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Abstract Saturation problems for positive convolution operators are well-known
and widely investigated. In 1971, DeVore proved a pointwise “0” saturation theorem.
DeVore’s method yields somewhat more than the conclusion he obtained. It is shown

that any sequence of positive convolution operators, which saturated, is pointwise “o
saturated.

1. Introduction

C* denotes the space of 2r-periodic continuous functions with the supremum

norm | ¢ |. Let (L,) be a sequence of linear operators on C*, given by the convolution
formula

1 v
) Lol )=(F rdis) )= | flx+ ) 1en(i)

where du, is a non-negative, even Borel measure on [—r, 7] with % f_ ’; du, (1)=1.
We consider the saturation of these operators. We say that (L,)is satureted
if there exitsts a sequence of positive numbers (¢,) which converges to 0 such
that
a) for feC*
i =Ll

if and only if f is constant ;
71— 00 -

b) there exists a non-constant function f, € C* such that | fo— L .(fo)| =0 (¢ ,).

The sequence (¢ ,) is called the saturation order.

If we define the real Fourier-Stieltjes coefficients of du, by ,ok,n=711« [ ’; cos kt du,
(2), the following theorem determines when (L,) is saturated and its saturation order
(DeVore (37 , pp.56-58).
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TuroreM A. Let (L,) be a sequence of operators of the form (1). A necessary
and sufficient condition that (L ,) be saturated is that for some positive integer m

) lim T=5"=¢:>0  fork=1,2, 3

In this case (1—0n,,) 1S a saturation order.
In paticular, if (L) satisfies (2), we obtain that for feC*, || f~L.(f) | =0(1—0n,y) if
and only if f is constant. DeVore (2] proved a pointwise “0” saturation theorem.

TuroreM B. Let (L,) be a sequence of positive convolution operators of the form (1),
which satisfies

lim ——22=¢>0  fork=1,2, 3
If feC* then
@)=L (fx)=01—0,,)  for each xe(—r, )

if and only if f1s constant on (—, ).
DeVore’s method of the proof of THEOREM B yields somewhat more than the

conclusion he obtained. In fact we have next theorem.

Tueorem 1. Let (L,) be a sequence of positive convolution operators of the form (1),
where the Fourier coefficients of d i, satisfy (2). If f€C* then for each xe(—r, )

(3) f(x)'_Ln (ﬁx)zox(l_pm,n)

if and only if fis constant on (—x, 7).
Combining THEOREM A and THEOREM 1, we can easily show next theorem.

TurOREM 2. Let (L,) be a sequence of positive convolution operators of the form (1),
which saturated with ovder (¢,). If f €C* then for each xe( — r, )

f(x)_Ln(f: X)=0x(¢n)

if and only if f is constant on ([ —r, 7).
2. Proof of THEOREM 1

The “if” part of the theorem is obvious. The proof of the “only if” part is based on
a trigonometric analogue of the parabola technique of Bajsanski-Bojanic [ 1]. For this
purpose we must prove two lemmas.

Let m be the set of all numbers x¢(0,27], such that, for each neighbourhood I of x,

we have [ S dr(t)xo0(l—pn,). If m=¢, with a compactness argument, we have
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/:d/l At)=0(1—p,,). This contradicts to the hypothesis of (dx«,). So m is nom-void.

Lemma 1. Let feC* be a function which satisfies (3). Then for each x,e [ —r, ],
with flxo)=max {f(x); xe(—mr, )} , and each tem, we have f(x,+t)=f(x,).

Proor. Let assume f(xo+x)<f(x,) for some x,, with f(x,)=max {f(x); xe(— 7, 7]},
and some xem, Then [ ={ye(—m, 7] ; f(xo+y)<% (f(xo)+ f(xo+2x))} is a neighbour-
hood of x and

& o) —flro+2)) [ din®)

= [, (o) =fleo+ 1)) duult)
= [7 o= flxo+ 1) duald)
=7 (f(xo)— L a(f; xo0)

=0(1—0pn).
This shows that f[ d v, (t)=o0(1—0,,) and thus this contradicts to x em.

LemMma 2. If there exists a non—constant f€C*, which satisfies (3), then m is a finite

set.  Also, if x 1s any number in m then x= 27 a, where o is some rational number.

Proor. First of all, we note some properties of numbers, Let (x) be the decimal
place of a positive number x.

i) Let a be an irrational number. Then the set
((ka); k=1,2, 3, |
is dense in [0,1).
ii) Let (a,) be a sequence of distinct numbers in [0,1J, and converge to some rational
number. Then the set
kay; n=1,23, k=1,23,}
is dense in (0,1].

Suppose that (x,) is a sequence of distinct numbers, each of which is in m.
Choosing a subsequence, if necessary, we can assume x,—x where xe(0,27]. We write
Xp=2ra, and x= 27 a.

Let x, be any number in [— 7, =), where f(x,)=max {f(x); xe(—nr, 7]} =M. Then,
by LEmma 1, for each positive integers k2 and »n, we have flx,+kx,)=M. By
continuity of f, f(x,+ k)= M for each positive integer k.

If a is irrational, the set {(ko); k= 1,2,3,---- } is dense in (0,13 by i). Therefore
the set of numbers Ax taken modulo 27, is dense in [0,27). Thus, in this case, /=M on a
set of numbers which is dense in (x,, xo+27) and therefore /=M on (x,,x,+27). From

periodidity we conclude that f is constant.
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If o is rational, the set {(ka,); n=123,, k=1,23,--} 1is dense in (0,1 by ii).
Therefore, we again obtain that f is constant.

This shows that m has no limit point in (0,27]) and hence m must be a finite set.

Finally, if a number of the form x= 27 ¢ with « irrational were in m then, as we
have mentioned before, f(x,+ kx)= M for each positive integer %, so that /=M on a set

of points which is dense in (x,, x,+27 ). This gives that f is constant.

Proor Or Turorem B.

Let f be a function which satisfies (3) and suppose f is not constant. By subtracting
a constant and considering the function —f instead of f, if necessary, we can suppose
that f(—n)=f(r)=0 and M= max {f(x); xe (0,27)} >0. Then, it follows from
LeEMMA 2 that there is a positive integer N such that m & {M k=012, N} . In
addition let N be the smallest positive integer which satisfies the above. In this case, by
using LEMMA 1, we see that for any real number x,, with f(x,)=M, and any integer %,

) Flwo)=M=flx,+-2K7),

The function %, (x)=— asin? sz—x—!— 2M, with 0<e< M, is = f(y) for any ye( —r, .
For each 0<e, 8<2—7]TV—, we define

N
L,= 0 (AT —c 2T 4 5yn(—7 2]

55,35 [_ 7T, 7[]\[5,3-

Now, we fix x,. Then either

a) there exist some ¢ and some § such that

A=max {f(xo+ Zk” —ERT &), flae+ 256\/” +68); k=01, N} <M,
or

b) for each § (or ¢), there exists some integer k%, such that

Flro+-2RZ 1 5)= M (or flxg+-2RoT )= ).
CASE a)
. M—A
Let ¢ =min { , M} . By (4),
sin? ]sz+sm2 N

R fo +2RT =20 =M.

On the other hand, by the definitions of A and e,

B Zjlf,” +8)—flxo+ 2]]‘\’,” +6)
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—asin? %é‘—l—ZM—f(xo-f- 2]%” +6)

Il

M—A
sin? 7&4— sin? —2-5

sin? % o+2M—A

%
|

>—(M-A)+2M—A
=M.

Similarly

hot 2oz — o) — flu+—2E2 o> .

These show that C= min {A,(x)—f(xo+x); xe s} is assumed at a point y in the
interior of I, 5 Therefore, for each xe/, 5

ho(x)—C=flxo+x)

and
ho (¥)— C=f(xo+).
Then
®) f;[ha(x)?_ha(y)] din(x—y)

> f[ UXo+2)—Fxo+9)) dita(x—).

&0

Since the interior of 7, s—y contains m, we obtain by the use of the compactness
argument that

(6) j:ge,b\ d/'t,n(x’—'y):fSE,s_y dlun(x)zo(l_’omrn).
By (5), (6) and the fact
ho(x)—ho(y)=—acos Ny sin? %(x—y)
_a

2 sin Ny sin N(x—y)

we have

L. (fxo +y)—}£(xo +y)

— 4, ot 0)=flra+ 9] ditofa-)

+%fse,5lf(xo+x)—f(xo+y)] d tn(x—y)
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=+ /), he@=ha 0N ditla—3)+0(1=Pn)
=L )= e B)) dtta— )+ 0 —Op)
—Z cos Nyfj{ sin? g(x—y) A=)+ 0(1—0p,n)

=— % cos Ny (1— oy )+ 0(—Pmy).

Finally, from (2), there exists some sequence {7,}7-, such that

Zl—l)—r:o Lni(ﬁx;ti}i;f(xo+y) =—~‘211m cos Ny i‘_‘;’::
=——5cos Ny &y
Since cos Ny>cos 5 —0 a>0 and ¢, >0, we have
La(fxo+3)—f(xo+ )% 0(1—Pmp).
This contradicts to (3) at the point x=x,+y.
CASE b)
From (4), we have for each integer 2 and each § <5+ 9 N
fawo+—2RE 1 o= u.
Therefore there exists some x, such that
fontx)=M  for each xe U, (-2hx  Zhx | x 3

The other case of b), that is f(x, —2?\‘}” —e)=M, we can also obtain the same

conclusion.

Then we use xﬁ—ﬁv in place of x, in the armument above. In the case a), we
have contradiction. In the case b), there exists some x, such that

fxa+x)=M  for each xeu[ Zk” ) 25’;7” 4N]
3r

Now, we use x,+ N in place of x,.

In generally, if case b) continues » times, there exists some x, such that

2k 1 Qkr+1)rx B

fx,+x)=M foreachxe [ N N ZZ‘ZN J.

Therefore, if case b) continues infinitely, there exists some z e [O,ﬁ] such that
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flx)=M  for each xe[ozk:@N[g+ 2}@” 4+ (Zk%]—vl)n YA 7, ).

If we let g(x)= M— F(x),

g(x)=0 on [(—u, n)
g(x)=0 on I,
g(xm)=M>0.

Let x’e¢ [—r, 7] be M'=max {g(x); xe(—n, 7]} =g(x’). Now we can wark with g, M
and «’, in places of f, M and x, in the argument above. Then either case a) is reached,

or case b) continues infinitely. In the latter case, we can conclude

g(x)=0 on I,
glx)=M"  on (—n, 7\Jl,.

This contradicts to the continuity of g.
From the argument above, in any cases, we have the desired contradiction. So (3)
implies f=constant.
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