol}, Z / E=91 / 9$) , TMEDA ($54 \mu \mathrm{~L}, 0.36 \mathrm{mmol}$) and n-BuLi in hexane ($1.76 \mathrm{~mL}, 1.65 \mathrm{M}$ solution in hexane, 2.9 mmol). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.92(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.81(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.30(\mathrm{~m}, 2 \mathrm{H}), 5.52-5.59(\mathrm{~m}, 3 \mathrm{H})$, 7.24-7.80 (m, 5H). Selected data of (E)-isomer: 2.03-2.09 (m, 2H), 5.17 (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.67$ $(\mathrm{dd}, J=15.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dt}, J=15.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{33}{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 13.9$, $22.3,27.4,31.7,69.7,125.9,127.4,128.5,131.8,132.4,143.7$.

Supporting Information:

Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of products. This material is available free of charge via the Internet at http://pubs.acs.org/.

ACKNOWLEDGEMENTS

This work was financially supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS).

REFERENCES AND NOTES

(1) (a) Siau, W.-Y.; Zhang, Y.; Zhao, Y. Top. Curr. Chem. 2012, 327, 33-58. (b) Oger, C.; Balas, L.; Durand, T.; Galano, J.-M. Chem. Rev. 2013, 113, 1313-1350. Recent examples of stereoselective synthesis of (Z)-alkenes: (c) Zhuo, L.-G.; Yao, Z.-K.; Yu, Z.-X. Org. Lett. 2013, 15, 4634-4637. (d) Chen, C.; Dugan, T. R.; Brennessel, W. W.; Weix, D. J.; Holland, P. L. J. Am. Chem. Soc. 2014, 136, 945-955. (e) Singh, K.; Staig, S. J.; Weaver, J. D. J. Am. Chem. Soc. 2014, 136, 5275-5278. (f) Bronner, S. M.; Herbert, M. B.; Patel, P. R.; Marx, V. M.; Grubbs, R. H. Chem. Sci. 2014, 5, 4091-4098. (g) Koh, M. J.; Khan, R. K. M.; Torker, S.; Yu, M.; Mikus, M. S.; Hoveyda, A. H. Nature 2015, 517, 181-186.
(2) (a) Stang P. J. Acc. Chem. Res. 1978, 11, 107-114. (b) Stang, P. J.; Hanack. M.; Subramanian,
L. R. Synthesis 1982, 85-126. (c) Baraznenok, I. L.; Nenajdenko, V. G.; Balenkova, E. S. Tetrahedron 2000, 56, 3077-3119. (d) Chassaing, S.; Specklin, S.; Weibel, J.-M.; Pale, P. Tetrahedron 2012, 68, 7245-7273.
(3) Examples of the reviews of cross-coupling reactions: (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483. (b) In Handbook of Organopalladium Chemistry for Organic Synthesis, Negishi, E. Ed.; John Wiley \& Sons, Inc.: New York, 2002. (c) In Palladium-Catalyzed Coupling Reactions, Molnár Á. Ed.; Wiley-VCH: Weinheim, 2013. (d) In Metal-Catalyzed Cross-Coupling Reactions and More, de Meijere, A.; Bräse, S.; Oestreich, M. Eds.; WileyVCH: Weinheim, 2014.
(4) Cross coupling reactions of vinyl triflates; reviews: (a) Scott, W. J.; McMurry, J. E. Acc. Chem. Res. 1988, 21, 47-54. (b) Ritter, K. Synthesis 1993, 735-762. (c) Cacchi, S. Pure \& Appl. Chem. 1996, 68, 45-52. Recent examples: (d) Scheiper, B.; Bonnekessel, M.; Krause, H.; Fürstner, A. J. Org. Chem. 2004, 69, 3943-3949. (e) Shirakawa, E.; Sato T.; Imazaki, Y.; Kimura, T.; Hayashi, T. Chem. Commun. 2007, 4513-4515. (f) Wu, X.-F.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 5284-5288. (g) Saini, V.; Sigman, M. S. J. Am. Chem. Soc. 2012, 134, 11372-11375. (h) Winkler, C. K.; Clay, D.; Davies, S.; O’Neill, P.; McDaid, P.; Debarge, S.; Steflik, J.; Karmilowicz, M.; Wong, J. W.; Faber, K. J. Org. Chem. 2013, 78, 1525-1533.
(5) (a) Xie, H.; Shao, Y.; Becker, J. M.; Naider, F.; Gibbs, R. A. J. Org. Chem. 2000, 65, 85528563. (b) Babinski, D.; Soltani, O.; Frantz, D. E. Org. Lett. 2008, 10, 2901-2904. (c) Specklin, S.; Bertus, P. Weibel, J.-M.; Pale, P. J. Org. Chem. 2008, 73, 7845-7848.
(6) Sosa, J. R.; Tudjarian, A. A.; Minehan T. G. Org. Lett. 2008, 10, 5091-5094.
(7) Suero, M. G.; Bayle, E. D.; Collins, B. S. L; Gaunt, M. J. J. Am. Chem. Soc. 2013, 135, 5332-5335.
(8) (a) Stang, P. J.; Treptow, W. Synthesis 1980, 283-284. (b) Martínez, A. G.; Herrera, A.; Martínez, R.; Teso, E.; García, A.; Osío, J.; Pargada, L.; Unanue, R.; Subramanian, L. R.; Hanack M. J. Heterocyclic Chem. 1988, 25, 1237-1241. (c) Wright, M. E.; Pulley, S. R. J. Org. Chem. 1989, 54, 2886-2889. (d) Sato, Y.; Watanabe, S.; Shibasaki, M. Tetrahedron Lett. 1992, 33, 2589-2592. (e) Niwa, H.; Watanabe, M.; Inagaki, H.; Yamada, K. Tetrahedon 1994, 50, 7385-7400.
(9) Stang, P. J.; Mangum, M. G.; Fox, D. P.; Haak, P. J. Am. Chem. Soc. 1974, 96, 4562-4569.
(10) The stereoselective preparation of (Z)-tris(trimethylsilyl)silyl enol ether from propionaldehyde was reported: Boxer, M. B.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 48-49.
(11) The "syn-effect" is herein defined as an effect which stabilizes the syn-conformation against the steric hindrance at the transition state.
(12) Related representative studies on the "syn-effect": (a) Hirata, T.; Sasada, Y.; Ohtani, T.; Asada, T.; Kinoshita, H.; Senda, H.; Inomata, K. Bull. Chem. Soc. Jpn. 1992, 65, 75-96. (b) Guha, S. K.; Shibayama, A.; Abe, D.; Sakaguchi, M.; Ukaji, Y.; Inomata, K. Bull. Chem. Soc. Jpn. 2004, 77, 2147-2157. (c) Takeda, N.; Chayama, T.; Takenaka, H.; Ukaji, Y.; Inomata, K. Chem. Lett. 2005, 34, 1140-1141. (d) Inomata, K. J. Synth. Org. Chem. Jpn. 2009, 67, 1172-1182. (e) Horii, S.; Ishimaru, I.; Ukaji, Y.; Inomata, K. Chem. Lett. 2011, 40, 521-523. (f) Nakano, T.; Soeta, T.; Endo, K.; Inomata, K.; Ukaji, Y. J. Org. Chem. 2013, 78, 12654-12661 and references cited therein.
(13) Stereoselective productions of (Z)-alkenes by elimination or isomerization reactions were reported. (a) Margot, C.; Matsuda, H.; Schlosser, M. Tetrahedron 1990, 46, 2425-2430. (b) Guillam, A.; Maddaluno, J.; Duhamel, L. J. Chem. Soc., Chem. Commun. 1996, 1295-1296. (c) Guillam, A.; Toupet, L.; Maddaluno, J. J. Org. Chem. 1998, 63, 5110-5122. (d) Tayama, E.; Sugai, S. Synlett. 2006, 849-852. (e) Tayama, E.; Sugai, S. Hara, M. Tetrahedron Lett. 2006, 47, 7533-7535. (f) Pichon, N.; Harrison-Marchand, A.; Toupet, L.; Maddaluno, J. J. Org. Chem. 2006, 71, 1892-1901. (g) Tayama, E.; Hashimoto, R. Tetrahedron Lett. 2007, 48, 7950-7952. (h) Xu, L.; Regnier, T.; Lemiègre, L.; Cardinael, P.; Combret, J.-C.; Bouillon, J.P.; Blanchet, J.; Rouden, J.; Harrison-Marchand, A.; Maddaluno, J. Org. Lett., 2008, 10, 729732. (i) Prantz, K.; Mulzer, J. Angew. Chem., Int. Ed. 2009, 48, 5030-5033. (j) Song, Z.; Lei, Z.; Gao, L.; Wu, X; Li, L. Org. Lett. 2010, 12, 5298-5301. (k) Gan, Z.; Wu, Y.; Gao, L.; Sun, X.; Lei, J.; Song, Z.; Li, L. Tetrahedron 2012, 68, 6928-6934. (1) Tayama, E.; Toma, Y. Tetrahedron 2015, 71, 554-559 and references cited therein.
(14) (a) Schöllkoph, U. Angew. Chem., Int. Ed. 1970, 9, 763-773. (b) Rautenstrauch, V.; Büchi, G.; Wüest, H. J. Am. Chem. Soc. 1974, 96, 2576-2580. (c) Marshall, J. A. in Comprehensive Organic Synthesis, Trost, B. M., Ed.; Pergamon Press: Oxford, 1991, Vol. 3, pp. 979-981. (d) Tomooka, K.; Yamamoto, H.; Nakai, T. Liebigs Ann./Recueil 1997, 1275-1281. (e) Tomooka,
K. J. Syn. Org. Chem. Jpn. 2001, 59, 322-330. (f) Giampietro, N. C.; Kampf, J. W.; Wolfe, J. P. J. Am. Chem. Soc. 2009, 131, 12556-12557. (g) Giampietro, N. C.; Wolfe, J. P. Angew. Chem., Int. Ed. 2010, 49, 2922-2924 and references cited therein.
(15) Preference of syn-conformation of aldehydes was also pointed out. For example, (a) Wintner, C. E. J. Chem. Ed. 1987, 64, 587-590. (b) Deslongchamps, G.; Deslongchamps, P. Org. Biomol. Chem. 2011, 9, 5321-5333.
(16) (a) McMurry, J. E.; Scott. W. J. Tetrahedron Lett. 1983, 24, 979-982. (b) Scott, W. J.; Peña, M. R.; Swärd, K.; Stoessel, S. J.; Stille, J. K. J. Org. Chem. 1985, 50, 2302-2308.
(17) (a) Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513-519. (b) Spivey, A. C.; Fekner, T.; Spey, S. E.; Adams, H. J. Org. Chem. 1999, 64, 9430-9443.
(18) (a) Colberg, J. C.; Rane, A.; Vaquer, J.; Soderquist, J. A. J. Am. Chem. Soc. 1993, 115, 60656071. (b) Mjalli, A. M. M.; Polisetti, D. R.; Quada, J. C.; Yarragunta, R. R.; Andrews, R. C.; Xie, R.; Subramanian, G. PCT Int. Appl., 2007089857.
(19) Although the Heck reaction of the vinyl triflate $\mathbf{2 A}$ with methyl acrylate was examined, ${ }^{34}$ the serious isomerization occurred to give a $c a .1 / 1$ mixture of the product. ${ }^{35}$

(20) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467-4470. (b) Li, C. C.; Xie, Z. X.; Zhang, Y. D.; Chen, J. H.; Yang, Z. J. Org. Chem. 2003, 68, 8500-8504.
(21) Oh-e, T.; Miyaura, N.; Suzuki, A. J. Org. Chem. 1993, 58, 2201-2208.
(22) (a) Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374-4376. (b) Corriu, R. J. P.; Masse, J. P. J. Chem. Soc., Chem. Commun. 1972, 144. (c) Tamao, K.; Sumitani, K.; Kiso, Y.; Zembayashi, M.; Fujioka, A.; Kodama, S.; Nakajima, I.; Minato, A.; Kumada, M. Bull. Chem. Soc. Jpn. 1976, 49, 1958-1969. (d) Busacca, C. A.; Eriksson, M. C.; Fiaschi, R. Tetrahedron Lett. 1999, 40, 3101-3104.
(23) Examples of stereospecific transformation of allylic alcohols: (a) Katsuki, T. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer: Berlin, 1999; Chapter 18.1. (b) Adam, W.; Wirth, T. Acc. Chem. Res. 1999, 32, 703-
710. (c) Lebel, H.; Marcoux, J.-F, Molinaro, C.; Charette. A. B. Chem. Rev. 2003, 103, 9771050. (d) Olivares-Romero, J. L.; Li, Z.; Yamamoto, H. J. Am. Chem. Soc. 2013, 135, 34113413.
(24) (Z)-2-En-4-yn-1-ols were useful precursors for furan synthesis: (a) Du, X.; Chen, H.; Liu, Y. Chem. Eur. J. 2008, 14, 9495-9498. (b) Du, X.; Song, F.; Lu, Y.; Chen, H.; Liu, Y. Tetrahedron, 2009, 65, 1839-1845.
(25) Unique stereoselective synthesis of (Z)-allylic alcohols was reported: Jeon, S.-J.; Fisher, E. L.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2006, 128, 9618-9619.
(26) Maulucci, N.; Izzo, I.; Bifulco, G.; Aliberti, A.; Cola, C. D.; Comegna, D.; Gaeta, C.; Napolitano, A.; Pizza, C.; Tedesco, C.; Flot, D.; Riccardis, F. D. Chem. Commun. 2008, 39273929.
(27) Kamptmann, S. B.; Brückner, R. Eur. J. Org. Chem. 2013, 6584-6600.
(28) Collins, I.; Caldwell, J.; Fonseca, T.; Donald, A.; Bavetsias, V.; Hunter, L.-J. K.; Garrett, M. D.; Rowlands, M. G.; Aherne, G. W.; Davies, T. G.; Berdini, V.; Woodhead, S. J.; Davis, D.; Seavers, L. C. A.; Wyatt, P. G.; Workman, P.; McDonald, E. Bioorg. Med. Chem. 2006, 14, 1255-1273.
(29) Mukherjee, S.; Kontokosta, D.; Patil, A.; Rallapalli, S.; Lee, D. J. Org. Chem. 2009, 74, 92069209.
(30) Ding, B.; Bentrude, W. G. J. Am. Chem. Soc. 2003, 125, 3248-3259.
(31) Banert, K.; Hagedorn, M.; Liedtke, C.; Melzer, A.; Schöffler, C. Eur. J. Org. Chem. 2000, 257-267.
(32) Arai, N.; Azuma, K.; Nii, N.; Ohkuma, T. Angew. Chem., Int. Ed. 2008, 47, 7457-7460.
(33) Wu, H.-L.; Wu, P.-Y.; Uang, B.-J. J. Org. Chem. 2007, 72, 5935-5937.
(34) Scott, W. J.; Pefia, M. R.; Sward, K.; Stoessel, S. J.; Stille, J. K. J. Org. Chem. 1985, 50, 2302-2308.
(35) Lebold, T. P.; Gallego, G. M.; Marth, C. J.; Sarpong, R. Org. Lett. 2012, 14, 2110-2113.

