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Abstract. Let G* be a finitely generated Kleinian group with a fundamental
domain bounded by a finite number of circles which are mutually disjoint or tangent
externally to each other. Then it holds d(A(G*)=P(G*)/2 between the Hausdorff
dimension d(A(G*)) of the limit set A(G*) and the Poincaré dimension P(G*) for G*.

Introduction. Let G be a finitely generated and geometrically finite Kleinian group.
Let

Si(z)=(a:z+ b)/(cz+dy), a;d;—b;c;=1, (1=0,1, 2, ...)

be any element of G, where S(z) is the identity transformation. The Poincaré dimension
P(G) and the Hausdorff dimension d(A(G)) of the limit set A(G) for G are defined as
follows, respectively :

P(G) = inf {¢; 3 | ¢ | 7'<+oo)
SieG

and
dNG)=inf {d; My (A(G)=0} ,

where M4(A(G)) denotes the d-dimensional Hausdorff measure of A(G).
Suppose that G is a Schottky group. Then the former author proved the following
relation ( [2] ):

P
¢ awe) =28
If G is a Fuchsian group of the first kind, the above (*) is trivial. It is proved by Patterson
( [7] ) that (*) holds for a Fuchsian group of the second kind without parabolic elements
and for one with parabolic elements in the case d(A(G))g% and the problem whether or not
() holds for 5< d(A(G))<} is presented by him. D. Sullivan ( [9] ) solved this problem
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positively by using the method of space group and further showed that (*) holds for the
group with G(d) finite volume.

Let us denote by G* a finitely generated Kleinian group with a fundamental domain
bounded by a finite number of circles which are mutually disjoint or tangent externally to
each other. The purpose of this paper is to show that (*) is valid for G*

We are interested in the relation between G* and the group with G(d) finite volume in
the sense of Sullivan and have nothing yet.

It is easily seen that G* is a free group. It seems still open that (*) holds for more
general finitely generated and geometrically finite free groups.

We shall state preliminaries and notations about our Kleinian groups in §1. We shall
give the relation between the Hausdorff measure and the measure defined by the special
covering formed by the isometric circles for the limit set of our group in §2. We shall prove
the main theorem giving the relation between the computing function and the Hausdorff
measure of the limit set of our group in §3. At last in §4 we shall give the relation (*)
between the Poincaré dimension and the Hausdorff dimension of the limit set for our
Kleinian group G* by using the main theorem.

We shall state our hearty thanks to Prof. T. Kuroda for his valuable and suitable
advices given to this paper.

§1. Geometrically finite groups.

1. Let I" be a group of automorphisms of the extended complex plane ¢. A point z
eC is called a limit point of T, if there are a sequence of distinct elements {y,} CI' and
a point zeC such that y,(z)—2 as n—-+o0o. A set of all limit points of I" is called the limit
set of T" and is denoted by A(I"). If z is not a limit point, we say it is an ordinary point of
T", and we denote the set of all ordinary pointsby O(I") and call it the region of discontinuity
of . It is obvious QM= C—A().

2. Let us denote by ¢, -*+, ¢, (p =2) the circles in the complex plane C such that Int
(¢,)CExt (¢;) for i,7=1, -, p (i 7).
We shall consider the group generated by the inversions y; (=1, ---, p) with respect
to the circles ¢; (=1, -+, p) and denote it by G=<, -, 9,>.
We put B;=Cl(Int(c,) (i=1, -+, p), where Cl (4) denotes the closure of A and
Go= {wy, 7

151

| yZ:1} Tty p (izly ) n)y V]':/:l/]‘+1 (j:l, “y %_1)}

for any positive integer 7.
If n=2, we shall define B,(y)=Bu(yy,° > vv,) =(vp,° "> vp,) (By,) forany y =y, oo
»1€Gy. In particular, if n=1, we put Bi(y)= By, for any y = yy,eGu.

Now put L,= UGB .(v) for neN. Then it is obvious L,D L, and N,_ L.+ ¢. We shall
prove the followmg proposition due to [6] , [8] .
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PROPOSITION 1. The group G defined in the above has the following properties :
(i) G is a discontinuous inversion group with A(G)=N°"_, L,.

n=1

(ii) G has the defining relation y?zwzyizz‘d.

Proof. Take any point ze,_ L, Since zeL, for any z, there exist a sequence of
distinct elements {S,} C G and a set of closed discs {Byw | 1=k(n)=p, n=1,2, -} such
that S, (B,,)sz for any »n. Hence there exist a subsequence {S,} (C {S,} ) and B, (1=
k=p) such that S, (B, )2z for all i. This means that ze A(G) and so A(G)D N _ L.

To obtain the converse inclusion, it suffices to show A(G)C L, for any ». If we take
any point ze A(G), then there exist a sequence of distinct elements {S,} of G and some
point xeC such that S,(x)—z as n—oo.

Assume that 2§L,. Then it is obvious that ze N%_ Ext (¢;). Since N’_Ext () is open,
there exists a positive integer #, such that S,(x)e ﬂleExt (¢;) for all m=mn,. This is a
contradicition. Hence we get A(G)cL,. We shall use the induction.

Assume that A(G)CL,. By the invariance of A(G) under the action of G, we have
AG)=N"_ %(AG) cnN?_y(L)=L,,,. Hence we obtain A(G)CN’_ L,

Noting ﬂleLngC‘, we can easily see Q(G):C‘~A(G)¢¢. This means that G is
discontinuous.

(ii) For any fixed element SeG, we put S=1y,, -0y, Where y;=1, -+, p (=1, -+, n),
vyEv (=1, -, n—1) and n=1. Taking a fixed point ze N’_ Ext(B), we find that
Yy (2) elnt(B,) and so yy,(2)&By,, From the form of S, we have (y,,> ¥v,) (2)eInt(Buy,)
and so (Yy,° Yuy) (2)&By,. Repeating these procedures, we obtain S(Z):('yl}no--.o )
(z)eBy,. Hence we have y(z)+z and y+id. This completes the proof of (ii).

q. e. d.

3. Now let us put 7y=y° y: for i=1, -, p—1. Denote by G* the group generated by
{T\, -+, Tp-1} . Then we can easily see that G* consists of linear transformations in G.
We shall put & = {Tl,Tfl, e Ty T;_ll} and call it the generator system of G*.
At first we shall give the following theorem.

THEOREM 1. G* is a geomeltrically finite free Kleinian group with A(G*)=A(G).
- To prove this theorem, we shall need two lemmas.

LEMMA 1. G* is the maximal subgroup of G of linear transformations in G.

Proof. To prove this lemma, we shall introduce a new set G'= {y,, oo yu, | w=1,
e, pE=1, e 20), viF vy (G=1, -, 2un—1) and =0, 1, 2,---} . Since G* is the maximal
subgroup of G of linear transformations, it suffices to show G*=(G".

Since any element SeG* can be written in the form S= Type-e-o Ty, we have G*C G,
where Ty,=ype yyeG (=1, -+, p—1; i=1, ---, k). To obtain the converse inclusion, take
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’ — -1
any element S=yy, ooy, eG. If n=1, then S=yye vy, = (%o ) o (wevu)=Ty, °
Ty,eG*. Assume yy,, ,°¥y,, 2>y, eG*. Then we can see S=yy, oy, °(yy,, o

_ -1 . ® 7
Vv € Pug® Ygy )G* = (° Vo) "o (%2 ¥2u-1)G* = T vp,° Tuy, ,G*=G*. Hence G*DOG
and our lemma is established. '

g.ed.
LEMMA 2. It holds G*1G and [G: G*]=2.

Proof. First we shall prove the former assertion. Take any elements S and 7 from
G and G*=(’, respectively. Then SoT-S7! is a word consisting of an even number of
elements, that is, 2% elements of & . From (ii) of Proposition 1, Se T S~! can be written
as a reduced word of an even number of elements, that is, 2m elements of & (m < #x). Hence
we have Se ToS™'eG'=G* and so SG*S~'C G* for any SeG.

Let us show the remainder. Take any element S=yy,° o yy,eG, where vi=1, -, p
(i=1, -+, n) and vi#F v (=1, -+, w—1). If n is even, then SeG’ = G*. Assume that % is
odd. If we put #=2k+1, then we have S=yu11o(¥yyo o Y1) = %5° (1° Yugy, )° (Yugpo oo
) erG =v,G*. Hence we have G=G*U,G* and so [G: G*]=2.

g.ed.
Now we can give the proof of Theorem 1.

Proof. From Proposition 1 we can easily see that G* is a Kleinian group. First we
shall show that G* is geometrically finite. For this purpose let us consider the action of
G* on the upper half-space, H*= {(z, #) | zeC, t>0} . Let H; be a sphere in E3, the
Eucliden 3-space, which is orthogonal to C with ;N C=¢; (=1, ---, p). We put P=H*N

{ﬂleExt(Hl-)} . Then P is a convex finite-sided fundamental polyhedron for G in H®.
Hence P*=Int {PUCI(y,(P))} is a convex fundamental polyhedron for G* in H®. Since
P is finite sided, so is P*. Therefore G* is geometrically finite.

Next we shall prove that G* is free.

Let SeG* be of the form S=T oo T, where y;=1, -+, p—1, ;=1 or—1 (=1, -+, n)
and T‘;th T:]’“(jzl, ---, m—1). First we consider the case of n=2, that is, S= T‘Zo T It
can be represented by y1, -+, 9 as the below table.

. &
NG 1 -1

1 Voo Vv Vp° Yy | Vo Vuo" Vv °Vp

-1 Yuy® VY, Yo® V6® Yui® ¥p

In any case T:o Tf, can be represented as a reduced word of y, -+, 9 Whose length is at
least two. By the similar argument to the above, we can form the similar table and find
that T T:o T is represented as a reduced word whose length is at least four. By
repeating these procedure, we see that-S is not an identical transformation. Hence G* is
free.
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Finally we_shall show that A(G*)=A(G). Since A(G*)CA(G), it suffices to show the
converse inclusion. Take any point zeA(G). Then there exist a sequence of distinct
elements {S,} C G and xeC such that Su(x)—z as n—+oo. We can easily see from Lemma
2 that there exist an element U,eG*and 6,=0 or 1 for any element S, such that S,= y,f"o U,.
If 6,=0 for infinitely many &,, then ze A(G*). Assume that there exists a positive integer
7, such that ¢,=1 for all n=n,. Noting S,(x)=(yp° Uy) (x)=(y0 Uy vp) (v,(x)) and ype Uye
v,eG* from Lemma 2, we can easily sel\ that ze A(G*). Hence we complete the proof of
Theorem 1.

§2. Isometric circles and a covering of A(G*).

1. Since G* is free, there exist Ty, -, Ty e % for any SeG* such that S can be
represented uniquely in the form S= Ty o---o T},,. So we shall call the number 7 the grade
of S and use the notation S, to clarify the grade #n of S.

Let S, TeG*— {id} be two arbitrary elements with Se T #id. Denote by s, Ir and

Is. 7 the isometric circles of S, T and So T, respectively. Let Rs, R and Rs.r be the radii
of Is, Iy and Is.7, respectively. The following equalities are well known (see [5] ):

o Bs R
(21) SeT — | T(OO)—S_I(OO) |
. . _RSQT.RT_ RZT
G2 S T e = e | = = ) ) |

2. The purpose of §2 is to give the relation between the Hausdorff measure and the
measure defined by the special covering formed by the isometric circles of elements of G*
for A(G*). We shall arrange the results as Theorem 2 on the end of §2. For this purpose
we shall give some lemmas.

First of all we shall prove the following lemma.

LEMMA 3. Let {Sm} be a sequence of G* satisfying Sp= Ty Ty, (Ty,+, Ty,e Q)
and Suy=T, S Jor all neN. Then there exist two positive constants k= k(G*)<1

V}z+10
and k= k(G*) depending only on G* such that
RZ
23 hs—tlzp
S(n)
Jfor all n.

Proof. Since

R,

n+ 1. RS(”)

Rsy= RTVHH oSt~

‘ S()z)(oo) - T ;ﬂl,.rl(oo) |

from (2.1), we have
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2 2
RS(VH—I)_ RTv,n+1
2.4 -
@Y R T ST, ()
Put min Rr=o0, sup Ul | 2z—¢& | =p and
Tey 2,88 5eG*Z [d)}
inf | T71(c0) =S Yco) | =d. Clearly o, p and & are positive constants

Te%,5¢G*— {id,T} L.
depending only on G* and p>e¢. From the definitions of these constants, we have

immediately
| Sen(0)— T, (e0) | 28 and R, =p* for all n.
The right hand side of (2.3) is easily gotten by putting
p20 2=k Similarily we have RZT _ z¢? and
[ Spylo0)—T . (OO) | 2<p? for all nT Putting ¢%p =k,
we have the left hand side of (2.3).
g.e.d.

3. AF. Beardon and B. Maskit discussed the necessary and sufficient condition for
a Kleinian group to be geometrically finite ( [4] ). Here we shall state a part of their
results, which we need later, briefly.

Let T'" be a Kleinian group. We assume coeQ(I'). A point zeC is called a point of
approximation of I if there exist {g.} CT, k=k(2)>0 and ¥ =£'(T")>0 such that

@5 kR, < z—g, ()| <kR,,

where k (resp. £’) is a positive constant depending on z (resp. I'). Another condition, which
is equivalent to (2.5), for zeC to be a point of approximation is the following : there exist
{g } CTI', k”=Fk"(2)>0 and xeQ(T") such that

(2.6) | g@ul2)—gulx) | >R,

here %£” is a constant depending only on z.
We denote the set of all points of approximation of I" by A,I).

Let z be a parabolic fixed point of I". Denote the stabilizer of z by T",. A set U with
the following properties is called a cuped region for z: (i) U is a union of two disjoint, non
-empty half-planes (or discs). (ii) g(U)=U for all geT", and g(U)N U= ¢ for all geI'— T,.
We say that z is a cusped parabolic fixed point of T' if either z has a cusped region U or
I', has a free abelian subgroup of rank two.

The following two propositions are due to Beardon and Maskit ( [4] ).

PROPOSITION 2. A Kleinian group is geometrically finite if and only if every lLimit
point of T is a point of approximation ov is a cusped parabolic fixed point.
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» PROPOSITION 3. Let T be a geometrically finite Kleinian group. Then, for every
ze A,(T), there exist {g,} CT and E=FKT) (>0) depending on T such that

| z—g,'(c0) | <ER,,

We find from Theorem 1 that G* is a geometrically finite Kleinian group. Noting (2.
5) and Propsition 3, we see easily that, for any point ze A(G*), there exist {S,} CG*, k=
k(G*)>0 and %(G*)>0 depending on G* such that

2.7) @R;<I2—Sj(m)|<@R;

4. Now let us give an important property of points of approximation for G* by using
Lemma 3.

LEMMA 4. For any ze A{G¥), there exist {Suy} CG* and K=K(G*) (>0) depending
on G* such that

(2.8) | Z_S(_;z)l(oo) ‘ <KR‘29(TZ).

Proof. From (2.7) of Proposition 3, for any zeA,(G*), there exists a sequence of
distinct elements {S(,)} CG* such that | z—S,}o0) | <k@R§w and Spy=Upnye Suy (m; =
1).

Assume that (2.8) is not true for some zeA,(G*). Then, for any fixed m >0 which is
sufficiently large, there exist a sequence of distinct elements {S(,} CG* which contains

{Swuy} and a subsequence {Su,} < {Su} such that

(29) l Z_S(—ﬂ,l)(oo) | <‘}’}’Lk1R25(”,1)

(210) | 2=SGiy (o) | >mRg

ni-+1)
Put
(211) S(n}—%l):Tﬂ/Hl"S(nﬁ) (T,u/i_He 7?)

For any SeG*— {id} and any fixed x%eQ(G*)— {T Y (co) | TeG*} , the following equality
holds (see [3] , p. 3):

Rilz—x|

(2.12) | S(z)—S() | = .
| 2—S71(c0) | | %—S*(c0) |

We put
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di= rmn|§ %, d=max | §—x% |,
MG &eA(GT)
p= inf | x%—S"Y0) |, = sup | %—S"He0) |,
SeG*— {id} SeG*— {id}
= inf | U(;)l(oo)—T-l(oo) .

Te t},U(n)eG‘,n;2

Obviously these constants are positive and depend on %, and G*. We have from (2.2), (2.
9), (2.11) and (2.12)

2
_ St 1,2
(00) =Sp1 (o) =~ ” <—Rs,,
(n+1) (n7) | (n )(oo) ﬂ ~1_l(oo) | Ps S(ny)

(213) 1S,

2
z—
RS(”.‘) | o l dl

(214) | Seufe)—Sul) | = S
R | 2=Sgi(e0) | | %—Spp(e0) |~ mkips

Combining (2.3) of Lemma 3, (2.7) of Proposition 3, (2.12) and (2.13), we have

| Sune)=Son) | Ry 12=Sulinf0) | 15— SyL(0) |
| S(n’iJrl)(Z) - S("H’D('XO) | R‘Zg(n'-+1)

2=Spp) | | %—Sg(c0) |

1op 127 <"+1‘°°)'gi pr . 127500 | + 1 S5i(00)= S y(09) |
ko P l Z_S(n/i)(oo) | ko ! I Z_S(n (OO) |
1 o
R
1 p S 1 p 1
L. ) == .2 gyl
=% (+szs(n,_) ko o,
This inequality and (2.14) yield
i ko1 s

(2.15) | S(;,;IH)(Z)—S(ZH)(%) | = 2 b0+ Fupa)
Hence we have from (2.12) and (2.15)

RS, 7% |

| 2—=S,; () | =
G | Ser+1)(2) — sn+n(aco)| | % — S 1(00) |

(2.16)

_mklpz(l—i—kzps) . y A RZ

ko1 o3 P Sti+1)’
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. ,_ Glip3(14Faps)
Putting m = L b >0, we have from (2.16)

-1 ;2
— <
| z S("Hl)(oo) | <mm R5<n:+1)'

This contradicts the assumption that (2.8) is not true. Thus we could prove Lemma 4.

q.e.d.

5. For any 6 >0, we denote by I(8) a family of a countable number of closed discs
{D) } of radii {3 =d¢ such that every point of A(G*) is contained in some Int(D) ). For any
SwmeG*— {id} , we put

BEGZ()M): {Z, t Z_S(_”)l(oo) l ék*Ré(u)} ’

where £*=k*(G*) is a constant K in Lemma 4 depending on G*. Since A(G*) is a compact
set, then there exists Dy, .-+, Dyel (8) for any small ¢ >0 such that

U DDAGH).

Let & be a sufficiently small number. Then we obtain from Lemma 4 that there exist
SweG* and Ty, e G for a fixed disc D; (1<i< k) and for any point ze A, (G*)N D; such that
N 2
Bgzn)az, k*Ré(”)> I B(;im_l"%gz and k*Rz, o5 =i Note that the number of {Bg:n)}
with k*Ré(m> l; is finite for all 7. So there exist a positive integer N (7), zie AJ(G*)N D;, Sty
eG* and T,;e G (j=1, ---, N(7)) satisfying the following:

) % 2 .
(2.17) Bg(nwaz, k RSWU»>L,

2) 2
(218) BTHj_Hog(n(/))QZ, /{’,*RT

. =</
Hir1° Gy

7

for j=1, 2, -+, N(@@) (=1, ---, k).
Furthermore we can prove that the set of all such N (Z)’s is a bounded set.

LEMMA 5. For any small 6>0 and any Diel (6), there exists a positive integer N,= N,
(G*) such that N(0)E N, for all i=1, -, k.

Proof. Take two arbitrary distinct transformations Su.y, Swy Satisfying (2.17) and
(2.18). Then they can be written in the forms:

Sty = UU(/ oo Uyl oSt

and

Stumy = U, Lo U, ° Sy
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where S eG* (#.21), Uy;» Uy e G (=1, q; k=1, -, 7) and n(l)=q+ne, n(m)=7r+ 7.
Putting  7'=S) and S=Suwmy in (2.2), we have

| SJ@(lz»(oo)_S(_n(lm»(OO) 1

(2.19)
— R .
| (Uygoeo Uy U;llo cvo U;:) (00)=(Uy,2 -2 Uyy> Siay) (0) |
Since the set of points U B (52) is bounded, then there exists p >0 such that {z]]

SeG*—~ {id}

z | Zp} DB(SZ) for all SeG*— {id} . Thus it follows from (2.19)

1
2200 1 S5(©)—=Soim(©) | —RZSM >gegh

And also it can be seen from (2.3) and (2.18)
1
x D2 S-—Zi
k RS(n(i»_ko

for all j. So the distance from the center of D; to the center of B " 13 not greater than
(1+1/k) ;. Hence we obtain from (2.18) and (2.20)

Py PN <7 {4+ ) °

and so  N(7)<4(k*p) (1+';;+§7:;1‘;73)2-

Obviously 4(k*p)* (1+1/k+1/2k%p)* is a positive number which depends only on G* and

is denoted by N, =N,(G*). Thus our lemma is established.

qg.ed.
We have from Lemma 3

RT 05 G __k()RSn(]))

for any j=1, 2, ---, N(Z) (£N;). So (2.17) and (2.18) yield

@21)  k*Rg,, > =k R,

From now on we shall assume 0 <y <4. Then we have the following theorem ( [1] , [2] ).

THEOREM 2. Let 6>0 be a sufficiently small number and let {D, ---, D} CI(6) be
any covering of MNG*). Then there exist a positive interger Ny and Suay, -+, SwwiyeG*

satisfying the following properties: (i) N(O)=N, for i=1, -+, k. (ii) U - (U] 1BS( U)) o
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AAGH).

-3
2

(i) 25 2 (B BoRS ;) < N; Lz

Proof. Properties (i) and (ii) are immediate corollaries of Lemma 5 and (iii) is a
consequence of (ii) and (2.21).

g.e.d.
Now we shall call the quantity

My (AG")=lim [ inf { 2 (211

{10} Dyel(o)

the 5 —dlmensmnal Hausdorff measure of A(G*).

Smce G* is geometrically finite, the set A(G*)— A(G*) is a countable set. So it holds
Mg(A(G*)) = M/;(AH(G*)).

Putting
2
Fo%= (BY | SueG*, nzn, and k*Rj =6/k}
o (n) (n)

for any number §>0 and any positive integer #,, we obtain the following from Theorem
2.

COROLLARY 1. For any number u (0<u=4), it holds

“

. . 2 2
lim [ inf ( 2 (2Rs,)}]
-0 /F‘T/k"\ 2) eFé‘/"‘O

Yo ! BS(H) Ny

222)  =Ny(k*h) lim [ inf | S @)

6=0 {I@)}  Dyel(9)
K
= No(k* ko) ZMg(A(G*))-
§3. Computing functions and Hausdorff measure of A(G").

1. For any Th=yeye G (k=1, -+, p—1), we put Dg,= Cl (Int(y,(c)) and DT—l

Cl(nt(cy)). Let Spy=Tye Ty eG* be of the form

Suw(z)=(az+b)/(cz+d), ad—bc=1.

Taking the derivative of S(y(z), we obtain
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ds(n)(z) |2—’ 1 )# —( RS(n) u

3.1 = :
G- | dz Ylez+d | iS(_n)l(oo)—z[ ’

Take any fixed element Te @. Forming the sum of (2p —3)" terms with respect to all
Smin (3.1) with T, # T, we have the following function

Rs dS(n) )
(3.2) b =2 |

m( | S (OO) z 1 S(n) dz

We denote it by x(: 'T(z) and call it the x-dimensional computing function of order # on

T. The domain of definition of x% "(2) is Dr.

We assume that S;yeG* is of the form Sy= T oS-y (Te@). Then we can easily obtain
from (2.1) and (3.2)

RS K RS S
W ) = LUV
63) T SuleN =2 (gt a1~ Oy,

where S Sw=Su+0-

2. The purpose of §3 is to seek for the relation between the computing function and
the Hausdorff measure of A(G*) and we shall summerize the main result as Theorem 3
( [2] ). For this purpose we need many lemmas. First let us consider the relation between
two computing functions on the different elements of &.

LEMMA 6. For any two computing functions on the different elements of G, it holds
that there exists a positive constant k(l, p) depending on [ and u such that

X (5
,T)
Aol @O2RL 2R, S0

where %imk([,ﬂ)zo and Syy=Typ o Ty,

Vi

o T,

Proof. Let Su4+peG* be of the form Sy p=7T, visr® Lyeooe Ty, where Te

Vp1°7"

G (=1, ntl), Ty+* Ty_],l+1 G=1,-,mn+{-1)and T}, T". Taking the derivative of
Sty 0, We have

dS(n+l)(Z)_dSn+l(Z) as; (z)
dz dS(z(Z) dz

Then we obtain from (3.1)

(3.5) (—d—#RS(”*” ) = Ko ) ( Ksq )~

=(— -
| Sip(00)—2 | | Spn(e)=Su (2)1” 1S (c0)— 2]
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Forming the sum of (2p —3)"** terms in (3.5) with respect to S(,., we can easily see

i T) . (s TIIZ) __%*____ #
36  x“ D=3 {x, "Su) ( | S;(e0)—2 l') ’

Sw

where Sy=Tye---o Ty,. Putting

= max lz—¢ 1,
¢edDyy,zedD U, Ve ¢

we have | 55)1(00)42 | <p. Then, from (3.6), we have

. (w;Ty)
Kil@z Ryl 2, (S,
()

Putting £(/, ;z):(Rs(,)/p)/‘, we obtain %imk(l, u)=0.
q.ed.

Next we shall seek for the relation between two computing functions on the same 7°

of different orders.

LEMMA 7. Tuake any element Te G and zeDr N\ A(G*). Then for any positive integer
n there exist two constants ky(n,u)>0 and k(n,u)>0 such that

BN k) PR = 2% DR k() T 2).

For any fixed integer n>0, we have from (3.5) the following

Proof.
P Y
T S . KU
. X ' z)= 1 1 . =1
ntl Sotd [ S(H)(OO)_S(I)(4) s | Su) (co)—z | #
We put
1 . -1
_ su S Yo0)— - inf S, (00)—
P S(ﬂ)EG*yg/\(G*) | Sp()=¢E1, p S()eG" LeAGY) | Seple)= &1
61:5r<11)%§'R5m> ) 62:5{21%]25(”)'

Since # is fixed, these constants are positive and depend only on #n. Noting Si(z)e A(G*),
we have '

¥ H M
39 = =0 o
Pt 1 Soy(e0)=Su(z) I* = pr

Q
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By combining (3.8) with (3.9), we obtain

RS i RS “
oy Oz 4 (u;T) () ) - ()
(2p—3) (E) D= 2 Al S-S [ Soie)—7 |

Stn+1)

é(zz)—?s)"(%)“ 2% 7z).

Putting (2p —3)(ax/p)* =k (n, ) and (2p —3)*(01/p:)* = ke(n, p), we have (3.7).
g.e.d.

3. Now let us give two lemmas on a sequence of computing functions { x(:;T)(z)} .

LEMMA 8. Let {x(:;T)(z)} be a sequence of computing functions. Suppose that
limy “ 7 (z) =00 on some T*e G and for some zelnt (Dr). Then lim x* " (z2)=00

uniformly on Int (Dr-).

Proof. Let py: be the distance from 2 to @D7«. Put D(z,d)= {z || 2—2 | £d} for
any fixed d (0<d <pr-). We shall define 77(: Diz)= {x(; ‘D(z2)} -1, We divide the proof of
this lemma into two cases: zeD(z, d) and zelnt (Dr+)— D(zy,d).

Case I. Let z be any point of D(z, d). Then we have from the definition of x:‘;ﬂ(z)

the following estimation :

1 1 |
290 2% )

. .
| 7% ) — 7% T &) | = |

(3.10)

e e I So(e0)—2 |# — | S, (00)—2 | #|
<7 @y @) 3 RS, w2
S(n) I S(n)(OO)-—z [ # ] S(n)(OO)——*ZO | #

vioe

Since S(;)l(oo):(Tf1 e T~1) (00) and z are contained in Dy-1 and D (2, d), respectively,
vy v

and T+ T;ll, we obtain
B11) | Sy, () =z | >pr
for all n.

Denote the rectangular coordinates of z, z and S(;)] (c0) by (4%, W), (x, v) and (a,, by,
respectively. Let us put f(z2)=5(x, )= | S, (c0)—2z |*. Since f (&, y)= {(x—a)*+(—
B.)?}*?, we have the partial derivatives :

S, y)=p | Spy(0)—2 | “Hx—ay)
£ 3)=p 1 S,y (0)—z | ““Hy—by).
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By use of the mean value theorem to f(z) on D(z, d), we obtain
| fO6 )= (%, %) | = | £, 30) 11 2—20 | + | fi(%, 36) 11 330 |
= (1 A, 30) |+ 1 A, ) 1) 12—z | .
Hence we have the following inequality :
| 1 Sy()—z 1= | S () =z 1“| = | f(x, »)—f (%, ) |
(3.12)

<2 | Spye) =2 * 2=z | .

n)

Applying (3.11) and (3.12) to (3.10), we have

e s 2ud . o
(313 12T @)= " T a) 1 = . 2% T ).

n

Since (3.13) is symmetric with respect to z, zeD(z, d), we obtain

1 . 7 . .
Bl r @=ay @K (),

where K, =Zudp.+1.

Case II. Let z be any point of Int(Dr.)—D(z, d). Taking » >0 sufficiently large, we
have for i=1, -, p

D(z, )= {2z | |2—2z | =7} D

Obviously we can take a number A; (>0) such that it holds » < Kypr:. Since S, )1 (c0)§D7,
we see

| Spy(e0)—2 | =27 <2EKypr-=2K; | S} () =2 | .
Hence we obtain from the above

)4

l S(H)(CO)kz | (ZKZ)

615 A =S¢

St
Putting K~'=max (K, (2K;)"), we have from (3.14) and (3.15) the following inequality :
;T ;T
x (2)>Kx, " ()

n

for all zelnt (D7.).
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This shows that limx%“’ 7 ”(z)=co uniformly on Int (Dr.).

g.e.d.

LEMMA 9. Let x(:;T)(z)} be a sequence of computing functions. Suppose that lim

x(:;T‘)(ZO)ZO Jor some T*e G and some zelnt (Dy+). Then limx(;“T*)(z)ZO uniformily on

Int (Dr+).

Proof. For any small e >0, there exists a positive integer /=1[(e) such that
(3.16) | (Sepe S(;)l) (00)=Sp(co) | <&/2uk*

for any n, where Sp=Su_10 T*, S, = T:ll°"'° T:nl and T:llqt T*. Let & and [ be fixed.
From Lemma 4, there exist z;, +++, 2:e A J(G*)N Dr+ and Sy, -+, SppeG* such that

. - . . 2 * .
Bg;ymazj, that is, | Zj_Sj,(})(OO)|<k stm for j=1, ---, k& and UlestmDAa(G YN Dp-. Since
leN is sufficiently large, we may assume (Sj ) '(o0)elnt(Dy+) for j=1, .-, k. Then there
exists a compact set K in Int(Dr-) so that Int (K)3z, and KaS;(})(oo) for j=1, -, k. Let K

be fixed. We set

d=max | z—€ | >0, p= min |z—&] >0,
2,6eK zeK,GedDp

r=max| z—¢&1| >0.
z,6e UDP
TeY

We divide the proof of this lemma into three cases, that is, z is contained in K ,(Uf:1

BY,)NInt(Dr) and Int (D)= {KU(U 't B )
75

S
Case I. Take any point zeK. In the analogous way to the proof of Lemma 8, we see

(e T (i T S g(n) || Sp(©0) =2 | * = 1 Sp()—2 1]
s _ ;
L @ @) | = 27 o) 2 1+ | Spy(00)=z 1*

2urtd
por

;T
= )‘C(:,l (20).

Putting M =2u» *7*d/p*T', we have from the above inequality

317 2 TR MY T ).

Case II. Take any point ze(UfZlB(Sz;)(l'))ﬂInt (D7+). Then we have the following

estimation :
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| 2 TS o) — x4 T (z) |

s RS, 1S, (e0) =z [ =S, (00) = (Sy)"(00) %]
= IS (e) =z |* | S5E(00) —(Sy)eo) | #
(3.18)
s RS, 21 | Siy (00) =(S;)72(00) | 71 | 2= (Sjp)(00) |
=& S (o) —z 14 | S (00) —(Si)(09) | #
Rg(n) 2u | Z*(Sf,(l))_l(oo) |

:5<2n) | Spy(@) =z 1# 1 Si (0) = (Sjw)H(e0) |
Since 263?(/) for some j, we have
7

2
| 2=(Sj) (o) | =k*Rs, .
Here we note that (S; )" =T *(S;;-1)"" and T;ll +T*, where Suy="Ty, oo Tui.
Putting S;y=7T"" and S,)=S in (2.2), we get from (2.2) and (3.16) the following
inequality :
2
R

I (S S(_,Z)l)(oo)—s},(z)(oo) |

| ;)= (Sya)H(e0) | =

(3.19)

2uk* 2
> Ry

Applying (3.19) to (3.18), we see easily

2
(3 T o1 ;T s Rg()z) 2"“‘:'IEMQS/‘,(M
[ 7S, (00)) — 1 7(2) 1< = - —
xn ( JA0) Xn ( ) Sm)l S()Z) (oo) —z |H Zﬂk*Réj(”

=ex"“ "7(z). Hence it holds

e 1 Ty
(3.20) U7 )(2)<ﬁ’8%(5 S D)

Noting S} (o) eK, we have 22 TS () = Mix ™ T (z). Hence we obtain from (3.20)

(3.21) x‘;;?T“’(z)<%§x"“T“)(ZO)

n
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for all ze (U_,BS, )NInt(Dr-).

Case II. Take any point zelnt(Dr)— {K U(U*_BY )}. Let us put 2 = Int (Dr)—
ji=1

7.0)

{K | (U]’? 1B(Sz’(l)}. It can be easily seen that 2 CQUG*) and Dr—2DDA(G*)N Dp.. Hence
=17 S50

We may assume

&= inf | z—& | >0.
§ed GeUDT
TeG— (T}

Put z=max | é—2 | >0 and c=max | §—2 | >0.
¢edK €eaDys

In the analogous way to the proof of Lemma 8, we have

“ -1 - ~1 .
L ) — 2 T =2 Rt Il Sy (00) —2 ¥ — 1 5, (0) =2 |“]
An I X =y | San (0) =2 | # | Sg (00) =2 | #
“ -1 _ -1 . -1
_ 2 RS(n) . 21 S(n) () =2 " | 2—2 | < 2uct Tx(”;T*)(zo).
=5(n) | S(_n)l (00) — 2 |# | S(;)l (o) —2z |# g” ”

Hence we obtain for any point ze 9

. e
2 T2 Mox ™ T ),

where M,=2uc*176~#+1. Putting M =max(M/(1—¢), M), we have x“ " (z)= Mx'* ()

for any point ze Int (Dr-). This completes the proof of Lemma 9.
g.e.d.

4. Now let us give the main theorem.

THEOREM 3. The following thvee propositions are equivalent to each other :

(V7 T“)(

n

(i) limy z)=00 (or 0) on some T*e G and some zelnt (Dr).

n—00

(ii) limx(:;ﬂ (z)=00 (or 0) uniformly on Int (Dr) for any Te G.

(iii) Mg(A(G*)):oo (or 0).

As the proof of this theorem is complicated, so we divide it into five lemmas. First we
shall prove that (i) is equivalent to (ii). For this purpose, it suffices to show that (i)
implies (ii) in the following.

LEMMA 10. Suppose that limx(:;T*)(Zo y=o0 (or 0) on some T *e G and some zelnt (Dr+).
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Then it holds limxg‘;’” (z)=0c0 (or 0) uniformly on Int (Dr) for any Te'G .

Proof. (1) The case of the limit co. From the proof of Lemma 8, there exists a
constant A >0 such that

) > 22 )

Xy
for any positive integer # and any point zelnt (Dr:). For any large number M, >0, there
exists an integer 7, =n,(M,, T *)>0 depending on M, and T* so that x(:;T*)(zo)>KMo for
any n=n,(M,, T*). Hence we have

(B23) 2“2 > M,

for-any zelnt (Dz+) and for any n=n(M,, T *)>0.
Now from (3.4) of Lemma 6, there exists a constant %(1, #)>0 depending only on yx for
any Te G— {T*} such that

324) WD) > k@A u) 2% TATHEY)

for any z’elnt (Dr) and any n=n,(M,, T*). As T*(z)elnt (Dr+), we have

lim x(:;m (T*(2))=co for any z’elnt (Dr). Hence from (3.23) and (3.24), there is an integer

(e T)
n+1

no(Mo, T eN satisfying x (2)> M, for any zelnt (D7) and any n=ng(M,, T). If we put

n

n*(MO):maTxg{no(Mo, T)}+1, it can be easily seen that it holds x* "(z)> M, for any Te

% and any #Zn*(M,) and any zelnt (D). Hence we obtain for any Te % 1imx(::;T)(z):oo
uniformly on Int (Dr).
(I1) The case of the limit 0. From the proof of Lemma 9, there exists a constant M >

0 such that % 7(z)< Mx%“ " (z) for any zelnt (Dr-). From the assumption there exists
an integer n,=mny(e, T *)eN for any small & >0 such that it holds for any n=n(s, T%)
4 (:;T*)(zo)<e/M, where 7n,(e, T*) depends on & and 7*. Then we have

(325 2“2 < e

for any zelnt (Dr:) and any n=n,(e, T*). Now from (3.4) of Lemma 6, there exists a
constant 2(1, x)>0 depending only on x such that

(3260  x“ T > kA w2 TU(TRY)

for any Te G— {T*} and any z'elnt (Dr-). Hence, from (3.25), (3.26) and Lemma 9, there

exists an integer n,(e, T)eN depending on any & >0 and any Te % such that X(,’,‘ Dizy<e
for any zelnt (Dr) and any n=n,(e, T'). Let us put n*(a):rr%a‘;x {my(e, T)} . Then we have
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T>(z) <& for any n=n*(e), any zelnt (Dr) and any Te §.
q.e.d.

5. Next we shall show that (ii) implies (iii).

LEMMA 11. Suppose that limxif‘T)(z):oo (or 0) for any Te G vniformly on Int (Dr).
Then it holds Mg(A(G*)):oo (or 0).

Proof. (1) The case of the limit co. From the assumption of this lemma, for any Te
% and any M >1, there exists an integer #,=n(M)eN depending on M such that

B2 7@ > M

for any zelnt (D7) and any n=n(M). Let an integer », (= 7o) be fixed. Consider 2p—2)
(2p—3)""" elements of the grade #,. Take an element Si,)=Se,-1° 7' of the grade m
among them and let it be fixed. Let F ‘;’f’ be a covering of A,(G*) defined in §2. We take

. - . . @ @ s
a covering consisting of a finite number of closed discs Bs,.» BS(mQ)eF,-Zik" of ALG*)N

B ‘;) ie. U?,lBg DA(G* )ﬂB(z) Here we assume that ¢ >0 is sufficiently small such
() -

that 7, —n > ny.

@
We shall put m*= minQ {m;} . We amend these closed discs Bg() e Bs,, o0 in the
1=j= "
following ;

(i) if my—m*=mnyr (rez, r=0), then we put m,;=m, and
(i) if my—m*=mner+s (r,seZ, r =0, 1=s=n,—1), then we replace the closed disc Bf()

with (2p —3)™~s discs of the grade m;=m*+n, (r +1)=m,;+ (1, —7), le( Bs<(1)p 3570 Sy

By this procedure, we get a new covering of Aa(G*)ﬂB(SZ() consisting of Bg) BSW'R’
(Q<R). Then there exists a constant K (7, #)>0 depending only on 7, and u from 2.3)

such that

R
(3.28) E(Rs 2K, 1) 2(Rs,)".
j=1

j=1

@ . .
We again amend these closed discs BY s( 5 -, B Sim) 10 the following manner.

In the set of closed discs BY Somy B(Szz » there exist a finite number of systems W,
(1= k< n) with the following propertles (i ) each W, has (2p—3)™ closed discs of the

grade m} and (ii) the grades of closed discs in different systems are not necessarily equal.

Here we note that W,,;= {Bg) )+ S om |] 1, 2,++, 2p—3)™ } . We replace these (2p —3)™
closed discs in each system W,; by closed discs whose grade numbers are mj —1.We repeat
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such procedure 7, times for each W,; (1<k=<#). Then we see from (3.27)

(329) 2 (Rs(m,t — 1y)° S (no))” > (Rs(m; - n‘,))#'
S(m)

@)

After such replacement we reach to a new covering of AJ(G*)N By, consisting of closed

@ 2) R
dlSCS B S( my) - BS(WI U) (U< )
Repeating such amendment of B?L o Bg() »to B (?(m;,) e (stm,,U; we obtain the
following inequality :
R K #
B30 Z(Rs,,)" =z 2 (Rs),
j=1 (m*—mn,)

where S(ny=Su° Smn—n) and the summation in the right hand side is taken over all

transformations in G* of the form Sgu=Su° St —n). LThen we have from (3.3) and (3.27)

2 (Rs,)'= 2 {(Rs7)
S . 1 m* =) °
(m”—m) S(m* —n)

)/(Rs ) P X (Rszh"

(1)

(3.31)
= xS,

m*—n, (m)

' (00 ))X(Rsfl)“ M(Rs(*nl))",

where S, =S, -1 T 7! and the summation in (3.31) is taken over all transformations of the
form Sy,)=Swm-1° 7' Hence we obtain from (3.29), (3.30) and (3.31)

R

Q
2 (Bs, ) = K (no, u 2

m)

(3.32) ., .,
2K (n, p) 2 Bsye) = Ko, p) - M - (Rs,)"
(m*—ny)
Noting that (3.32) holds for any closed disc Bg()n ;) we obtain from (2.22) and (3.32) the

following inequality :

No@k*h)? Ma(AG)N Dy) 2

K (o, 1) (2 R IR =Y )X (R -0) %X M.
Som) '
Since M is any positive number and », is any fixed integer greater than #,, we obtain from

(3.33) that M{_; (A(G*))=00 by taking #, to the infinity.

(I1) The case of the limit 0. From the assumption, for any Te & and any & >0, there exist_s
a positive integer 7, =n,(e) depending only on & such that

(B34 1“0 < e
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for any zelnt (D7). Take any sufficiently large integer [ (=#,) and let it be fixed. Then
there exist S;eG* (7=1, -+, 2p—2) 2p—3)"~1) such that

yer-2 (2p—3)l—1B(2)

S DAAGH).
j=1 D)

Note that Sp(o)elnt (Dr) if Sgy=TSr-1. So we have from (3.3) and (3.34)

i D(Sy(e0)) = 2( R"g o)y

S(o) (k)
Hence we have

(3.35) E(Rs(no)os(k))# < E(Rs(k))ﬂ'

S(no)

Let us put I=7m+s (7,5eN, s<n,—1). Since Sy= S m+9= Stw)° Sir—1)m+s), WE Can see
from (3.35)

(3.36) E(Rs(z))” < S(RS((r—l)no+S))#'

(o)

Taking the summation in the both sides of (3.36) over all transformations of the grade (» —
1)ny +s, we obtain

@p-2ep-3) 71 @p-2@p—3 " ats—1 B
Vi

S (Rs)" <2 (RS, s

j=1 j=

If we repeat this procedure (» —1) times, we obtain

-2 -3t @p-2)2p—3 1
(Re; )" <& P> (Rs; )"
j=1 j=1
(3.37)
@p-D2p-3™~
= e&"max
&'ma gS(Z (Rs o) )-

Since the ritht hand side of (3.37) tends to zero as 7 tends to the infinity, we have

@r-2@p—3)¢ 1 u
2

i (s

j=1
Hence we can conclude M;_zl(Aa(G*)):ML; (A(G*)=0.
g.ed.

6. Now we shall prove that (iii) implies (i ). At first we shall show this fact in the
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case of the limit co as follows.

LEMMA 12. If ML;(A(G*)) =00, then limx(}f;T*)(zo):oofor some T *e G and some zyelnt

(Dr+).
Proof. Let n, be a fixed natural number. From the assumption, we have S,,,eG* such
that

* @ y—
(338)  Me(ALG")NBs, )=

Let us put Suy=7T*Su,-1- Then for any integer n, (=n,) and any zeAa(G*)ﬂBg()nﬂ),

there exists S, eG* such that zeBg)(nl), where S =Sm-n°Sm) Hence we find that
there exist Sj)eG* (=1, -+, (2p —3)"m~™) such that

@p=3)" =7 1 (2) * @
U B )DAa(G )OBS%)

j=1 7,
We have from the definition of Hausdorff measure

@p—3m—" , &
(339)  Mx(AJLGHNBY, =3 (2k*Rg, )
o j=1 )

Here we note that it holds from (3.3)

)

(2p-3 RS(” S “
j=

S,
J(m (0)
Sy — o) S(%)

(3.40)

o ws T K
=X (S (ng) (00)) X RS(,,O)'

Putting Si,,)(c0) =z, we can easily see zelnt (Dr.). Hence we obtain the following from (3.
39) and (3.40)

“
* @ AT ;T
MyAlGINBs,,) = Ck" Ry, )" lim 7, ()

. . ;T
This concludes lim x%? “(z)=co.
{oe)

-

q.ed.

7. In order to show that (iii) implies (i) in the case of the limit 0, we have to prove
the following lemma.

LEMMA 13. Suppose that theve exists a subsequence {x(n‘i;T*)(z)} of {x(,’,“T‘)(z)} with
respect to some T*e G such that 1in1x(}jf:T*)(20):oo (or 0) for some zelnt (Dr-)NALG™).

Then it holds lim x%*"(z,)=co (or 0).

n—0oo
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Proof. At first let us prove this lemma in the case of the limit co. Replacing {x "’ T(2)}
with {x(y’:;T*) () } in Lemma 8, we have 1imx(;;f;T')(z):oo uniformly on Int (Dr+). Then

for any large number M’ >0, there exists a positive integer 75 =,(M") depending on M’
such that x(n“D ™(2)> M’ for any zelnt (Dr+). From Lemma 6 there exists a positive number

k(3, u) depending only on g such that
x40 2 kG, w) 2% T (Se2)

for any zelnt (D7) and any Sg=T* T’ T, where T, T’ e % . Noting Sg(z)elnt (Dr:) for
any Te % and any zelnt (Dr), we find that x*%’7(2)= k(3, u) M’ for any Te % and zeInt (Dr).

Here let us put 7, =no(M’")+3. Since we may take M’ >1 sufficiently large such that &(3,
m)yM’ =M >1, we obtain

;1)
342) 2% )z M>1

uniformly on Int (D7) for any Te &.
Now let us consider the computing function x;’;ﬁ ™(2) at z, where ¢ is a positive
integer. For any sufficiently small & >0 there exists a positive number ¢ = d(e) depending

only on & such that it holds

;T (3 T
X6t Nz) > i Nz)—e

for any zeD (z,, d(e)) NInt (Dy+), where D(z, de))= {z| 12—z | <d&)} . Take a
sufficiently large integer />0. Then there exists a SyeG* such that Syy(c0)eD(z, d(&))N
Int (D7») and so

(343) 2% TNy > xuITASu (o) — e

Now we have from (3.3)

B44) xBTS = 2 (R, 050 4 (Rs)"

S(ane)

Modifying the right hand side of (3.44), we obtain

“
2 Ry sy g 2, (Rsye )"
S(gns) =7 Stim)
(3.45) -
(Rsy,)" 2 Bsgoyyesy)”
S(G- 1))

where S is the identity. Since
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2 (Rsg, S(l))#

S(%) (3 T,,x)

M
(RS(U— Dm)° S(l))

we have from (3.42)
e Ty) .
(3.46)  x, " "(SG-vmeSw(e) > M, (z1),

where Si-nme Sn= Ty, SG-vm+i-1, Ty,eG.
If we apply (3.44), (3.45) and (3.46) to (3.43), then we obtain
24T z) > M-

Hence we can conclude

(3.47) %irgxilfjl;T*)(ZO):oo.

For any positive integer m =qn,+7(q, veZ, q, ¥=0, v <ny—1), let us put n=» and [=
qn, in Lemma 7. Then we have from (3.7)

(348) ko, xh @) < 2% @) < Rl w)x T ).

Hence from (3.47) and (3.48) we can conclude limx(:‘T‘)(zo):oo.

Next we shall show this lemma in the case of the limit 0. From Lemma 6 there exists
a positive number %(3, ) >0 depending only on g such that

(349) 2 z%) > kG, 1) x%15(S @Eo)

for any 1=1,2, --- and any S5 =T To T *eG*, where T, T'e%. Since Sy (z)elnt (Dr), we
can see from (3.49)

lim " 3(S (z)=0

n;—3
7y

for any 7e% Hence, putting »;=#,—3, we obtain from Lemma 9 that for any small ¢ >0
there exists a positive integér 7o = 1e(€) depending only on ¢ such that

(350)  x“ ) < e

for any zelnt (Dr) and any Te ¢ .

In the analogous way as in the case of the limit oo, we obtain from (3.50) lim x"%* " ()
=0.

n—00
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g.ed.

8. At last let us prove that (iii) implies (i ) from the following lemma in the case of
the limit 0.

LEMMA 14. If Mz (A(G*) =0, then it holds that limx%“ 77 (20)=0 for some T*e &

and some zelnt (Dr*).

Proof. Assume the contrary. Since (i) and (ii) of Theorem 3 are equivalent to each
other from Lemma 10, we obtain that there exist a subseqemce { ;C(:l‘T)(z)} of {x“(2)}

and 0 <« <oco such that
limy ' " (z) = o

for some T *e G and some zelnt (Dr-).
If @ = o0, then we can see from Lemma 13 that lim x(: : T*)(zo): co. Hence we have from

Lemma 11 M% (A(G*))=o00. This contradicts the assumption M’§ (A(G*)=0. So we may
assume that 0 <« <oco. Then it holds

(351)  0<lim infx* "(z)< lim supx“ " (z)< 0

for any Te ¢ and any zelnt (Dr).

Now take a compact set K in Int (Dr-) and let it be fixed. Then there exist positive
constants ¢, ¢ such that

: : ;T : ;T
0<q éhgi(}onfxn (z)éhrgljoupxn (2) <+

for any zeK. Taking a sufficiently small e >0 (e <¢;), we can easily see that there exists
a positive integer 7, =ny(e, K) depending on & and K such that

(352 0<a—e=x"“ )= +e<+oo

for any zeK and any n=mn,. For any sufficiently large integer », >#, we can take S,,=
T *0 S, -1y €G* such that Bg)(,nl)CInt (K). Let such Sy be fixed. Then for any small §>
0, there exist a positive integer 7, =(8) depending only on & and closed discs B(ﬁ’m‘, )
BY F " such that > (=1, - Q) and Int (K)> U B, PALGIN B, Here

we can take a natural number »* so large that it may hold »* —m,;=n, for j=1, -+, Q. Then
we get from (3.52)
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n*—my my) | M
353 G—e= 3 (Ri”) < a+te.
S(n —my) S(m)

It holds from (3.53)

1
4« > B
Rs(mj) B Cz+85 2 (Rsn “—m)" Simy) )
(n*—m;)

(3.54)

= L 2 (Rs(n‘))#
G + ES(?Z** m;)

for j=1, -+, Q. Hence we have from (3.54) the following inéquality:

Q
1
3.55 Rs ) > S (Rs,.)"
(3.55) El( Sy ates, (")

n*—mn)
Since

S (Rs,) =S (M)“x (Rs) "

s(n"~n,) S(n —n) S("‘)

- X = (S(n. (00)) X (RS

we have from (3.55)

R TS (o)) X (Rs,

Q
(356) ]§1 RS(m) ﬂ _Cvz—_l_—e n*—m ()

).
Since n*—n, = ny, we have from (3.52) the following :

»
() )

Q
/t G —
65D 3 (Re,)" > ¢ A2 (R

Hence we obtain from Corollary 2 the following relation :

N (k) M AGN BY,)

. . N
2lim [ inf > L @RS, )]
- ) 2 ko ;5

F2 B(S) el

n
(m;) °

M
5 C—¢& H
=9%22. 1 =R > 0.
2 G+ & S(m)

This contradicts the assumption M« (A(G*))=0.

111

g.e.d.
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Then we could prove the main Theorem 3.
§4. Hausdorff dimension of A(G*) and Poincaré dimension of G*.
1. In this section we shall consider the relation between the Hausdorff dimension of
A(G*) and the Poincaré dimension of G*. Now let us give the definitions.

Let T be a Kleinian group. Assume that coe((I") and co is not fixed by any element
of I" other than the identity. The Hausdorff dimension d(A(T")) of A(T") is defined as

1) dA[) = inf {51 Mx (AD)=0} .
The Poincaré dimension of I" is

(42)  PM) =inf {12 (Rs)* < +oo}

Sel'— {id}

At first we shall prove the following theorem.

THEOREM 4. Put d(A(G*)):%,u*. Then it holds
0< M, (AG") < +oo
2

Proof. If Mlﬂ* (A(G*))=00, then we have from Theorem 3 that for any large M >2
2

there exists a positive integer 7, =,(M) depending only on M such that
@3 ¥ > M

for any Te & and any zelnt (D). Since the function ;.;(:O‘T’(z) is continuous for g with

respect to fixed n,, 2 and T, we have from (4.3)
(u*+68,T%) 1
4.4) X (z) > ?M > 1
for any Te ¢ and any zelnt (Dr). We have hrom (3.45)

xSl > M)’

qny

for any S(oo) eInt (Dy) ( SeG*— {id}) and any positive integer ¢. Hence we obtain

lim x e " (Sw(eo) =00 Tt concludes My,

>(A(G*)) =oo from Theorem 3. This contradicts

that %#*‘ is the Hausdorff dimension. Hence we have M,_;,,* (A(G*) < +oo.
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If Mlﬂ‘(A(G*)):O, then for any small number >0 (e <%), there exists a positive
: .

integer 7,=n,(e) depending only on & such that
45 X < e

for any Te G and any zelnt (D). In the analogous way as the case of co, we can choose

a positive number §=4¢ (&) depending only on & such that.
46  xv () <2e <1

for any Te % and any zelnt (Dr). By the use of (3.45) we have

270D (S(c0)) < (26)°

qny
for any positive integer g, where S(co)elnt (Dr). Then we have M, u o MG*)=0. This

contradicts that %ﬂ* is the Hausdorff dimension. Hence we have M _; (A(G)>0.

g.e.d.

2. At last we shall prove an important result.

TEOREM 5. It holds d(A(G*)):%P(G*) <o

In order to prove this theorem we need the following lemma.

LEMMA 15. If M%(A(G*))zo, then 2, (Rs)* < +oo0.

SeG*— {id}

Proof. Since M%(A(G*))ZO, we have from Theorem 3 limx(fz‘ Tz)=0 uniformly on

n—00

Int (D7) for any Te G . For any & >0 there exists a positive integer 7, = #,(¢) depending
only on & such that 76(,/; "z)< e for any Te % and any zelnt (Dr). If we take any integer

my > (), then we have X(f; T)(S(,,,)(oo))<e for any m =m,. Hence it holds from (3.3)

(47) 2 (RS(;7°)° S(m))ﬂ < e (Rs(m)) #'

S(ne)

Let us denote by L* the sum of terms (Rs(m))“ of all elements of the grade m of G*.

It can be easily seen
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@p-22p-3m1

(= (Rs; )" )-

1 j=1

Ms

S (RY=3I=

SeG*— {id} m

In order to show the convergence of the series 3,

(Rs)*, it suffices to prove the
SeG*— {id}

convergence of the series 2, L We get from (4.7)

Since &>0 is sufficiently small, we can conclude > (Re)" = 2, L¥ <+4oco. This
SeG*— {id} m=1
completes the proof of this lemma.

g.ed.

In [4] , Beardon and Maskit have proved the following important result.

PROPOSITION 4. If T' is a geometrically finite Kleinian group, then it holds d(AT)<
P(N)=2.

3. Now let us give the proof of Theorem 5.

Proof of Theorem 5. From Proposition 4 and Lemma 15, it can be easily seen

d(A(G*)) :%P(G*)g 2. It is well known that, if Q(T")# ¢, then > (Rg)*< 400 (see [3]).
SeT'— {id}
If d(A(G*))=2, then Theorem 4 yields 0 < M(A(G*))<co. But this contradicts the fact

> (Rs)*<co. Thus we complete the proof of Theorem.
SeG*— {id)
g.ed.
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Appendix

Let G be a finitely generated and geometrically finite Kleinian group. The conjecture d(A(G)):%P(G)
was already stated in the Introduction of this paper.

Recently D. Sullivan announces in [1] that this is true for G and the proof will appear in [2] . And
also it is reported that the Japanese mathematician M. Nakada proved this conjecture for G by the

different method from Sullivan’s.
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