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By using first-principles calculations, we study the formation energy and concentration of the silicon mono-

vacancy. We use large-scale supercells containing up to 1728 atomic sites and confirm the convergence of

calculational results with respect to the cell size. The formation energy is calculated to be 3.46 eV, and the

vacancy concentration at the silicon melting point is estimated to be 7.4 × 1016 cm−3. These values are

consistent with experimental results. We find that the vibrational effect significantly increases the vacancy

concentration about 104 times.

1. Introduction

The study of point defects in semiconductors has attracted much attention because

of the crucial effects of such defects on various properties of materials. Some defects

capture carriers and affect the electrical conductivity of semiconductors. Therefore,

control of defects is necessary for device fabrication.1)

The silicon vacancy is a fundamental defect and has been extensively investigated

theoretically1–8) and experimentally.9–13) Electron paramagnetic resonance (EPR) mea-

surement has clarified the Jahn-Teller effect that lowers the symmetry from Td.
9) Theo-

retical studies based on the density functional theory (DFT) show the symmetry of D2d

for the neutral charge state.1,3–7) Negative-U behavior was examined by experimental14)

and theoretical studies.15)

The formation of defects depends on crystal growth rate.16) Vacancies are created at

high crystal growth rates, whereas interstitials are created at low crystal growth rates.

At high temperatures up to the melting point, a finite vacancy concentration is observed

in thermal equilibrium.17) The formation energy of the monovacancy is estimated to be

3.1 – 4.1 eV in some experimental studies.10–13)

Recently, Goto et al.18) have observed elastic softening at a very low temperature by
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ultrasonic measurements. They found the elastic softening below 20 K. Their analysis

leads to the conclusion that the softening is induced by high-symmetry (Td) defects

and they considered that the softening originates from the monovacancy. However,

the defects observed by them might be different from the monovacancy examined in

previous studies.19,20) Goto et al. supposed that the concentration deduced from the

results of a low-temperature experiment is the same as that of the thermal equilibrium

monovacancy near the melting point; therefore, the concentration near the melting point

should be clarified.

In this study, we carry out large-scale first-principles calculation in order to accu-

rately estimate the concentration of the monovacancy. We use large supercells containing

1728 and 216 sites for calculating formation energy and the vibrational effect on the

concentration of the monovacancy, respectively. The calculations are much larger than

those in previous studies; i.e., up to 1000-site supercell calculation for the formation

energy and up to 64-site supercell calculation for the vibrational effect have been car-

ried out thus far.1,3, 5, 6, 8, 21,22) By using large supercells, we confirm good convergence.

The calculated formation energy and concentration of the monovacancy at 1685 K are

found to be 3.46 eV and 7.4 × 1016 cm−3, respectively, which are close to experimen-

tal values.10–13,17,23) We find that the vibrational effect significantly contributes to the

increase in the concentration of the monovacancy; thus, the calculation without the

vibrational effect is not reliable.

2. Computational methods

We carry out the DFT calculations based on the generalized gradient approximation

(GGA). We use the norm-conserving pseudopotential and 9 Ryd cutoff energy for the

plane wave basis set. First, we calculate total energy as a function of primitive cell

volume, then we fit the calculated data to the Birch-Murnaghan equation of state24,25)

and obtain an optimized lattice constant. The calculated lattice constant is 5.466 Å,

which is close to the experimental value of 5.431 Å26) and consistent with those obtained

in previous DFT studies.1,3, 25)

To simulate defects, we use supercell models containing 64, 216, 512, 1000, and

1728 atomic sites. Γ-point sampling is carried out in the Brillouin zone integration. The

use of supercell models efficiently reduces computational cost; however, it introduces

an error because of defect-defect image interactions.3,27–29) The error decreases as the

supercell size increases. Thus, a larger supercell gives more accurate results of electronic
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properties such as formation energy.

The formation energy (Ef ) of a neutral vacancy is calculated as1,5)

Ef = Ev
N−1 − (

N − 1

N
)EN , (1)

where EN is the total energy of the perfect supercell consisting of N atoms and Ev
N−1

is the total energy of the supercell for the monovacancy. By using the formation energy,

the concentration of the vacancy is roughly approximated by10)

C0 = N0 exp(− Ef

kBT
), (2)

where N0, kB, and T are the total number of atoms per unit volume, Boltzmann con-

stant, and temperature, respectively. However, when the vibrational effect and config-

urational entropy are considered, the concentration is given by6)

CS = C0nc exp(− F f
vib

kBT
), (3)

where nc is the number of geometries with the lowest energy. A neutral vacancy has the

D2d symmetry, nc = 3, which gives the formation configurational entropy Sf
c = 1.1kB.

F f
vib is the formation vibrational free energy given by6)

F f
vib = F v

vib − (
N − 1

N
)F p

vib, (4)

where F v
vib and F p

vib are the vibrational free energies of the vacancy and perfect crystal,

respectively. These vibrational free energies are given by6,30)

Fvib = kBT
∑
i

ln[sinh(
hνi

2kBT
)], (5)

where h is Planck’s constant and ν is the vibrational frequency. i runs over the vibra-

tional modes.

The formation vibrational entropy Sf
vib is given by31)

Sf
vib = Sv

vib − (
N − 1

N
)Sp

vib, (6)

where Sv
vib and Sp

vib are the vibrational entropies of the vacancy and perfect crystal,

respectively, which can be calculated from the first derivative of Fvib over temperature:30)

Svib = −
(
∂Fvib

∂T

)
V

. (7)

In the above calculation of the vacancy concentration in Eq. (3), we need to evaluate

the vibrational frequencies. Thus, the second derivatives of the energy over atomic

coordinates are computed numerically within the harmonic approximation, i.e., the

second derivatives are estimated from the atomic force for the geometry where the
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atom is in a displaced position. We consider an atomic displacement of 0.05 Å in this

calculation. The vibrational frequencies are obtained by diagonalizing the dynamical

matrix whose elements are calculated from the second derivatives.

3. Results and discussion

3.1 Formation energy

We calculate the neutral monovacancy V 0
Si

. We find that the most stable geometry

of the vacancy has the D2d symmetry for all supercells. The results are in agreement

with those of previous theoretical calculations.1–3,5, 8) In the D2d geometry, four nearest-

neighboring atoms form two pairs, as shown in Fig. 1. The two distances between the

nearest-neighboring atoms are denoted by L1 and L2 (L1 > L2), which are shown in

Table I. The calculated volume of the tetrahedron, whose top is placed at a nearest-

neighbor site, is smaller than that of the ideal one (Table I). This volume reduction

originates from the inward relaxation of the nearest-neighbor atom.

We plot the displacement of atoms from the ideal position in Fig. 2. As the distance

from the vacancy center increases, the displacement tends to decrease. In the 1728-site

cell, the displacement of the atoms, which are more than 9.2 Å from the vacancy center,

is very small (less than 0.005 Å).

We calculate the formation energy using supercells whose sizes are up to 1728 atomic

sites. As shown in Table I, the formation energy well converges when a 1728-atomic-site

supercell is used. The difference between the formation energies calculated from 1000-

and 1728-site supercells is very small (0.02 eV). Our calculated value (3.46 eV) is close

to the experimental values.

Dannefaer et al.10) carried out the positron annihilation experiment and estimated

the formation energy to be 3.6±0.5 eV. Watkins and Corbett11) estimated the formation

energy to be 3.6 ± 0.5 eV from the EPR experiment. Shimizu et al.12) estimated the

formation energy to be 3.6+0.3
−0.1 eV from the Raman shift measurement. Fukata et al.13)

used a quenching method and estimated the formation energy to be about 4.0 eV. These

results are consistent with the present value.

The previous theoretical calculations that used 64 – 1000-atomic-site supercells show

that the formation energies are 3.0 – 4.1 eV,1,3, 5, 8, 21, 22) which are close to our value.

The 1000-site calculation based on the GGA3) gives a value of 3.62 eV, which is close to

the present value from the 1728-site calculation (3.46 eV). A recent 512-site calculation

based on the Heyd-Scuseria-Ernzerhof screened hybrid functional22) gives a formation
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Table I. Results of supercell calculations. Vr is the defect volume change defined as Vr =

(V -V0)/V0, where V and V0 are the volumes of the tetrahedra formed by the four nearest-neighboring

atoms of the relaxed and ideal vacancies, respectively.21) L1 and L2 are distances between the

nearest-neighboring atoms in the relaxed geometries (see Fig. 1). The ideal (unrelaxed) bulk distance

and defect volume are 3.87 Å and 6.81 Å3, respectively. N is the supercell size and Ef is the

formation energy.

N Vr (%) L1 (Å) L2 (Å) Symmetry Ef (eV)

64 -30.75 3.60 3.16 D2d 3.05

216 -43.00 3.44 2.90 D2d 3.31

512 -42.29 3.43 2.94 D2d 3.43

1000 -42.72 3.42 2.94 D2d 3.48

1728 -44.08 3.44 2.87 D2d 3.46

energy of 4.08 eV.

3.2 Vacancy concentration

We next calculate the vibrational frequencies by using a 216-site supercell. The density

of states (DOS) is computed by introducing Gaussian broadening whose half width is

50 cm−1 (Fig. 3). Comparing the DOS of the vacancy system with that of the perfect

system, we find that the vibrational frequencies are lower in the vacancy case. This

softening of the vacancy system is expected to increase the vacancy concentration.

Next, the monovacancy concentration is calculated. We use the formation energy

estimated from the 1728-site cell calculation and calculate vibrational frequencies by

using the 64- and 216-site supercells. At the melting point (1685 K), CS in Eq. (3) is

estimated to be 8.2 × 1016 and 7.4 × 1016 cm−3 by using the 64- and 216-site supercell

calculations, respectively. Thus, the result is insensitive to the supercell size used in the

calculation of vibrational frequencies. C0 in Eq. (2) is estimated to be 2.2 × 1012 cm−3,

which is much lower than CS, by considering the vibrational effect and configurational

entropy. The high CS value is mainly due to the fact that the vibrational frequencies

are softened in the vacancy system. The configurational entropy effect increases the

concentration only 3 times, and thus the entropy only slightly affects the concentration.

The formation vibrational entropy as a function of temperature is given in Fig. 5.

The entropy converges at 1100 K, giving a value of 9.1kB. At the melting point, the Sf
vib

values calculated from the 64- and 216-site supercells are 9.3kB and 9.1kB, respectively.

Thus, the sum of the vibrational and configurational entropies is ∼ 10kB.
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From a positron annihilation study, Dannefaer et al.10) estimated the vacancy con-

centrations to be 1014 – 1016 cm−3 at 1500 K.17) At this temperature, we estimate the

concentration to be 4.0 × 1015 cm−3, which shows very good agreement with their es-

timations. At the melting point (1685 K), Voronkov and Falster23) obtained a vacancy

concentration of 1015 cm−3 by analyzing experimental results of boron doping.32) Our

calculated value (7.4 × 1016 cm−3) is somewhat higher. The small deviation may come

from the use of a different formation energy (Voronkov and Falster used the value of

4.5 eV).

Goto et al.18) detected a defect by low-temperature ultrasonic measurement and

considered that the detected defect is a monovacancy. By analyzing the results of the

low-temperature experiment, they estimated the concentration to be 1015 cm−3 and

expected that the concentration would be the same as that at the melting point. Their

estimated concentration is only slightly lower than our present value at the melting

point (7.4 × 1016 cm−3). Thus, this seems to support their expectation. However, it

should be noted that monovacancies likely agglomerate in cooling specimens as argued

in Ref. 19. If so, the detected defect is not a monovacancy.

Lannoo and Allan calculated the vibrational entropy using Green’s-function tech-

nique and obtained a vibrational entropy value of 6kB or more.33,34) Using the same

technique, Leite et al. calculated a 17-atom cluster and showed that the vibrational en-

tropy can reach 10kB.35) Al-Mushadani and Needs conducted a DFT calculation based

on the local density approximation (LDA) using 64 atomic sites and obtained a vibra-

tional entropy of about 1 × 10−3 eVK−1 (12kB) and a vacancy concentration of 1016

cm−3 at 1500 K.6) Our calculated vibrational entropy value is 9.1kB and the vacancy

concentration is 4.0 × 1015 cm−3. These values are close to the theoretical results.

4. Conclusions

We have carried out DFT calculations of V 0
Si

by using large-scale supercells. The su-

percells were larger than those in the previous studies1,3, 5, 6, 8, 21,22) and we confirmed

the convergence of calculational results. Therefore, we believe that the present DFT

calculations give reliable results. In the 1728-site supercell calculation, we found that

the displacement of the atoms, which are more than 9.2 Å from the vacancy site, is very

small (less than 0.005 Å), suggesting that the calculational formation energy converges.

In fact, we found that the formation energy estimated from the 1728-site supercell calcu-

lation is 3.46 eV, and we confirmed the convergence (Table I). The estimated formation
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energy is close to the experimental values.10–13) As for the vibrational effect, we found

that the 64- and 216-site supercell calculations give similar results, indicating that the

results well converge. The vacancy concentrations at 1500 and 1685 K (silicon melting

point) were estimated to be 4.0 × 1015 and 7.4 × 1016 cm−3, respectively, which are

in good agreement with the experimental values.10,17,23) We found that the vibrational

effect significantly increases the vacancy concentration about 104 times.
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Fig. 1. Geometry of the neutral vacancy: four nearest-neighboring atoms of the vacancy form two

pairs. L1 and L2 are the distances between two atoms, where L1 > L2.

Fig. 2. Displacements of atoms from the ideal position as a function of the distance from the

vacancy.
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Fig. 3. Vibrational density of states for vacancy system (solid line) and perfect system (dashed

line).

Fig. 4. Vacancy concentration as a function of inverse temperature. Calculations of CS (solid line)

and C0 (dashed line) are carried out by using Eqs. (3) and (2), respectively.
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Fig. 5. Formation vibrational entropy (Sf
vib) in Eq. (6) as a function of temperature.

10/12



Jpn. J. Appl. Phys. REGULAR PAPER

References

1) F. Corsetti and A. A. Mostofi, Phys. Rev. B 84, 035209 (2011).

2) A. Oshiyama, M. Saito, and O. Sugino, Appl. Surf. Sci. 85, 239 (1995).

3) A. F. Wright, Phys. Rev. B 74, 165116 (2006).

4) A. Antonelli, E. Kaxiras, and D. J. Chadi, Phys. Rev. Lett. 81, 2088 (1998).

5) M. I. J. Probert and M. C. Payne, Phys. Rev. B 67, 075204 (2003).

6) O. K. Al-Mushadani and R. J. Needs, Phys. Rev. B 68, 235205-3 (2003).

7) M. Saito, A. Oshiyama, and S. Tanigawa, Phys. Rev. B 44, 10 601 (1991).

8) F. El-Mellouhi, N. Mousseau, and P. Ordejón, Phys. Rev. B 70, 205202 (2004).

9) For a review, see: G. D. Watkins, Defects and Their Structure in Non-metallic

Solids (Plenum, New York, 1976) p. 203.

10) S. Dannefaer, P. Mascher, and D. Kerr, Phys. Rev. Lett. 56, 2195 (1986).

11) G. Watkins and J. Corbett, Phys. Rev. 134, A1389 (1964).

12) Y. Shimizu, M. Uematsu, and K. M. Itoh, Phys. Rev. Lett. 98, 095901 (2007).

13) N. Fukata, A. Kasuya, and M. Suezawa, Physica B 308-310, 11251128 (2001).

14) G. D. Watkins and J. R. Troxell, Phys. Rev. Lett. 44, 593 (1980).

15) G. Baraff, E. Kane, and M. Schlutter, Phys. Rev. Lett. 43, 956 (1979).

16) V. V. Voronkov, J. Cryst. Growth 59, 625 (1982).

17) P. M. Fahey, P. B. Griffin, and J. D. Plummer, Rev. Mod. Phys. 61, 289 (1989).

18) T. Goto, H. Yamada-Kaneta, Y. Saito, Y. Nemoto, K. Sato, K. Kakimoto, and S.

Nakamura, J. Phys. Soc. Jpn. 75, 044602 (2006).

19) M. Suezawa and Y. Yonenaga, J. Phys. Soc. Jpn. 76, 076001 (2007).

20) K. Uchida and A. Oshiyama, J. Phys. Soc. Jpn. 79, 093711 (2010).
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