Examples of complete minimal surface in Rm
whose Gauss maps omit m(m+1)/2 hyperplanes
in general position
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Abstract Recently, the author has shown that, for a complete minimal surface M in
R™, if the Gauss map of M is nondegenerate, then G can omit at most m(m+1)/2
hyperplanes in general position. We give some examples of minimal surfaces which
show that the number m(m-+1)/2 of the above result is best-possible for arbitrary odd
numbers m.

§1. Introduction

Let x: M—R™ be a (connected oriented) minimal surface immersed in R™(m =3).
Consider the set II of all oriented 2-planes in R™ As is well-known, II is canonically
identified with the quadric

Qna(©): = {(wy: - wy); Wi+ +w’ =0}

in P™YC). By definition, the Gauss map of M is the map which maps each point p to the
point in II, or @,_,(C), corresponding to the oriented tangent plane of M at . For the case
m =3, the space @,(C) may be identified with the Riemann sphere P*(C) and the Gauss map
of M may be considered as a map into P}(C). The author has shown that the Gauss map
of a complete nonflat minimal surface in R™ can omit at most four points in P*(C) ( [4] ).
Moreover, in the previous paper [6] he gave the following theorem.

THEOREM 1. Let M be a complete minimal surface in R™ and assume that the Gauss
map G is nondegenerate, namely, the image of G is not included in any hyperplane in
P™YC). Then G can omit at most m(m-+1)/2 hyperplanes in gemeral position.

The purpose of this note is to show that, for an arbitrary odd number m, the number
m(m+1)/2 of Theorem 1 is best-possible, namely, there exist some complete minimal
surfaces in R™ whose Gauss maps are non-degenerate and omit »e(m +1)/2 hyperplanes in
general position. We shall give also such examples for some particular even numbers .
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§2. Preliminaries on minimal surfaces in R™

Consider a surface M in R™ immersed by a map x=(x, . .., X%n): M—R™ where a
surface means a connected and oriented 2-dimensional differentiable manifold. We may
consider M as a Riemannian manifold with the metric ds? induced from the standard
metric of R™. With each system of positive isothermal local coordinates («, v) associating
a holomorphic local coordinate z=#+iv, M may be considered as a Riemann surface with
a conformal metric ds?. The fact that (#, v) are isothermal local coordinates means that
they satisfy the condition that

k axi>2: k <8xi>2 r O O%_
2i=1 <6u Zi=1 v/’ Zi=1 ou 81)_0'

Set f;=aw,/0z2(=(8x;/ou—1i ox;/2v)/2). The above condition is rewritten as
@. 1) 4+ =0

Asis well-known, M is a minimal surface in R™ if and only if each x; is a harmonic function
on M, namely,

82xi _ .
8282_0’ i=1,2,...,m

for an arbitrary holomorphic local coordinate z=#-¢v. This is equivalent to the condi-
tion that f; is holomorphic on M. To construct minimal surfaces in R™, the following
Proposition is useful.

PROPOSITION 2. Let M be a simply connected open Riemann surface and let fi, f, . . .,

Jn be holomorphic functions on M which Wave no common zero and satisfy the identity (2. 1).
Set

@.2) x(2)=Ref, fidz,

where z, is an arbitrarvily fixed point of M and the right hand side means the real part of
the integral along an arbitrarily chosen continuous curve in M joining z, and z. Then, the

surface x=(%, . . ., %) . M—R™ is a minimal surface in R™. The induced metric is locally
given by
2. 3) ds?=2(1 fil2+. ..+ 11 ldz |2

Proof. Since M is simply connected, x; are well-defined single-valued functions on M
and it is easily seen that ax,/8z=/(1<i=<=m). By the assumption of holomorphy of f; we
have

(8%/8282)x,=(8/22)f:=0
and by the assumption (2. 1) the induced metric is conformal with respect to the complex
structure of M. Moreover, the metric is given by

dse=st, (2 qe+st, (

8x,~>2

2
20 dv
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=201A 124+ .o+ 1 /Bl dz |2

This completes the proof of Proposition 2.
§3. Constructions of minimal surfaces
We shall give the following proposition.

THEOREM 3. For an arbitrarily given odd number m (Z3) there is a complete minimal
surface in R™ whose Gauss map is nondegenerate and omits m(m-+1)/2 hyperplanes in
P™YC) located in general position.

For a given odd number m we set n:=m—1 and k:=n/2. We first recall an
algebraic lemma which was given in the previous paper [6].

LemMa 4. Consider m(m~+1)/2 polynomials

giu) :=(u—a))"* (1<i<m)
G () :=(u— )™ {u—by)"! (1=i=m)
Grmar i) 1= — @)™ (u—by)"" 1=is=m),

where as, bx are mutually distinct complex numbers. These are in geneval position, namely,
arbitrarily chosen m polynomials among them ave linearly independent for suitably chosen
as and b-.
For the proof, see [6], §6.
To prove Theorem 3 we define m entire functions
s +1(z)=et 2+ gk )z 0=<4=k-1)
h2s+2(z)=1(e?2— ek— 1)) 0=<=k-1)
and
Mo =27 —Fk o™,
Next we take suitable constants as and b- such that the polynomials g(l=i<gq:=
m(m—+1)/2) are in general position. By changing the variable « suitably if necessary, we
may assume that ¢,=0. Set
M*=C— {z; ¢#=a; or &*=b, for some (=1, ..., k}
and consider the universal covering surface n: M—M*. Set

_ 1
V=G e —b). . . (—a)e—b)

and define m holomorphic functions
fi=vh; (1=i=m)

on M*. Then we see easily

i+ 475 =0.
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Without permission, we denote the functions f; - z# by the abbreviated notation f; in the
following.

We consider the functions x; defined by (2. 2) for the above functions f;. By Proposi-
tion 2, the surface x=(x,, %, . . ., %») : M—R™ is a minimal surface. The metric induced
from the standard metric on R™ is given by (2. 3) and the Gauss map of M is equal to the
map f=: fh:...: fu): M—P™*C) and therefore to the map 2z=(A : .. .: k). Asis
easily seen, a polynomial P(%) vanishes identically if and only if P(e?) vanishes identically.
Since the polynomials

Por+i(u)=wu’ +ut—* 0o=7=k-1)
Pacvo(u)=1i(u’® —uk=*) 0=7=<k-1)
and
Pon()=2/"—F u".

are linearly independent over C, the Gauss map of M is nondegenerate. Moreover, since
P, ..., P, give a basis of the vector space of all polynomials of degree= m —1, we can find
some constants ¢;; such that

m

gizzjzl Ciij (lé = q)
Now, consider ¢ hyperplanes
H::cowm~+. .. +Cnwn,=0 1=:=9),

which are located in general position because g; are in general position. Then, the
functions

g(e)=Z2]_; ci;Pie?)
=37, cihi(2)

for ¢=1, ..., q. Obviously, each g;(¢?) vanishes nowhere on M. This shows that the
Gauss map % of M omits g hyperplanes H; located in general position. In the next section,
we shall prove that the Riemann surface M with the induced metric ds® is complete. This
will complete the proof of Theorem 3.

§4. The proof of completeness

The purpose of this section is to prove that the minimal surface M in R™ constructed
in the previous section is complete. We use the same notation as in §3.

In our case, the induced metric is induced from the metric

S (Letadeh=0z | 24 | glz—g@k= ) | 944} | ok |

AL
| (—a)E—b). .. (—a)e—by) | °

ds?

_285 0 (lelz 124 | e®=02 | )4k | e | ?
| (=) (e#—by). .. (eF—an)(e®—b.) | ?

| dz | 2.
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on M* by the projection map of M onto M*. If M* is complete, then M is also complete.
It suffices to prove that M* is complete. For the simplicity of notation, we denote the
surface M* by M. We now take a piecewise smooth curve y(#) (0= ¢ <1) which tends to the
boundary of M, namely, satisfies the condition that, for each compact set K in M, y(¢) is
not contained in K if ¢ is sufficiently near 1. Our purpose is to show that the length of
is infinite. The proof is given by reduction to absurdity. Assume that the length of v is
finite.

We first consider the case where there exists a sequence {#;} with }ng ;=1 such that

{y(%)} has an accumulation point z in C. If y(#) does not tend to z, as ¢ tends to 1, then

v is obviously of infinite length. By the assumption, we see lti_r}‘ll v(8)=2z. Then, by the

assumption we have necessarily e»=a; or=5; for some 7. Then we can write
er—en=(z—2)k(z)

with a holomorphic function % on a neighborhood of z, with 2(z)+0. Therefore, we can

conclude

1
| z2—2 |2

ds*= C*? ldz|?

for a positive constant C. This leads to an absurd conclusion

the length of yzfy dsgcfa—i—z—:l;o—l—l dz | =0,

where 2z, is a point sufficiently near z, and 712, denotes the line segment between z and z.
This contradicts the assumption.

Accordingly, we have only to study the case that y(¢) tends to o as ¢ tends to 1.
Firstly, assume that {ev®} is bounded. Then there is a positive constant C’ such that

[ (eF—a)(eF—by). .. (eF—b) | =C7

on the curve y and so
the length of yZL dsz—é—,fy | dz | =00,

which is impossible by the assumption. Otherwise, there exists a sequence {#} which
tends to 1 such that {ev®} tendstooo. Setw:=¢* Thenldw | =1|w ! | dz | andthe
metric is given by

250 (w124 L w | 2 ) +dR | w | % | dw? .
| (w—a)w—b). .. (w—a)w—>b)1?> WI?

> 4k | dw |2
T 1 Q—aqw Y1l -bw™)...(l—gw )Y1—bw™) 1% lwl?"

Consider the curve
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¥ i w()=er®,
We have

| dw |
J, ds2Cf, =,

for a positive constant C,. Thus the proof of Theorem 3 is completed.

§5. Concluding remarks

In case that the dimension m is even, we can conclude the same conclusion of Theorem
3 for some particular cases. For an arbitrary even number m set k2 : =m/2. In this case
we use entire functions

hre+1=¢¢ 2+ glk— 4 —Dz 0=74=k-1)
and
h2¢+2=1(e¢2— k=4 -1z) 0=7=k-1).
Instead of Lemma 4 we use the following conjecture, which was not yet provéd for general

cases but for m=<16( [6], §6).

CONJECTURE. Set k:=m/2 for an arbitrarily given even number m. Then 3k
polynomials

giw): =u"? (1=<7<kh)
gu): =(u—1)"" (F+1=7<2k)
giu): =utF(u—1)m itk (2k+1=i<3k)

are in geneval position.
If the above conjecture is true for an even number 2, then we can show that there exist

m distinct constants @ : =0, b, : =1, @, b, . . ., as, b, such that, for further polynomials
Grr1() 1 =(u—@)" (u— )"} (1=i<m)
Ganvonn-nr (20) 1 = (u— @)™ u— by)! 1=i=m),

&, &, ..., 4 are in general position.

As in the previous section, taking constants ae and b- satisfying the above condition,
we consider the universal covering surface M of the set

M*=C— {z; ¢*=a; or =0, for some (=1, ..., k}
and, using the function

y= 1
(F=1)(F— @) —by). . . (F—ap)(e*—by)

we define m holomorphic functions

=Yk (1=iZm)
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on M*. Then, by the similar manner as in the previous sections we can prove that for the
functions x; defined by (2. 2) the surface x=(x, %, . . ., %) : M—R™ is a complete minimal
surface whose Gauss map omits m(m +1)/2 hyperplanes in general position.

Concludingly, if m (=3) is odd or the above conjecture is valid for an even number m,
then the number m(m +1)/2 of Theorem 1 is best-possible.
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