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In the present study, variational path integral molecular dynamics and associated hybrid Monte
Carlo (HMC) methods have been developed on the basis of a fourth order approximation of a
density operator. To reveal various parameter dependence of physical quantities, we analytically solve
one dimensional harmonic oscillators by the variational path integral; as a byproduct, we obtain
the analytical expression of the discretized density matrix using the fourth order approximation
for the oscillators. Then, we apply our methods to realistic systems like a water molecule and a
para-hydrogen cluster. In the HMC, we adopt two level description to avoid the time consuming
Hessian evaluation. For the systems examined in this paper, the HMC method is found to be about
three times more efficient than the molecular dynamics method if appropriate HMC parameters are
adopted; the advantage of the HMC method is suggested to be more evident for systems described by
many body interaction. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4961149]

I. INTRODUCTION

In the fields of computational physics and chemistry,
quantum Monte Carlo methods have attracted great interest
as tools to accurately evaluate ground state properties of
many body systems.1–8 Variational Monte Carlo method,9

for example, is a method to calculate expectation values
of physical quantities using a trial wavefunction of target
systems. The diffusion Monte Carlo (DMC)10,11 or Green’s
function Monte Carlo (GFMC)12 method is a projector
approach in which a stochastic imaginary time evolution
is utilized to improve a starting trial wavefunction. Variational
path integral (VPI),1 which is also referred to be path integral
ground state,13 provides another exact numerical method
for many body systems. The important feature of the VPI
method compared with other quantum Monte Carlo methods
like DMC and GFMC is that a variety of ground state
properties can be calculated without extrapolation which is
sometimes used in DMC and GFMC calculations. Although,
using either DMC or GFMC, the ground state energy can
be calculated accurately, expectation values of operators
which do not commute with Hamiltonian, for example, the
potential energy and the radial distribution function, are
harder to calculate; one way to calculate these quantities
is based on a linear extrapolation using the variational
expectation and the so-called mixed expectation from
GFMC.13,14

In VPI calculations, an approximate expression of an
imaginary time propagator, which is equivalent with a density
operator at a temperature, plays a key role. The second
order Suzuki-Trotter formula15 can be used for the density

a)Electronic mail: kamibayashi@stu.kanazawa-u.ac.jp
b)Electronic mail: smiura@mail.kanazawa-u.ac.jp

operator, which is the standard choice of approximation
for path integral simulations.6,16 We can use more accurate
expressions to efficiently perform VPI calculations. One way is
based on an approximation that many body density matrix is
expressed by the product of the two body density matrix.1

This method has successfully been applied to quantum
fluids such as liquid helium;1,13,17 however, the pair density
matrix must numerically be calculated prior to many body
simulations. Another way is based on the use of higher
order approximations to the density operator. A fourth order
approximation for path integral simulations has been proposed
by Takahashi and Imada.18 Since this approximation cannot
be given by any decomposition of the density operator, it is not
clear how we can apply it to the density matrix. Another fourth
order approximation has been developed by Suzuki19 and
Chin.20 This approximation is based on a genuine factorization
of the density operator, which can straightforwardly be applied
to the density operator.21,22 In the present study, the Suzuki-
Chin approximation is adopted to construct the discretized
VPI.

Recently, we have developed a molecular dynamics
algorithm for the VPI method.23 We call it a variational path
integral molecular dynamics (VPIMD) method, which has
successfully been applied to liquid and solid helium-4,23,24

vibrational fluctuation,25,26 and para-hydrogen clusters.27,28

Another molecular dynamics method for the variational path
integral has been developed29 on the basis of the finite
temperature path integral Langevin equation method;30 their
method using the second order factorization of the density
operator is applied to para-hydrogen clusters.31 In the present
study, our VPIMD method is extended to handle the Suzuki-
Chin fourth order approximation of the density operator that
is utilized to obtain a discretized path integral expression;
based on the VPIMD, hybrid Monte Carlo method for the

0021-9606/2016/145(7)/074114/11/$30.00 145, 074114-1 Published by AIP Publishing.
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variational path integral is also developed. Our preliminary
report of the variational path integral with the fourth order
propagator applied to the liquid helium-4 is provided in
Ref. 32. In this paper, we first present the analytical
expression of the variational path integral for one dimensional
harmonic oscillator to reveal various parameter dependence
of physical quantities. Then, we apply our method to realistic
systems, a water molecule, and a para-hydrogen cluster to
demonstrate efficiency of our methods developed in this
paper.

II. THEORETICAL BASIS

A. The variational path integral

In this section, we briefly summarize the variational
path integral (VPI) method. Considering a quantum system
governed by Hamiltonian Ĥ , the exact ground state of the
system |Ψ0⟩ can be obtained using a trial wavefunction |ΦT⟩
by the following relation:1,4

|Ψ0⟩ = lim
β→∞

e−(β/2)Ĥ |ΦT⟩, (1)

where β is a real number parameter called an imaginary
time. This relation indicates that the exact ground state
wavefunction can be extracted from the trial wavefunction
when β is long enough. The parameter β is also referred
to be a projection time. Here, we consider a scalar product
of the ground state that is referred to be a pseudo-partition
function, which plays a central role to construct the VPI
expressions,1

Z0 = ⟨Ψ0|Ψ0⟩ = ⟨ΦT |e−βĤ |ΦT⟩
=

 
dRdR′⟨ΦT |R⟩⟨R|e−βĤ |R′⟩⟨R′|ΦT⟩, (2)

where the coordinates of N particles are represented
collectively to be R = (r1, . . . ,rN) and we have used the
closure relation regarding coordinate basis


dR|R⟩⟨R| = 1.

A matrix element ⟨R|e−βĤ |R′⟩ in Eq. (2) is a density matrix
in the coordinate representation at the inverse temperature β,
ρ(β,R,R′).33,34 The density matrix can be written on the basis
of the discretized path integral by1,35

ρ(R,R′; β) ∝


dR(1) · · ·


dR(M−1)e−S({R
(s)};∆τ)/~, (3)

where S and ∆τ = β/M are the discretized imaginary
time action and the associated imaginary time increment,
respectively. Explicit expression of the action S depends on
the approximation scheme adopted. In this study, two types of
approximation are employed. One is the following standard
second order Suzuki-Trotter formula:15

e−∆τĤ = e−
∆τ
2 V̂e−∆τT̂e−

∆τ
2 V̂ + O(∆τ3), (4)

which we call the primitive decomposition (PD). Here and
hereafter, we assume that the Hamiltonian is the sum of the
kinetic energy T̂ and the potential energy V̂ . The other is the
more accurate fourth order formula,20,21

e−2∆τĤ = e−
∆τ
3 V̂ee−∆τT̂e−

4
3∆τV̂me−∆τT̂e−

∆τ
3 V̂e + O(∆τ5), (5)

where γ is an arbitrary constant in the range of [0,1]
and

Ve = V +
γ

6
∆τ2 [V, [T,V ]] ,

Vm = V +
1 − γ

12
∆τ2 [V, [T,V ]] .

(6)

The commutator in this relation can be written by

[V, [T,V ]] =
N
i=1

~2

mi

(
∂V
∂ri

)2

, (7)

where mi is the atomic mass of an ith particle. Then, the
pseudo-partition function can be written as

Z0 ∝


dR(0) · · ·


dR(M )
ΦT(R(0))e−S({R

(s)};∆τ)/~
ΦT(R(M )).

(8)

Various physical quantities can be evaluated on the basis of the
above expression. The ground state energy can be evaluated
by4

E0 =
⟨Ψ0|Ĥ |Ψ0⟩
⟨Ψ0|Ψ0⟩ =

⟨ΦT |Ĥe−βĤ |ΦT⟩
Z0

, (9)

where we have used Eq. (1) and the commutability of Ĥ
and e−βĤ . When the projection time β is zero, the right
hand side of Eq. (9) gives the variational energy by the trial
wavefunction we adopt. We can automatically improve the
variational estimate of the ground state energy by increasing
β; then, the exact ground state energy is obtained using a
sufficiently long projection time.

B. Analytical treatment for harmonic oscillators

In this section, we present analytical expressions for the
variational path integral applied to one dimensional harmonic
oscillators. We consider the following generic Hamiltonian
for oscillators:

Ĥ = − ~
2

2m
d2

dx2 +
1
2

mω2x2, (10)

where m and ω denote mass and angular frequency,
respectively. The exact ground state energy of the system
is known to be E0 = ~ω/2 and the associated ground state
wavefunction is given by Ψ0(x) ∝ e−(mω/2~)x2

. Hereafter, we
use the units by which m = ω = ~ = 1 for simplicity. The
density matrix of the harmonic oscillators can be written
by33,34

ρosc(x, x ′; β) =


1
2π sinh β

× exp

− 1

2 sinh β

�(x2 + x ′2) cosh β − 2xx ′
	
.

(11)

On the other hand, the primitive decomposed density matrix
is analytically evaluated using Eq. (4) by36
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ρPD(x, x ′; β) =


sinh θ
∆τ

1
2π sinh(βθ/∆τ) exp


− sinh θ
∆τ

1
2 sinh(βθ/∆τ)


(x2 + x ′2) cosh

(
βθ

∆τ

)
− 2xx ′


, (12)

with

θ = cosh−1
(
1 +

1
2
∆τ2

)
. (13)

We find the following correspondence between the exact and approximated density matrix:

∆τ

sinh θ
sinh

(
βθ

∆τ

)
→ sinh β,

cosh
(
βθ

∆τ

)
→ cosh β.

(14)

We obtain the exact density matrix Eq. (11) if we apply the above replacement to Eq. (12). When ∆τ is small, θ ≃ ∆τ; therefore,
ρPD converges to ρosc in the continuous limit ∆τ → 0 or M → ∞. We have also derived the analytical expression for the density
matrix with the fourth order decomposition (FOD),

ρFOD =


r
r ′

sinh ϕ

∆τ

1
2π sinh(βϕ/∆τ) exp


−


r
r ′

sinh ϕ

∆τ

1
2 sinh(βϕ/∆τ) {(x

2 + x ′2) cosh(βϕ/∆τ) − 2xx ′}

, (15)

with

ϕ = cosh−1
√

rr ′, (16)

where

r = 1 +
1
3
∆τ2 +

γ

9
∆τ4,

r ′ = 1 +
2
3
∆τ2 +

1 − γ
9
∆τ4.

(17)

Derivation is presented in the Appendix. We also find a similar
correspondence as in Eq. (14) in the case of the fourth order
decomposition,

r ′

r
∆τ

sinh ϕ
sinh

(
βϕ

∆τ

)
→ sinh β, (18)

cosh
(
βϕ

∆τ

)
→ cosh β. (19)

The above replacement to Eq. (15) recovers Eq. (11). When
∆τ is small, ϕ ≃ ∆τ; therefore, ρFOD → ρosc if ∆τ → 0.

In the present study, a Gaussian trial wavefunction is
considered:ΦT(x) = e−αx2

, where α is a variational parameter;
it includes the exact ground state wavefunction in the
variational space. Using Eqs. (9) and (11), the total energy as
a function of the projection time β can be obtained as follows:

Eosc =
1
2
(4α2 + 1) cosh β + 4α sinh β

(4α2 + 1) sinh β + 4α cosh β
. (20)

We can also derive the total energy using the density matrices
discretized with PD (Eq. (12)) and FOD (Eq. (15)) as

EPD =
1
2
(4α2 + 1) cosh

�
β θ
∆τ

�
+ 2α( ∆τsinh θ +

sinh θ
∆τ

) sinh(β θ
∆τ
)

(4α2 ∆τ
sinh θ +

sinh θ
∆τ

) sinh(β θ
∆τ
) + 4α cosh(β θ

∆τ
) (21)

and

EFOD =
1
2

(4α2 + 1) cosh(β ϕ
∆τ
) + 2α

(
r ′
r
∆τ

sinhϕ +


r
r ′

sinhϕ
∆τ

)
sinh(β ϕ

∆τ
)(

4α2


r ′
r
∆τ

sinhϕ +


r ′
r

sinhϕ
∆τ

)
sinh(β ϕ

∆τ
) + 4α cosh(β ϕ

∆τ
)

, (22)

respectively.

III. METHODS OF NUMERICAL SIMULATIONS

As in the standard path integral method for finite
temperature systems,1,35 the pseudo-partition function Z0,
Eq. (8), can be regarded as a configuration integral of

classical polymers. In the variational path integral, the
classical isomorphic systems consist of open chain polymers.
Furthermore, distributions of end-point coordinates of the
polymers are affected by the trial wavefunction ΦT(R(0)) and
ΦT(R(M )), respectively. Molecular dynamics method can be
used to sample configurations of the classical isomorphic
systems on the basis of the following Hamiltonian:23
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HVPIMD =

M
s=0

N
i=1

p(s)2i

2m′(s)i

+
S({R(s)})

β

− lnΦT(R(0))
β

− lnΦT(R(M ))
β

, (23)

where p(s)i denotes the fictitious momentum of an ith particle
at an sth time slice and m′(s)i is the associated fictitious mass.
Using the above Hamiltonian, we can derive the equations
of motion based on the Hamilton’s canonical equation. Then,
in order to generate the canonical ensemble, we attach a
single Nosé-Hoover chain thermostat37 to each degree of
freedom.38,39 The resulting equations of motion are basic
equations for the variational path integral molecular dynamics
(VPIMD) method.

The hybrid Monte Carlo (HMC)38,40,41 is a method
that combines molecular dynamics (MD) and Monte Carlo
(MC) techniques. Unlike the standard MC, whole system
coordinates are simultaneously updated by equations of
motion. The trial configuration is then accepted or rejected
by an appropriate Metropolis criterion as in MC. The HMC
algorithm has been proved to yield the canonical distribution
as long as a time-reversible and volume-preserving numerical
integration algorithm is employed to solve the equations of
motion; this condition is needed to guarantee the microscopic
detailed balance.41 To construct the HMC method for the
variational path integral, the above Hamiltonian HVPIMD is
used to introduce the equations of motion. The variational
path integral hybrid Monte Carlo (VPIHMC) method is
outlined as follows. We start with an initial state of the system
({R(s)},{P(s)}) and re-sample momenta {P(s)} from Maxwell
distribution. Molecular dynamics is then used to move the
whole system for time increment of nMD × ∆t, where ∆t is the
time increment of the MD calculation and nMD is the number
of MD step in one HMC cycle. The trial configuration is then
accepted by the probability PA,

PA = min{1,e−β∆HVPIMD}, (24)

where ∆HVPIMD is the change in the total Hamiltonian HVPIMD
after the move of nMD steps. In the present study, this method is
referred to be HMC I. When we adopt the FOD approximation,
the effective interaction potential among polymers includes
the square of the gradient of the potential function. Then, the
Hessian matrix of the potential has to be calculated to evaluate
the force in MD and HMC I. Here, we consider a method
to avoid the calculation of the Hessian matrix in the HMC
method.23,32 We decompose the action into two parts,

S({R(s)}) = S0({R(s)}) + Scorr({R(s)}), (25)

where Scorr includes the terms regarding the gradient of the
potential function and the remaining terms are expressed to be
S0. Then, we define the following classical Hamiltonian using
S0:

H̄VPIMD =

M
s=0

N
i=1

p(s)2
i

2m′(s)i

+
S0({R(s)})

β

− lnΦT(R(0))
β

− lnΦT(R(M ))
β

. (26)

We can derive the equations of motion using this Hamiltonian
H̄VPIMD. As in the HMC I, the system coordinates are evolved
with time increment nMD × ∆t using the equations of motion.
Then, the trial configuration is accepted using the change in
the Hamiltonian ∆H̄VPIMD by

PA = min

1,e−β∆H̄VPIMD−∆Scorr


, (27)

where ∆Scorr is the change in Scorr evaluated using the initial
and the trial configurations; the bias introduced by using S0 in
Eq. (26) is removed by this procedure. This method is referred
to be HMC II. When using HMC II, the Hessian matrix does
not have to be evaluated because the terms regarding the
gradient of the potential do not appear in H̄VPIMD. Thus the
computational cost is expected to be virtually equivalent with
that by the PD approximation using the same M . This method,
the HMC II, has been proposed in our previous paper23

where we develop the VPIMD method. We find a similar
technique applied to imaginary time path integral simulations
for finite temperature systems developed by Shiga and co-
workers.42

In the present study, the VPIMD and VPIHMC
calculations are performed using the staging variables.17,38,39

The fictitious masses for the staging variables m′(s) were set to
be equal to the corresponding staging masses except end point
coordinates (at s = 0 and M), where m′(0) = m′(M ) = γepm,
where γep is a parameter taken to usually be a positive number
less than unity.

IV. RESULTS

A. Harmonic oscillator

In this section, we show numerical results using analytical
expressions of one dimensional harmonic oscillator together
with molecular dynamics results. Regarding the VPIMD
calculations, the parameter for the fictitious masses for end
points γep is set to be 1/M . After the equilibration period, each
VPIMD calculation was performed 10 000 000 steps with
time increment ∆t = 2π/(100ωM), where ωM =

√
M/β~.

When using the fourth order decomposition, the parameter
γ was chosen to be 0. The variational parameters α = 0.1
and 0.7 were tested. The variational energies are given to
be 1.3 and 0.53 for α = 0.1 and 0.7, respectively, while
the exact total energy is 0.50. From the viewpoint of the
total energy, the trial wavefunction with α = 0.7 gives the
better result in comparison with that with α = 0.1. As
demonstrated in Ref. 43, for each variational parameter, the
total energy decreases as increasing the projection time β
and converges to the exact value. We found that the better
trial wavefunction gives the faster convergence. Even if
the poor trial wavefunction is adopted, the convergence to
the exact ground state is attained using sufficiently long
projection time. This fact indicates a robustness of the VPI
method.

We first discuss the total energy by the discretized VPI.
The total energy with PD Eq. (21) and FOD Eq. (22) is pre-
sented in Fig. 1. The total projection time is set to be 10.0 for
all the cases presented. The total energies are demonstrated to
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FIG. 1. Total energy of a harmonic oscillator as a function of the imaginary
time increment ∆τ calculated by Eqs. (21) and (22). The total projection time
β is set to be 10.0 for all the cases. The parameter γ in Eq. (5) is chosen to be
0. Black dotted line represents the exact ground state energy 0.5. Solid curves
indicate results by the discretized path integral Eqs. (21) and (22), while
dashed curves indicate the second order and fourth order approximations of
Eqs. (21) and (22), respectively. Open circles represent the data obtained by
VPIMD calculations using the corresponding parameters.

approach the exact value with decreasing ∆τ. The MD results
for four selected cases are in good agreement with the results
by the analytic total energy. As expected, the convergence is
found to be faster when using FOD than using PD with the
same trial wavefunction. Here, we expand Eqs. (21) and (22)
around ∆τ = 0, which corresponds to Eq. (20), to be

EPD = Eosc + E(2)
∆τ2 + O(∆τ4) (28)

and

EFOD = Eosc + E(4)
∆τ4 + O(∆τ6), (29)

respectively. We find expansion coefficients E(2) and E(4)
written by

E(2) =
4α2 − 1

48B2 {(4α2 − 1)β + 3A sinh β}, (30)

E(4) =
4α2 − 1
432B2 {(4α2 − 1)(17 − 4γ)β + 4(1 + 7γ)A sinh β},

(31)

with

A = (4α2 + 1) cosh β + 4α sinh β, (32)

B = (4α2 + 1) sinh β + 4α cosh β. (33)

As shown in Fig. 1, the small ∆τ behavior is well described by
the above formula. Analytical expression of the coefficients
E(2) and E(4) is found to depend on the variational parameter
α; the coefficients vanish when α = 0.5 corresponding to
the exact wavefunction. As we can see from Fig. 1, the
magnitudes of these coefficients are smaller when the better
trial wavefunction is adopted. Thus, regarding the total energy
with ∆τ for a given projection time, the convergence also
becomes faster for better trial wavefunctions for the present
system. Here, we comment on the preferable value of the
parameter γ when FOD is employed. For a sufficiently large
β, Eq. (31) can be written by

E(4) =
1 + 7γ

54
2α − 1
2α + 1

e−β +
17 − 4γ

108
(2α − 1)2
(2α + 1)2 βe−2β

+O(e−3β). (34)

In this relation, the magnitude of the leading term (the first
term) is minimized when γ = 0 in the range of 0 ≤ γ ≤ 1.
Therefore, a frequently selected choice for the FOD, γ = 0,22,44

is analytically justified for the total energy of harmonic
oscillators.

We have also derived the analytical expression of
the potential energy as a function of the imaginary
time τ,

V (τ) = ⟨ΦT |e−τĤV̂ e−(β−τ)Ĥ |ΦT⟩
Z0

. (35)

The quantity V (β/2) approaches the exact expectation value
of the potential energy at the ground state when β is
long enough. Using the density matrices ρosc, ρPD, and
ρFOD, the imaginary time dependent potential energies are
given by

Vosc =
1
2
(2α sinh τ + cosh τ)(2α sinh(β − τ) + cosh(β − τ))

(4α2 + 1) sinh β + 4α cosh β
, (36)

VPD =
1
2

�
2α ∆τ

sinh θ sinh(τ θ
∆τ
) + cosh(τ θ

∆τ
)� �2α ∆τ

sinh θ sinh((β − τ) θ
∆τ
) + cosh((β − τ) θ

∆τ
)�

(4α2 ∆τ
sinh θ +

sinh θ
∆τ

) sinh(β θ
∆τ
) + 4α cosh(β θ

∆τ
) , (37)

and

VFOD =
1
2

(2α


r ′
r
∆τ

sinhϕ sinh(τ ϕ
∆τ
) + cosh(τ ϕ

∆τ
))(2α


r ′
r
∆τ

sinhϕ sinh((β − τ) ϕ
∆τ
) + cosh((β − τ) ϕ

∆τ
))

(4α2


r ′
r
∆τ

sinhϕ +


r
r ′

sinhϕ
∆τ

) sinh
�
β ϕ
∆τ

�
+ 4α cosh

�
β ϕ
∆τ

� , (38)

respectively. As shown in Fig. 2, the imaginary time dependent
potential energy has a plateau region around τ = β/2 when
the system is in the ground state. As is evident from the

figure, the projection time β = 2.0 for α = 0.1 is too short
to reach the ground state. On the other hand, for β = 10,
the potential energies for both cases α = 0.1 and 0.7 have a
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FIG. 2. Potential energy as a function of the imaginary time τ. The time axis
is scaled by the total projection time β. Solid and dashed curves represent
potential energies by the PD approximation Eq. (37) and the FOD approx-
imation Eq. (38), respectively. Open circles represent the data obtained by
VPIMD calculations with the PD and FOD approximations. Black dotted
line represents the exact expectation value of potential energy of harmonic
oscillator at the ground state, 0.25. In each case, the imaginary time step
∆τ = 0.5 was adopted. Continuous time potential energy by Eq. (36) is not
shown in the figure, since that is indistinguishable with the FOD potential
energy.

region independent of the imaginary time τ, indicating that
both systems are in the ground state. It is interesting to see that
the ground state potential energy with PD has a plateau region
whose energy is smaller than the exact value. This purely arises
from the discretization error due to a rather large∆τ = 0.5. We
confirmed that the energies both for continuous time VPI and
discretized VPI with the PD approximation are numerically
identical for ∆τ = 0.1. Furthermore, the potential energy with
the FOD approximation is also numerically identical with
the continuous time result, even when ∆τ = 0.5 is adopted.
Here, we comment on the virial theorem for the harmonic
oscillator where the average kinetic energy equals the average
potential energy. When the projection time is long enough,
the theorem is found to be well satisfied; however, using a
shorter projection time, the calculated energies deviate from
the expected ratio.

B. A water molecule

We next consider a water molecule as a realistic molecular
system. A trial wavefunction is constructed using a local
mode Sν representing the distance between a pair of atoms
in a molecule.45 The local modes are defined for a molecule
consisting of N atoms by

Sν = |ri − r j |, 1 ≤ i ≤ j ≤ N, 1 ≤ ν ≤ Npair, (39)

where ri is an ith atomic coordinate and Npair is total number
of pair of atoms. Then, the trial wavefunction can be written
by45

ΦT(R) = exp *.
,

Npair
µ=1

Npair
ν=1

∆SµAµν∆Sν
+/
-
, (40)

with

∆Sν = Sν − S0
ν. (41)

Here, S0
ν indicates the value of a νth mode at a minimum

of the potential energy. The symmetric matrix A stands
for the variational parameters. For a water molecule, let
us define S1 = rOH1,S2 = rOH2, and S3 = rH1H2; in this case,
the matrix A has the symmetry Ai j = Aj i, A11 = A22, and A13
= A23. Then, the following four parameters are independent:
A11, A12, A13, and A33. In the present study, the following
set of parameters has been employed: A11 = −19.61, A12
= −6.11, A13 = 4.32, A33 = −8.60 in units of bohr−2.26 These
values of the parameters were obtained by minimizing
the expectation value of the total energy with ΦT ; the
expectation value is calculated by a variational molecular
dynamics method23, which is a molecular dynamics realization
of the variational Monte Carlo calculation to generate
system configurations according to the square of the trial
wavefunction. Regarding the interatomic interaction for the
water molecule, we have used a potential function derived
from experimental data by Carney, Curtiss, and Langhoff.46

It involves an expansion in Simons-Parr-Finlan coordinates
about the equilibrium geometry and consists of 19 terms.

The VPIMD and VPIHMC calculations for the H2O
molecule have been performed with the parameter γep = 4/M .
After the equilibration period, each VPIMD calculation was
performed 10 000 000 steps with time increment ∆t = 0.1 fs.
In Fig. 3, we show the total energy of a water molecule
as a function of the projection time β. As increasing β,
the total energy approaches to the ground state energy. A
projection time β = 1.0 × 10−3 K−1 is found to be sufficiently
long to obtain the exact ground state energy with the trial
wavefunction utilized here; within the statistical error, the
calculated ground state energy agrees with the numerically
exact energy obtained by the variational method.46 In Fig. 4,
we show the total energy as a function of the imaginary time
increment∆τ calculated by the VPIMD method using the fixed
total projection time β = 3.2 × 10−3 K−1. As decreasing ∆τ,
the energy is found to approach a converged value. The faster
convergence is achieved using the FOD approximation than
using the PD approximation. As in the harmonic oscillator, the

FIG. 3. Total energy of a water molecule as a function of the projection time
β. The imaginary time increment ∆τ is set to be 2.5×10−5 K−1. Red open
circles are the results from VPIMD calculations with the PD approximation
and red dashed curve is a fit to these data based on the exponential function.
Black dashed line denotes the result by the variational method.46
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FIG. 4. Total energy of a water molecule as a function of the imaginary
time increment ∆τ. The total projection time β = 3.2×10−3 K−1 is adopted.
Red open circles represent the results from VPIMD calculations with the
PD approximation. Blue and green open circles denote those with the FOD
approximation using the parameters γ = 0 and 1/3, respectively. Dashed
curves are the quadratic and quartic fits to the VPIMD data with the PD and
FOD approximations, respectively. Black dashed line denotes the result by
the variational method.45

parameter γ = 0 for the FOD approximation is found to give
the faster convergence than γ = 1/3 for the present system. In
general, it is difficult to find a proper ∆τ without convergence
studies. One possible way is to focus on a fastest mode in
a target system. Using the oscillator result, we can find a
proper ∆τ to describe the mode, which could help to find a
sufficiently small ∆τ for the system examined.

We next discuss the computational efficiency of the
VPIHMC method for the water molecule. Hereafter, the total
projection time β and the imaginary time increment ∆τ are
fixed to be 3.2 × 10−3 K−1 and 2.5 × 10−5 K−1, respectively;
the parameter nMD is fixed to be 10. In Fig. 5, the acceptance
ratio as a function of time step ∆t is presented. The acceptance
ratio is found to decrease with increasing ∆t; this is because
large ∆t causes the large Hamiltonian error when integrating
the equations of motion. Here, we examine the sampling
efficiency of the HMC method by a correlation time, which is
also called statistical inefficiency.47,48 This quantity expresses
the number of correlated steps needed to obtain independent
sampling for a physical quantity. We define the correlation
time by the statistical inefficiency scaled by the CPU (Intel

FIG. 5. Acceptance ratio of VPIHMC trial moves for a water molecule as a
function of time step ∆t . Blue and green open diamonds denote the results by
HMC I and II methods, respectively.

FIG. 6. Correlation time for total energy of a water molecule as a function
of time step ∆t . Blue and green open diamonds denote the results by HMC
I and II methods, respectively. Black asterisk is the corresponding molecular
dynamics result.

Xeon E5-2630 2.3 GHz) time for fair comparison. Indeed,
the computational time in MD is longer than that in HMC I
for the present system; the extra computational cost comes
from the integration of thermostats’ equations of motion. In
the case of HMC II, the computational time is shorter than
HMC I due to avoiding the evaluation of the Hessian matrix.
In Fig. 6, we show the time step dependence of the correlation
time for the total energy of a water molecule. If the equations
of motion are accurately integrated, corresponding to the high
acceptance ratio, the movement in the phase space is small;
this results in the long correlation time. On the other hand, if
we adopt large ∆t corresponding to low acceptance ratio, the
system moves widely in phase space; however, many of the
trial configurations are rejected due to the large Hamiltonian
error, resulting in the long correlation time again. Thus the
correlation time has a minimum value between high and low
acceptance ratio. For the present system, the correlation time
is found to be insensitive to ∆t. Minimum correlation time
is given in the time range 0.4–1.2 fs; HMC II shows slightly
better efficiency compared with HMC I and MD.

C. Para-hydrogen cluster

In this subsection, we show the results on a para-hydrogen
cluster. The number of hydrogen molecules in the cluster

FIG. 7. Total energy of a para-hydrogen cluster as a function of the total
projection time β. Blue and red open circles denote the VPIMD results with
the FOD approximation (γ = 0).
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FIG. 8. Total energy of a para-hydrogen cluster as a function of imaginary
time increment ∆τ. The total projection time β = 1.0 K−1 is adopted. Blue
filled circles represent the VPIMD results with the FOD approximation using
the parameter γ = 0. Dashed blue curve is a fit to the VPIMD results based on
the expression E(∆τ)= a+b∆τ4.

is chosen to be N = 20. Since the rotational ground state
of the H2 molecule is spherically symmetric, the molecule
is safely modeled to be a spherical particle; note that the
H2 molecule whose rotational quantum number is even is
called para-hydrogen. To describe the ground state of the
para-hydrogen cluster, the following trial wavefunction is
employed:49

ΦT(R) =
N
i< j

e−(1/2)(b/ri j)5−ri j/p, (42)

where b and p are variational parameters. In the present
study, b = 3.70 Å and p = 9.966 Å are adopted for all
the cases. The intermolecular interaction is given to be a
sum of an isotopic pair interaction developed by Silvera and
Goldman.50 We performed the VPIMD calculations with the
FOD approximation using the parameter γ = 0. The end point
parameter γep is set to be 4/M . The VPIMD calculation
has been performed 10 000 000 steps with time increment
∆t = 8 fs.

Figure 7 shows the total projection time dependence of
the total energy of the para-hydrogen cluster with imaginary
time increment ∆τ = 0.004 K−1 and 0.002 K−1. It can
be shown that the total projection time β = 0.2 K−1 is
sufficiently long to obtain the converged total energy. We
also calculated the ∆τ dependence of the total energy; these
results are shown in Fig. 8. The total energy is found to
approach a converged value with decreasing ∆τ; the fourth

TABLE I. Total energy per molecule E (in K) of a para-hydrogen cluster,
(H2)20 obtained with a pair potential developed by Silvera and Goldman.50

PIGS-MC is a Monte Carlo implementation of the path integral ground state
that is equivalent to the variational path integral. DMC is the diffusion Monte
Carlo method. The statistical errors appear in parentheses.

PIGS-MCa DMCb DMCc Present work

E (K) −26.40(2) −26.2675(35) −26.215(14) −26.24(2)

aReference 51.
bReference 52.
cReference 53.

order convergence is confirmed due to the approximation
for the discretized VPI here. In Table I, we present the
ground state energy of the (H2)20 cluster by other quantum
Monte Carlo methods. Our result reproduces well the energy
reported in previous studies51–53 and is found to agree with
the diffusion Monte Carlo results52,53 within the statistical
error.

Next, we have performed the VPIHMC calculations for
the para-hydrogen cluster. Hereafter, the total projection time
β and the imaginary time increment ∆τ are fixed to be 0.2 K−1

and 2.0 × 10−3 K−1, respectively. In the HMC method, the
intermediate configurations in nMD steps (in one HMC cycle)
are usually discarded; however, these configurations can be
used to evaluate physical quantities.32,54 In the present study,
configurations for every 10 MD steps are used to evaluate
expectation values even if nMD > 10.

In Fig. 9, we show the acceptance ratio for HMC I
and II, calculated for various ∆t and nMD. The acceptance
ratio decreases as increasing ∆t and nMD, since the rejection
arising from the Hamiltonian error increases. It can be shown
that this dependence is more evident in HMC I than in
HMC II.

We next examine the computational efficiency on the
HMC I and II. In Fig. 10, we show the correlation times
for the total energy of the para-hydrogen cluster scaled by
CPU time for HMC I and II. When the parameter nMD = 10
is used in HMC I, the minimum value of the correlation
time is found when ∆t is in between 5.0 and 12.0 fs.
It is interesting to see that the region of the minimum
becomes broader when nMD = 50 or 100. In each case,
the computational cost is about three times more efficient
compared with MD, if appropriate HMC parameters are
employed. For the present system, the correlation time by

FIG. 9. Acceptance ratio of HMC trial
moves for a para-hydrogen cluster as
a function of time step ∆t . (a) HMC I.
(b) HMC II.
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FIG. 10. Correlation time for total en-
ergy of a para-hydrogen cluster as a
function of time step ∆t . Black asterisks
denote the corresponding molecular dy-
namics results. (a) HMC I. (b) HMC II.

HMC I is minimized when the parameters nMD = 100 and
∆t = 6 fs are employed, whereas that by HMC II is minimized
when nMD = 50 and ∆t = 6 fs. The minimum correlation
time in HMC II is about 20% shorter than that in HMC
I; therefore, the HMC II algorithm is more computationally
efficient concerning the total energy if the parameters are fully
optimized.

V. CONCLUDING REMARKS

In the present study, variational path integral molecular
dynamics and hybrid Monte Carlo (HMC) algorithms have
been developed on the basis of a fourth order propagator
proposed by Suzuki and Chin. Two types of HMC algorithms
are introduced: One is a standard HMC method, and the
other employs two level descriptions to avoid the numerical
evaluation of the Hessian matrix. The former is referred to
be HMC I and the latter HMC II. These methods have been
applied to a water molecule and a para-hydrogen cluster. It
is found that the HMC method is about three times more
efficient than the MD for the systems examined if hybrid
Monte Carlo parameters are well optimized. The HMC II
is expected to be a powerful tool for systems described
by many-body interactions and the preference will be more
evident in the case of the potential described using the ab initio
electronic structure theory that can be realized by extending
the standard ab initio path integral molecular dynamics
method.55–57

It is worth noting that the path integral molecular
dynamics (PIMD) method for finite temperature systems
has been developed using the fourth order decomposition
(FOD) by Pérez and Tuckerman.58 In their method, molecular
dynamics calculations are performed by the primitive
decomposition (PD) type Hamiltonian; then, expectation
values consistent with the FOD approximation are obtained
by reweighting the distribution of the above PD based
PIMD. As in our HMC II method, their method does
not need to calculate the Hessian matrix of the potential
function, and the computational cost is virtually equivalent
with the PD approximation. Their method is readily
applicable to our variational PIMD method, and comparison
on the computational efficiency with our methods will
be fruitful. This issue will be addressed in the near
future.
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APPENDIX: ANALYTICAL EXPRESSION OF DENSITY
MATRIX FOR HARMONIC OSCILLATORS

In this appendix, we present the analytical expression of
the discretized density matrix for one dimensional harmonic
oscillators using the fourth order decomposition (FOD). In
the one dimensional system, the density matrix for a system
of Hamiltonian Ĥ = T̂ + V̂ at an inverse temperature β can be
written by

ρ(x, x ′; β) = ⟨x |e−βĤ |x ′⟩ =


dx(2)


dx(4) . . .


dx(M−2)

× ρ(x(0), x(2); 2∆τ) . . . ρ(x(M−2), x(M ); 2∆τ),
(A1)

where x(0) = x, x(M ) = x ′,∆τ = β/M and we have used
the closure relation


dx |x(s)⟩⟨x(s)| = 1 (s = 2,4, . . . ,M − 2).

Using the FOD, Eq. (5), and the relation


dp|p⟩⟨p| = 1 and
⟨x |p⟩ = ei px/~/

√
2π~, the density matrix ρ(x(s), x(s+2); 2∆τ)

= ⟨x(s)|e−2∆τĤ |x(s+2)⟩ can be written by

ρ(x(s), x(s+2); 2∆τ)
≃ m

2π~2∆τ


dx(s+1)e−

∆τ
3 (Ve(x(s))+4Vm(x(s+1))+Ve(x(s+2)))

× e
− m

2~2∆τ

((x(s+1)−x(s))2
+(x(s+2)−x(s+1))2

)
. (A2)

From now on, we consider the potential of harmonic oscillator
V = mω2x2/2, and hereafter, we use the units by which
m = ω = ~ = 1 for simplicity. Since dV/dx = x in this units,
Ve and Vm can be evaluated to be

Ve =

(
1
2
+
γ∆τ2

6

)
x2,

Vm =

(
1
2
+
(1 − γ)∆τ2

12

)
x2.

(A3)

Therefore,
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ρ(x(s), x(s+2); 2∆τ) ≃ 1
2π∆τ


dx(s+1)e−

r
2∆τ (x(s)2+x(s+2)2)− r′

∆τ x(s+1)2+ 1
∆τ (x(s)x(s+1)+x(s+1)x(s+2)), (A4)

where r and r ′ are given in Eq. (17). Then, the density matrix at β using the fourth order approximation can be written as

ρFOD(x, x ′; β) = 1
(2π∆τ)M/2 e−

r
2∆τ (x(0)2+x(M )2) × I, (A5)

with the above integral I defined by

I =


dx(1) . . .


dx(M−1)e−xTAx+BTx, (A6)

where x and B are M − 1 dimensional vectors and A is M − 1
dimensional matrix; these quantities are defined by

x =
(
x(1), . . . , x(M−1)) ,

B =
(
x(0),0, . . . ,0, x(M )) /∆τ, (A7)

and

A =

*.........
,

r ′ −1/2 0
−1/2 r

. . .
. . .

. . .

r −1/2
0 −1/2 r ′

+/////////
-

. (A8)

Equation (A6) can be evaluated using the well-known formula
on the multidimensional Gaussian integral,

I =


πM−1

det A
eBTA−1B/4. (A9)

Since A is a symmetric tridiagonal matrix, its determinant can
immediately be evaluated as59

det A =
1

(2∆τ)M−1

sinh Mϕ

sinh ϕ


r ′

r
, (A10)

where ϕ = cosh−1√rr ′. Because the term BTA−1B can be
written by

BTA−1B =
(
x(0)2A−1

11 + x(0)x(M ) (A−1
1,M−1 + A−1

1,M−1

)
+ x(M )2A−1

M−1,M−1

)
/∆τ2, (A11)

we need to know only four elements of A−1. Since A
is symmetric tridiagonal, these elements can be evaluated
as59

A−1
1,1 = A−1

M−1,M−1 = 2∆τ
sinh(M − 1)ϕ

sinh Mϕ


r
r ′
,

A−1
1,M−1 = A−1

M−1,1 = 2∆τ
sinh ϕ

sinh Mϕ


r
r ′
.

(A12)

Therefore,

1
4

BTA−1B =


r
r ′

1
2∆τ sinh Mϕ

. (A13)

By combining Eqs. (A10), (A13), (A9), and (A5), we obtain
the following expression:

ρFOD(x, x ′; β) =


r
r ′

sinh ϕ

∆τ

1
2π sinh(βϕ/∆τ) exp


−


r
r ′

sinh ϕ

∆τ

1
2 sinh(βϕ/∆τ) {(x

2 + x ′2) cosh(βϕ/∆τ) − 2xx ′}

. (A14)
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