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Abstract. Some equivalent conditions to Leopoldt’s conjecture related with the
structure of Galois groups of central extensions are studied.

Introduction

Let £ be an algebraic number field of finite degree, and ¢/ be a prime number.
Throughout this paper, we always assume

(%) v =1 e k when £ =2.

Denote by G(K/k) the Galois group of a Galois extension K /%, and by ¢’ the
maximal ¢ -extension of % unramified outside ¢. Then it is well-known that Leopoldt’s
conjecture for k£ and ¢ is equivalent to H-3(G(k“)/k), Z)=0. This is connected with a
certain problem of central extensions through the relationship between the structure of the
Galois group of a central extension and (the dual of) Schur’s multiplicator H-%(G,Z). The
purpose of the present paper is to study some equivalent conditions to Leopoldt’s conjecture
in this point of view, especially the conditions related with the structure of the connected
component of unity of idele class groups are obtained (Theorem 14 and 15).

1. Leopoldt’s conjecture and abundant central extensions.

For any pro-finite group G and a natural number #, the cohomology group H-%G,Z)
of minus dimension is defined by

H_N(G,Z):IjI_Tl H—n(G/ UA )Z)r

where U, runs over open subgroups of G of finite index, and lim is of the deflation map.
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Then we have H-G,Z)=H™G,Z)". Hence H %G, Z)=H*G,Z) ~H*G,Q/Z)", which is
called (the dual of) Schur’s multiplicator of G.

For a tower of Galois extensions M DK Dk, denote by K;l sk the genus field of K /& in
M, which is by definition, the composite of K and the maximal abelian extension of K /&
in M. Denote by K uy the maximal central extension of K/k in M, namely the maximal
extension in M whose Galois group over K is contained in the center of the Galois group
over k. Then we have the following theorem (Cf. Heider (3, §2] , Furuta [1, Theorem
5] ).

THEOREM 1.

H*%G(K/k),Z)
Def g iy mH (G(M /kZ)

G /K 3 )=

We call M abundant for K/k when G(K kil K o W=H(G(K/k)Z), namely
Def i /m i 2 (G(M /R),Z)=0.

For a Galois extension M /k, it follows from Theorem 1 and the definition of co-
homology groups of pro-finite groups that H~3(G(M /k),Z)=0 if and only if M is abundant
for any finite Galois extension K over k contained in M.

Now denote by % the algebraic closure of 2. Then it is well-known that

(1.1) H3(G(k/R),Z)=0

(Cf. Serre [10, Theorem 4] , Heider [3, §5] , Yamashita [11, Theorem 3] , Miyake [9] .
See also Theorem 5 and its remark below). Hence we have

THEOREM 2. G(K i/ K =H (G(K /k),Z).

For an algebraic number field K, denote by £* the multiplicative group of non-zero
elements of K, J, the group of ideles of K, in which K * is embeded as the group of
principal ideles. Let C,=J /K™ the idele class group of K, and U, the group of unit
ideles of K. Denote further by K *(m) the ray group mod. m_for an integral divisor m
of K, ie, K*(m)= {a€K™ ; «=1 mod.m} and J ,(m) the group of elements a of [,
with a p-component ay such that ay, =1 mod my, where p is any prime of K and Mgy
is the P-component of m.

For a Galois extension K/k, an integral divisor m of K is called Scholz conductor if
m is invariant by G(K/k) and
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E*NN g J ((m)/N o K™ (m)=H Y (G(K /F), Cp),
which is isomorphic to H-*(G(K /k),Z). The following theorem is well-known.

TueoreM 3 (Heider [3, §4, Satz] ). Let K/k be a galois extension of finite degree and

E, be the group of units of k. Then

(i) There always exists Scholz conductor, and it can be taken so that it contains only primes
ramified in K/k.

(ii) The ray class field over K mod. m is abundant for K/k if and only df m is a Scholz
conduclor and

E, ﬂNK/ka(m)=Ek NN g, Ug(m).
Now we are interested in the following problem :

PrOBLEM. For any Galois exension K /k, does there exist an abundant extension M for
K /k such that if a prime divisor B of K is ramified in M /K, then B is a ramified prime
of K/k or a prime divisor of the degree (K:k)?

The above problem is closely related to Leopoldt’s conjecture e. g. as follows. We
assume always (* ), and denote by £') the maximal ¢ -extension unramified outside ¢ as
in Introduction. Then the following theorem is well-known (Cf. Heider [4, Satz 6,
Bemerkung] , Heider [5, Satz 11] , Iwasawa [6] , Kuz’'min [8, Theorem 7. 2] ).

THEOREM 4. Under the assumption (%), Leopoldt’s conjecture for ¢ is true for k if
and only if B is abundant Jor any Galois extension of finite degree over k contained in
£, ie, H3GE/k),2)=0.

REMARK. In a previous report “Note on central extensions and Leopoldt’s conjecture,
RIMS Kokyiiroku 603 (1987), 137-151", we state that the above abundantness holds if it
holds for any extensions in £'*’ of type (£, ¢). However the statement is not guaranteed,
because the assertion (2.2°) in the report is unexact. But the present paper does not use this
result.

2. Some conditions of Leopoldt’s conjecture.

For a group G of finite order and a G-module A4, denote by I, the augmentation ideal
of the group ring Z [G] , and set N;= 2 o in Z [G] . Denote further by A° the

oG
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submodule of A consists of G-invariant elements of A, and O,(A) the submodule of A
consists of elements a of A such that N a=0. For a Galois extension M of K, we denote
by B(M) the idele group of K corresponding to the maximal abelian extension of K
contained in M by class field theory, namely B (M)=K *.N ) u- Put Bg=B K(K’ )
and D,=B,/K . Then D, is the connected component of unity of the idele class group

C. and the following is well-known (Cf. Iyanaga [7, Chap. 5, Theorem 6. 5] ) :
when s is odd

{(Z/ 2Z)” when s is even,

where #, is the number of real places of & ramified in K. Thus we have

(21) HSG(K/k), D=0

for any integer s under the assumption ().

(21) H (G(K/kR), D)=

THEOREM 5. Let M/K/k be a tower of Galois extensions with Galois group G=
G(K /k) of finite order. Then M is abundant for K/k if H“(G,BK(M)/KX)=0.
Proof. An exact sequence of natural homomorphisms
O—»BK(M)/KX—'1—>CK:]K/KXL]K/BK(M)—%)
implies a long exact sequence
(2.2) '"_’H_I(G’BK(M)/Kx)&fH—X(G’CK)BfH_1(G,]K/BK(M))E,#HO(G,BK(M)/KX)_,,..,.

Now H G ((MN=04( x/B(M)/IJ x/B (M) and H*G,B(M)/K)=

B (M)/K >‘)G /N . (B AM)/K>). By means of these isomorphisms, the connecting
K K/k K

homomorphism &" isinduced from the norm map. More precisely, let a B.(M)cO0.(J ./
K GV K

B, (M), namely N, a €B,(M). Thend* (a By (M)=(1~"- N - p=)(a B(M)), where

1, N ¢ and Z are the induced homomorphisms to the each corresponding residue classes.

Thus we have Ker 3 =(X - B,(M)/B(M)/(I ¢ x - Bx(M), where X= {a & ; N/

QER N ¢, B ((M)=B,(K},). Therefore G(R 0, /K by 0=B (K 3,0/ B (R ,,)=(By
(K %,0B ((M)/B M)/ o]  + Bx(M)/B(M)=Ker & =Im p* =H-(G,C /2" H(G,
B, (M)/K*). Hence if H-'(G,B(M)/K*)=0, then G(R ,,,/K 3, )=HG,C,)=H G,

Z), which is to be proved.

REMARK. Since H-(G(K/k), D )=0 by (2.2), Theorem 5 implies Theorem 2.
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For a prime P of K, let K p be the P-completion of K which is embeded in Jx as

usual, and U kg OF U P the group of units of K p. Let further U’ = II Ug;, the group
4 Bre
of unit ideles whose f-components are equal to 1 for all prime divisors £ of /. Denote

by C(K’) the group of elements ¢ of C x such that ¢‘eD x=Bx/K”™ by some natural
number ¢ prime to £. Then H“(G(K/k),C(K’))ZO.

THEOREM 6. Leopoldt’s conjecture for £ is true for k, if
(B) HYG(K/k),U «By/K*)=0

Jor any Galois extension K over k of finite degree contained in k',

Proof. By (2.1') and an exact sequence 0—B /K *— U gBy/K*—>(U 4B /K*)/(B,/
K*)~0, we have H-NG(K /k), U’ (B y/K )="NG(K /k), (U’ (B ,/K*)/D,), and in a same
way HNGK/k), (U'yB/K*)CP/D)=HGK/k), (U (B /K*)CYY, which is
isomorphic to H~{G(K /k), U'xB/K™). On the other hand we have B, (¢""))/K* =

(U gB/K C %). Hence the proposition follows from Theorem 4 and Theorem 5.

3. Structure of B,.

Let K be any Galois extension of % of finite degree ¢ " contained in £'*’, fixed once
for all, and assume (*) as in Introduction. Other notation being as in the preceding
section, put further G=G(K /k).

Denote by u,(Kg) the group of roots of unity contained in K g Whose orders are
powers of ¢. Let T',= II #,(Kg), which is contained in Uy Put B =T B,

Pre¢

where B is as before the satulation of D to ], namely D, =B x/K*. Then U’y B, =

UgT yBy=U B’ Hence we have
3.1 H Y GU (B (/K Y=H G U’ B’ /K).

Therefore it follows from Theorem 6 that Leopoldt’s conjecture for ¢ is true for &, if
the following condition (B’) is satisfied :

(B) HGU B’ o /K*)=0.
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In order to deal the condition (B’) in the following section, we prepare some resuits.

Lemma 7. BS=B,

Proof. The connected components D, and D, of unity of C, and C, are correspond
to the maximal abelian extensions of K and of k respectively. Hence N, ,D,=D,. On
the other hand we have H%G,D,)=0 by (2.1'). Thus DgzNK/kDK=Dk. It follows
from Hilbert’s theorem 90 that D =(B,/K*)°=B%/k*. Since D, =B, /k*, we have the

lemma.

LeMMA 8. Ny u (Kg)=u (ky) when B | p and p y £.

Proof. Put g=N, P and ¢/=N,, B. Let ® and § be primitive roots of unity of
orders ¢—1 and ¢”—1, which are elements of £, and of K s respectively. Then we can
chose @ and ¢ so that §=Ng_ ., @ because ¢"—1=(g—1)(¢" '+ ¢ *+-+1) and ©° = ©°
by a generator ¢ of the cyclic group G(K,Js/kp) of order f. Nowlet g—1=s2¢% (s, ¢)=
1. Then &°is a generator of y,(kp ). Set w;=w®. Then CS=NK$/kp @;. Let u be the
order of @, that is, @;=1, and let u=u¢", («, ¢)=1. Then w; €y, (Kg)and Ny

m;"zcs“’, which is also a generator of x,(kp). This proves the lemma.
PropoSITION 8. HXG, T',)=0 for all integers s.

Proof. 1t follows from the definition of T, and semi-local theory of cohomology
groups that H (G, T’K):aI/;IIH’(G%,  (Ks)), where Gg= G(Kg/kp) and B is any one of

prime divisors of . Let » be a prime of % not dividing ¢#. Then Lemma 8 implies
H%Gg, u,(Kp))=0. Then since G‘-B is cyclic and g ,(qu) is finite, we have further
HYGp, u ,(Kg)=0. Hence HYG, T’ )=HY(G, T';)=0, which implies the proposition by

the well-known property of cohomology groups.

We recall the structure of B,. For a &J,,set | a | :1} | ay | p, the volume of a,
where | |, stands for the canonical valuation and ay the p-component of a.
Let Z be the completion of Z by means of subgroups of finite index, thus Z=IIZ, ,
»

where p runs over all rational primes and Z, is the p-completion of Z.

Let B;= {a€B,; | a | =1} . Then any element a of B} is written as follows
(Cf. Iyanaga [7, Chap. 5, Theorem 6. 3] ) :

3.2 a Zaﬂ;" ...... 771"¢1(tx) ...... ‘757,(tr,)’
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where a €k%, 1,=(s;, £ ,)ERXZ, & ,=(X;p), X:(pEZ, , 7, the number of complex places of
k, and @)= 1" for tER.

Let ¥ be a finite prime of %, and set N p =N wo?b. For any global unit & of %, set

e=§&ple) - ep(l)

in &y, where &p(1) is a unit of &y such that ¢p(1)=1 mod. P, and £y (e) is a root of unity
of &y of order a divisor of NP -1. For £:(x9)EZ=1;IZp with %,E€Z,, let (¢%)p be the p
-component of 2. Then we have
(3.3) (M) =E&p(ef™ ") - £y (1,
where g(¥, P) is a rational integer such that
(3.4 g% p)=x mod(NP-I, ¢%
for all rational primes ¢ such that ¢ | (¥ p -1) and a sufficiently large s.

ProrosiTioN 10. Notation being as above, we have
(A) U,NB,CNg, (U NB ).

Proof. Let E, and E; be the group of global units of £ and K respectively, and let
(K:kB)=1¢". Leteg, - , & be a system of fundamental units of 2. Put #= e: =
N g for i=1, - , 7. Then they are independent over Z as Z-module by means of
power,

Now let a€U’,NB’,. Then a €B,T’,. Hence a has the form as (3. 2) :

@. ?’) a =aﬂi‘- ...... 77:'¢1(t1) ...... ¢r,(tr,) b,

where b &T’,. Moreover since a €U’,, we have a<E, and

(3. 5) a=¢ ef‘ """ er,
where ¢ is a root of unity in £* and ¢,€Z. Let 77,:{'”(77,-) . ’hp(l) and &=17,4(e:) - e,-p(l)
be decompositions by means of (3. 3) in £ p- Observing [ -components of a for [ | ¢ and
by means of (3. 3), it follows from (3. 2°) that

3.6) 1=all, @) F Vg (O

where x,€Z, and g(¥X ;, ) be as (3. 4) with p = {. Let d be the order of ¢ in (3. 5), and
set d=¢°4d’, (d’, £)=1. Then by (3. 5) and (3. 6) we have

G- 7 M7y =¢6"Tle,; 1), and

@.8 I¢ ()3 DT =11E | (e)™.

If p is any rational prime other than ¢, then 1/ " is an integer in Z,. Denote by
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U p the group of p -adic units of £, p being a prime divisor of p. Let 9 ,=(y,,) be an

element of Z for i=1, - 7, whose p-component ¥;, is defined by
- _[aid’/l" when p+ ¢
( . ) Yip —xi,d’ when p= Zz ,

where a; and x;, be as in (3. 5) and (3. 6). Let further s;=a;d’/ ¢ the element of R, for
7=1, e , 7. Set
(3. 10) b =,7/1’l ...... ,7/:',
where 8;=(s; 9:)ERXLZ.
Let ;= Cp(m) . 17,.”(1) be a decomposition in kp as above. Then for a finite prime p,

we have

by =), =1, (n" " 7 - My (1"

3 { Hcp(ei)g(lh. pyen | Hsip(l)ym/n when p/{/{
I:‘IC[ (7 1217'7;1 1) when [ |4
_ [ TE, (e V7" ey ()™ when Pt¢
ﬁé’;(ei)g(n" o CdHe,«, (1)* when (| ¢

by (3. 7) and (3. 9), where g(9;, p)£¢” mod.(Np -1, ¢°), s> >0 for rational primes g such
that ¢ | (Np -1). Moreover (3. 9) implies for p &' ¢

a;d’ mod.(NV y -1, ¢%) when ¢g#¢ and ¢l (Np -1)

; —
g(v5 p) [_xud’/" mod.(Np -1, £°) when g=¢ and gql|(Ny-1)

by sufficiently large s. On the other hand (3. 5) implies
(@), =¢"Te™ = ¢ TE, (e)™ - T, ().

Hence (ad’)p = bpcy by some cpEpu,(kp) when p £ 7.
For [ | 4, we have also
g(v, 1) =a;d mod.(NI-1, g%, s>>0,
for any prime ¢ | (N (-1). Hence we have
(3.1)  Téy (e ™ " =106 (&)™,
and (3. 5) implies
() =67 Me*") = ¢ IE ()" Te, (™.
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Hence (a"P)x =b.

Now we have = b¢ with ¢ <T’,, and (3. 2’) implies

a¥=4% ,7’11‘1' ...... ,7"1#‘" i (td’) -+ $.(t,d)b &
= ,7;""'”' ...... ”:rd”fﬁr () e é,.(t. ) 59

Let ¢ and b be elements of T~ gSuchthat ¢ =N, ,¢ and b =N /i ¢ » Whose existence
are followed from Lemma 9. Let further 8,~(t)=(¢,~(t), 1, --eee , 1), the element of C*" such
that N (@)= (1), where " =(K : k). Set

a=c & Ao 8:-""“" (b)) oo arz(tr, e

Then aEB’ k- Since the order of £((e;) is prime to /¢, we have & (5" V=

CI (ei)“‘d’/ " Hence the -component of 4 is equal to

: ied+yis —
HCI (ei)g(in fd't+eln, () Hei(l)”zl Yie =]
1 1

by (3. 8) and (3. 9), when L is a prime divisor of £. Hence we have
a=U',NB and a d'ZNK/ka.
Thus the condition (A) holds when 4’=1.
Suppose that d’>1. Let (K : k)= ¢" as above. Since (d’, ¢)=1, we can take
integers « and v so that ’«+ ¢" v=1. Thenwe have a = a%“a ‘=Ny(8*a®)and a*
ave (U NB )U', NB",)T(U' ¢ NB’,), which satisfies (A).

4. Equivalent condition to (B).

Notation being as in the preceding section, let further &,. be a primitive ¢ ™th root
of unity.

It follows from Theorem 6 and (3. 1) that Leopoldt’s conjecture for ¢ is true for &, if
(B) HNGK/k), U B o/ K*)=0
for any finite Galois extension K over k contained in 2'°.

The purpose of this section is to show (B’) under the following assumption.

# HG(K/k), T'yNBy)=0 for all integers s.
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PROPOSITION 11.
HSG, B',//K*)=0 if and only if H*'(G, T',NB)=0.
Proof. Since B’ /By=T yBy/Bx=T /(T N By), we have an exact sequence
0B, /K*—T By/K*>T (/(T'xNB)—0. This implies H%G, B'y/K*)=
H¥G, T'/(T’ ¢ NBy)) for any integer s. Because HG, By/K*)=HYG, D=0
by (2. I’). Moreover an exact sequence .
0T yNBR)>T' =T /(T xNB)—0
implies a long exact sequence
« >HYG, T' )~ HYG, T' /(T yNB)>H*NG, T'yNB)—~>H* G, T )~

Hence the proposition follows from Proposition 9.

Lemma 12. B’ =By, if H(G, T"xNBy)=0.

Proof. We have (B’K/K")G=NK,k(B’K/K"):NK/,,(BK/K") * N {T' yK*/K*) by
Proposition 11. Moreover N g, (Bx/K*)=B,/K* by Lemma 7, and N . (T’ ()=T", by

Proposition 9. Thus the lemma follows.

ProPOSITION 13. If the condition () is satisfied, then the condition (B’) holds :
HYG, U B x/K*)=0

Proof. Set HS(A)=HS(G, A) for a G-module A and an integer s. An exact sequence
0=U  NB (DU = U /(U NB ()=U' B /B’ ,—0 implies the exact sequence
4.1 - >HNU ) »H MU B /B () HY U (NB )~ -
A prime divisor P of K is unramified in K/k if B4 ¢ by the assumption that KC B,
Hence we have H-(U’,)=0. We have further H(U' ;N B";)=(U" N B’K)G/NK/k(U'Kﬂ
B’)and (U’KﬂB’K)G =U’, NB’, by Lemma 12. Hence Proposition 10 implies H°(U" N
B’,)=0 and further H~Y(U' B’ /B’ ;)=0by (4. 1). On the other hand an exact sequence
0B /K*> U (B /K*> U’ B’ /B’ 0 implies

v >HYB (/K> H U B /K )>H U’ (B /B )~ -

Then the Proposition follows from the above result and Proposition 11.

THEOREM 14. Leopoldt’s conjecture for k and ¢ is true, if the condition (#) is satisfied

for any finite Galois extension K over k contained in £

Proof. 1t follows from Theorem 6 that Leopoldt’s conjecture for ¢ is true for & if
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H-YG(K/k), U B /K*)=0, which is equivalent to H-*(G(K/k), U’ B’ /K*)=0 by (3.
1). This holds by Proposition 13, if (#) is satisfied.

Denote by u,{k,,) the group of ideles of 2 whose finite components are all equal to 1

and infinite components are roots of unity of order ¢ -th power.

THEOREM 15. Leopoldt’s conjecture for ¢ is true for k, if and only if
T ,0NB, =u (k)

Proof. By the assumption (%), it is easy to see that H¥(G(K/k), T’ N B,)=0 for s=
1L2,if T, NB, =u,(k,). Hence the “if part” of the theorem is implied from Theorem 14
immediately. In order to prove “only if part”, let &, ***, &, be a system of fundamental
units of £, and assume ¢ E€7T’, NB,. Then a=ae) e, (k) (¢,) where ack”,
A:=(s;, X,)SRXZ, and other notation be as (3. 2). Moreover since s =7’ »» We see that
a is a global unit of 2. Hence we can set
@2  a=eleldit)-o, . (2,).

Let # be any natural number and p be a rational prime other than ¢#. Then there are

rational integers y; such that y,= %, mod. p” (i=1, -, ). Put y=¢}--¢). Now observ-

ing finite parts of ideles, we have

(4.3) g=aed P F=0(e )Y =(h e el

where a stands for the finite part of a, and b is an idele of £ such that @ =(3)", whose
existence is followed from a €7, , and further 9, is an element of Z such that p” 9 ,=y,—
X, for i=1, ---, ». Then there is further a unit 7 of % such that = nf" (Cf. Iyanaga [7,

Chap. 5, Theorem 6. 2] ). Let 7 =¢; ¢, where y;€Z. Then =7 5" =" &,

r r

Hence we have y;=u;p" and further p™ | %, for {=1, :--, . This holds for any rational
prime p other than ¢ and any natural number n. Therefore the p-part of ¥, is equal to
0 for any rational prime p other than ¢, and hence ¥, can be considered as an element of

Z,. By the assumption a € T’,, we have an ¢ -component of a is equal to 1. Hence
we have 1= ef ef by X ,€Z,. Now if Leopoldt’s conjecture is true for ¢, then we have

¥,=0for i=1, ---, ». Then a€u, (k. ), which is to be proved.

Now combining Theorem 4, 6, 14 and 15, we have

THEOREM 16. Under the assumption (%), the following statements ave equivalent.
(8) Leopoldt’s conjecture for ¢ is true for k.

® £ is abundant for any Galois extension of finite degree over k contained in k.

(© H-3G(/R), Z)=0.
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(@) HNGK/k), UyxB/K*)=0 for any Galois extension K over k of finite degree
contained in k'

(e) HSG(K/k), T'yNBg)=0 for all integers s and for any Galois extension K over k of
finite degree contained in £

© T, NB,=p, (k).

As a case of the condition (f) to be satisfied, the following result is obtained in the
same way as the proof of Theorem 15.

ProPoSITION 17.  The condition (f) is satisfied, if there is a natural number N such that
k,,(”,/ ¢ ) is ramified over k, for any integer n>N and for any unit € of k, where k,=

k(.-

Proof. In order to prove the proposition, it is enough to show 77, NB, =u,(k,).

Let a&T’, NB,. Then in the same way as to (4. 2) in the proof of Theorem 15, we have

=efer i), (t,).

Let » be any natural number. Now we take a prime number ¢ instead of p in the proof

of Theorem 15. Then there are rational integers y; such that =%, mod. ¢ (=1, -+, »).

Put e=¢) ¢

- - - N
(4.4 e=ag FrgE =g () e’

r

Now observing finite parts of ideles, we have

where a stands for the finite part of a and 9; is an element of Z such that ¢79,=y,—
%,fori=1,--, 7. Let L=k, (°"/e). Now by definition of 77, the { -components of a
areequal tol forall { | £, and the other p-components are roots of unity of order ¢ -th
power contained in kp. Hence L is unramified over k,. Therefore if #> N, then e€4 ;
by assumption of the proposition, which implies further e €4 ‘o (Cf. Iyanaga [7, Chap. 5, the
proof of Theorem 6.2] ). Then we have a €U ,: n T, by (4. 2) for all u>N. Thus we

have a =1.

COROLLARY 18. Leopoldt’s conjecture for ¢ is true for k, when the class number of

k(&,.) is not divisible by ¢ for any sufficiently large n.

ReMARK. By using Iwasawa’s version of Leopoldt’s conjecture, the above corollary is
proved simply as follows, which due to S. Shirai.
For any natural number #, take a natural number s which is sufficiently large and

depending to # so that if e€E, and é=1 mod. ¢ ™ then k,(‘"v ¢ ) is unramified over k&,

Then by the assumption of the corollary, we have eE(k: )”, which implies further e €
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" (Ct. Iyanaga [7, Chap. 5, the proof of Theorem 6. 2] ), hence e€E ,f ", Thus we have

{¢e€E, ; e=1 mod./ ™} CE ,: ", which is Iwasawa’s version of Leopoldt’s conjecture.
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