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Absh-act A th色oryof two-photon absorption from polychromatic station呂!'Y

radiation field is pres自白ted.It is fOl1nd tl1呂tthe transition probability of two-photon 

absorption depends on the statistical properti邑Sof the light employed. Namely， the 

transition probability for a coh巴rentlight is somewhat larg巴rthan that fo1' an 

incoher巴ntone. 

1. Iltl.trm:l.uctioJ.1 

It is very interesting to consider whether the statistical prop町 tiesof the radiation 

field affect the two-photon rat{o or not. N umerous reports have been presented on this 

problem1)-5). For instance， a theory of the two-photon absorption from a single mode of 

the radiation field was described by Lambropoulos et al: (1966). They showed that 

assuming the same intensity fo1' incoher合ntand coherent fields， the transition probability 

for incoherent is twice as high as that for coherent one3)固 Forpolychromaticmodes 

of the field， another theory was described Ca1'usotto et al. (1967); suggested that 

the results from a single mode of the field have no directapplications since almost 

experiments have been performed by polychromatic lights， and they showed that the 

two-phot011 absorption probability depends on the statistical properties of the light 

employed4). Guccione et al. pointed out that Carusotto et al. compared. the transition 

probability for a light pulse generated by a laser with that for thermal origin. Guccione 

et al. developed a polychromatic field theory and drew th日 conclusionthat making use 

of polychromatic light， there is 110 distinction between the transition probability for 

coherent light and that for incoherent one5). 

As wil1 be shown later on， the two-photon absorption probabi1ity is proportional to 

a certain correlation function， while the properties of the field is included in a statistical 

distribution function which is il1corporated in the correlation functio11. We expect that 
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the difference in nature (i. e.， phase and photon distribution) between a coherent light 

and an incoherent one， will affect the two-photon absorption process 

In addition to the reexamination of the above we are particularly 

interested in dealing with the two-photon absorption from two independent 

light sources， a coherent light source and incoherent one， the sample system 

A few experirnents have been reported for this technique6)-S). 

Calculations are performed by means of the usual quantum mechanical perturbation 

theory ; and our procedures are simi1ar to those described by Guccione et aI5). The state 

of the radiation fieJ.d is dεscribed the density operator， the basis for the state 

description constructed with the coher日ntstates. 

n. Ge日記ralTheory 

In the presence of the radiation the Hamiltonian of the system is described 

H=H，.十 Hp十 I-lini=llo + Hint， Ho=Hr+H釦 )
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where l-Iγrefεrs to the radiation fieid and Hp to the particles. Ho is the Hamiltonian in 
the absence of interaction between the and the field. 1s written as 

Hァ=三ωka'k ak， 
h 

where at and a k are the creation and annihilation operators for the k-th mode in the 

respectively 白)k 1s the frequency of a of mode k. ln the present paper， we 

put 万二c=1， for convenience. a t and a k satisfy the following commutation 

k， =Okk'， Ca.， ak'J- αわ =0.Hρ13 written as 

J仔ρ 2:Es c1 cs， 
S 

wher巴 ct and c s are， the creation and annihilation operators for the s-th 

particle state. They the commutation relations， Cc s， 寸二九γ，

C r J + = C c t， c tJ +二O.Es is the energy of the partic1e in the state I s ). Hint is the 
interaction Hamiltonian between the particle and the field， which is described in the 

nonrelativistic representatiol1 as 

Hiniニ "~n AQP-:一子二 A 2 •
F!!b zm (4) 

The symbols in the equation have the usual meaning; A is the vector potential operator 
in the Coulomb guage， P the momentum of the elεctron， and m and e are the mass 

and charge of the electron， respectively. As has beεn discussed various authors， the 

A 2 term does not add any new features to the present of statistics3)，5). 

Thus， we thε A 2 term and shall discuss the A 0 P term. 

Now the γector A can be in terms of the 羽raves
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A=(キ)~J
where 1/ is the quantization volume， and k and ek are the wave vector anc1 polarization 

vector， respectively. Sub雪titutionof Eq. (5) into Eq固 giγes

V:r 0"十 v!$ C 1'9 (6) 

where 

V~1 ニ(長山s IP・ekex，ρ r) I r). 

The coefficients v A may be eva!uated by introducing the truncation of (. i k. r Up to the 

dipolar term， since the wavelength of the radiation must be long compared to the size of 

the atom. 

The density operator p， in the interaction picture before thεinteractiol1， namely at 
t=O， is related to the operatorρ'f after the interaction as 

ρ';-= U (t)向 Uト(t)， (8) 

where U(t， 0) is the time developement operator¥In (8) are incIuded any 

informations for向 theall transitions from the initial state. The operator U(t) satisfies a 

differential equation 

iす 0)=品川t， (9) 

and integrating the equation with respect to time gives 

U川 =1- 品川，)dT， 

here 王寺(t)is defined by 

(10) 

時 (t)=的 exβ(-iHot). )
 

1
i
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This equation is combined with Eq・(7)to give 

時的=2.1ρ(-i adj01:nt I c t c γexρ(i U)sr (12) 

where we have used the relations 

Eゆ(iH，.t)akext(-i ニ a"eゆ(-iωk t)， 

exργexρ(-iHst)= cic，.eゆがω (13) 

白Jsr==Ws 白Jr・

The solution of the time developement operator takes the form 
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間 )=1十日lt時(T)dτ十日吋τ同情山 口

The second term oI (14) is concerned with the one-photon the third tεrm 

with the two-photon transition， and so on. As we are interested in the two-photon 

process， we consider the third term and denote it 固 Substitutionof Eq. 

into Eq. (14) 

び2)目 L: v ~~ 
Sr，Tr，k2 

→ 十内
kl ak2CS-C rCs'，しr'

x exp(-iω"， T)ex:戸(-ωk2

Before interaction the atom and field are uncoupled， and one can assume that 

ρρρzργ" 

whereρρ1 )く ilis the operator of the atom i11 the initial state， andρ ri 18 

that of the field. In order to describe the radiation 'Ne introduce the following 

coherent states 1αh) as the 

れ 1ak)=αk 1αk)， (1'7) 

where the range of the eigenvalue ak 1S the entire plane and ak is in general a 

complex numbero the multi-mode coherent states are deIIned bγthe 

of mode coherent stats， i.e.9)， 

11似 t) =日々 |αk)固

The operator ρri can be with these eigenst成田

ρ"'チ介({αkf) IIk 1 仙ω)(胤く
where d2α三ヨ三 d α凶]d CIη仰tαω]，
and the function P ( 1αk f ) has been cal!ed "P 

(19) 

， which may be of 

as a weight function that characterizes the radiation fie!d. Thus， the operator 

before interaction Pi 1S obtained固 Thetransition probability for absorption 

is obtained of (8) over both the field states and the final state of the 

atom. Thus， we introduce the reduced i2)(t)， which has been 

performed a trace over the fields states5). Then， the transition 

initial state to the final statεbecomes 

from the 

くf1 i2)(t) 1 f> = 2: { 22
 

h

J

 

U
 

一ωωた3

in(ω.1"トωkZー ω ん
x {eゆ[- -1-ωk2一ωk3 ω 泊

ωk，-I-ωた2ω
(20) 
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Jロn((!)ふれ日i-(il:，一一〆山ド/っ J 、p p 
ズ一一ニョー '.""'~4 ニヱ-:10---[ … αh f ) ak1 Cik2 

(COhっ+ω ィーιυ1J ，) 
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It should be noted that the last factor in (20) depends on the 

statistical properties of the light employed. Therefore the transition for 

two-photon is to the integration fador in Eら which

to t11εsecond order correlation function introduced by Glauber9)ー

HL Transl.ti.l.m for Fi.e!d 

In this section we shall compare 出etransition probability for句 acoheI百 ltlight with 

that for an irtcoherent one. VVe assume that the radiation field is stationar・yand the 

transition rate Eq. increases with tirne for short times. The 

transltlOn 

Iロ問2幻叩)

川 υ叫山川k何d勺;1+汁+ωh匂2 ω'....3 一ω仙叫州吋也.j:介fρい向ω山々，，1)必α似k1
where we denote the terms in thεfirst sεt of braces in 刷。 the k2k3k4， 

in which all atomic informations are included. With the condition the terms in the 

second sεt of braces in Eq， (20) arεreplaced the d' functions. As thθfirst of the o 

functions is not applicable to thc infiniteJy energy levε13， we introduce a finite 

width in the state of the final state ρto  avoid the and define a new 

transition w(t): 

w =1ヤ|円(t)I 
.. + U)k2十E;)

川川一帆2ωk3 ω 似 f)川 k

N ow we recall that we can discriminate a coherent light fron:1 an incoherent one through 

the last factor in Eq. ゎ Weshall evaluatεthe tr冒ansitionnrobabilitv加th

for a coherent and incoherent one. 

For a coherent light we assume that the weight function takes the foHowing form 

的i)=Ll〉wd，
wherε P(αk)=グ IαkI e i8α 

whereグ2)(α)=0 o 

The e integration in Eq. means complete ignorance of t加 ofthe 

frequency field (Glauber Substituting Eq. into Eq. and performing th日
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integration， we get 

ω(t)=2πt2Mhlhlhhlρ(2ωkl + E;)くnk，)2

+4πt 2:，~ M k， k?h， k?ρ(ωk，+ω何十E;)くnk，)くn
k1，k2 ゐ

-1-2n:t 2:，' M k， k同 3k4ρ(ωkl +同2+d
kl ， k2 ， k3， k~ 

X O(ωk， -1-ωk2ー ωk3 ω くnk，)拾くn くnk3)'/2く，

(24) 

where くnk)三 Tγiρai;ak Iαk 12 is the average number of photons in the field. The 

symbol， ，denotes excludi時 thcase of kl=K2P while the symbol12Ja，peans 
Rηーz

restricting to the casεs where ，k2， ， and k4 differ from εach other. 

On the other hand， for an incoherent light，we assume that the weight function takes 

a Gaussian distribution. If we write O:kニ|似 1e the integration factor in Eq. (22) 18 

given 

J.Jpu州|叫|似2 11 11 晴 2 仇3ー8.，) (25) 

where in order咽 tomake the integration the phase factor of the exponen-

tial part of the integrand in Eq. (25) must be equal to zero. The Iollowing cases satisfy 

the above phase condition: 

(1) 8k1 = Bk2 = Bk3 = Bk4 or k， =恥=丸=k4，
(2) Bk， =8k3， 8k2=Bk4 or kl= k2= 
Bk1 = Bh2 = Bk3 or k2 = k3， 

(4) ek，+ek2=Bk3+ek4 and k1ヰん宇長3宇

As assumed above the weight function P ( {αk ~) for an incoherent 

Gaussian distribution 

P({αkl)=H 1 e:x，戸 1 0:1< J2 /くnk)).
n:( n .k> 

Substituting Eq， (27) into Eq. (25) and invoking Eq. we have 

ω(t)= Mk，k1k1klρ(2ωk1+E，)くnk)2

十4π九三 k2p(ωk1十ωk2トく恥，，><nk)

げが 玄 Mk1 k2k3k ρ(ωk， +ωh十Ei)(Q;)2 戸、 1 た2 ' "'/¥.32) 

X O(ωk，十ωk2一ωk3一ω くnk，) '{2くnk2> 1/2くnk)1/2くnk4)'/2. 

(26) 

takes a 

(28) 

In Eq. and Eq固 (28)，the first terms reproduce the single mode contributions 

derived by Lambropoulos et al. It is clear that for the absorption from a single mode of 

the radiation field， the transition probability for an incoherent lS tWlce as as 
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出atfor a coh己主entone. The second and the third terms in Eq. (24) give the multi-mode 

contribl1tions for a coherent light and those in Eq. (28) give the multi-mode contributions 

for an incoherent one. Guccione et al. compared the second term in Eq. (24) with that of 

Eq. (28) and concluded that there is no distinction between a coherent light and an 

incoherent light with respect to their transition probabilities for multi-mode of the field. 

However， if we assume the weight functions as given by Eq. (23) and (27)， the third 

terms in Eq. (24) and Eq. (28) shoud emerge， which have not been found ァ Gl1ccioneet 

a1. N amely， the transition probability of two-photon absorption depends on the 

statistical properties of the field. 

Later， in section V， we shall show that the third term in Eq. (28) equals zero as the 

corresponding coτrelation function vanishes. Therefore we neglect the third term in Eq. 

(28). Next， considering the spectral width of the radiation field， we shall perform the 

summatlOn m (24) and Eq. (28) ignoring the contributions from a single mode of the 

radiation field. As an example， assming a square spectra! shape， we shall evaluateω(t) 

for the two situations; (i) the spectral width of the radiation field is narrow compared 

with the width of the final stateムE，and (ii) the reverse case of (i). 

(i) ムω〉ムε

By fixing the mode k2， the summation of the second term in Eq. (24) and that in Eq. (28) 

can be carried out convenientry; the number of mode kJ such that the sumωkJ +ωk2 
falls w耐V吋i

O白J
a凶耐州ω伽d此刷訓d仕制制d出1i山i
other hand， the sl1mmation of the third term in Eq. (24) is performed under thε 

conditions that kJ +ιequals 九十丸 andthat the sumω/.;;1ー|一ωk2falls within the band of 
the final statε. Consequently wεget 

E ω (t)=2πiMo{ ムωτ~ )2 N (coherent field)， 

川t)=川 o(ムω)-J(A )2 (in仙 erentfield) (29) 

where we assume thatくnk)=くn くnk3>=<nh4>ニ <n > is the number of photons per 
mode. N is the number modes in the radiation spectrum defined byムω，/o，ω，and E is the 

total energy of the field given by Nくη〉蜘・

represents Mk)k2 or Mk，h2."3k4 as the case may be， evaluated under the frequency 
condition 

白)kJニ=ωk2 ωjε 二ωk4二=010・

(ii) ムοu{ムε

In this case， there is no restriction on ，k2， k3 and one of which is dummy in the 

summation in Eq圃 (24)because of the occurence of the l5' function. Thus， summing over 
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these k's from 1 to N， we get 

ω州州州(οωtの)ド=27rπ捌叫o(ム心ωεd)1 ( z )y 2 川 C 伽 e削r
ω叫州州(υωtけ)ド=47rπ瑚叫0バ(仏出ωム釘ω昨E)寸)γ一ぺ1(£舟Y(incoh恥閃erer閃er批i氏tfield) (30) 

Thεrefore， the transitiol1 for a stationary coherent 

for an incoherent one. 

is N /2 times as large as that 

IV， Sl.multanemJls Applicatiol!l of Goherent and Ina:oh記rentLight Sources 

In this section， we 8hall consider the ab8orption induced the 

simultaneous application of a coherent light and an incoherent one ; the of the 

coherent light is assumεd to be too small to induce the absorption by itself， 

and the intensity of the incoherent is assumed to be too weak to induce the 

can be recast as follows 

ω(t)=2πt トω"'2ート ωkl-t ω"2 ωk3 

x j-.. J~d2 
as a matter of course，εither k 1 or kz refers to the coherent and either 

or refers to the coherent field. Assuming the wei変htfunction as 

P({αkl)=グZ)(1αkllθi8kl_ グ2)(1ぬ31 eiDk3 的 3)

x (II(幻k2))-le-I a" I '/<n"'>(IIくn e-Iα" I '/<n，，> 

and substituting Eq. into Eq. we have 

ω(t)= k2kjk2 o(ωk]十ωk2 トくnk])くnk2).

It may be noted that has the same form as the second term in (28) obtained 

for the application of an incoherent light. We can see that the transition口robabilitvfor 

anyone of the two light sources. 

v. Dis~UlSsi()n 

Cerlain correlation functions the dominant rolεin the 

process from the of the coherent properties of light. 

n-th order correlation function is defined as9) 

，……三

ksf 

absorption 

to Glauber. the 
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In the abuve the of the field is in the 

ρ句 whichis defined by_~ 1 n>くmlρmnin the n represεntation for the pure cohεrent field， 
n，η2 

and bv子iη><匁|向n for the ir肌 ohe悶
as fo1口1仁0'，パ丸明wλN唱S 

吋

…k2n)ニオ f[ε 

ニ II ん，k，/) (incoherent field九
ドJ=J

(35) 

where the suhscript P in means that the summation should be carri抗1out over 

n! permutations. From the n-th order correlation function in Eqs. and we obtain 

the second order correlation :function己

， k4)= a;;2 a (coherent :field人

g(2，2)(k1 〈αk-1ak'J ，三
A4/ 

十「 a ιah3> field). 

For the incoherent wnereρ1S a matrix， we have the relation 

a 1 (1，εzl2ムJ，

whereaふ forthe coherent 

a αhiαkr 

Therefore 'becomes 

， k2 ; αk1 Q'k2α;3 (coherent 

g(2，2)(k1， ニ 21似 112 I α"2 ! 2 field). 

The value given by Eq. corresponds to the sum of the second and third terms in 

Eq. (24) and that given Eq， to the second te1'm in Eq圃 Thethi1'd te1'm in 

equals zεro :[01' the cor1'esponding correlation function vanishes. Ther♂fore， 

comparing the transition for a coherent light with that for an incoherent 

light iロEq. or (30)， we find that the transition for a coherent light is 

(N /2) times as large as that for an incoherent one， when the average number of the 

photon is the same， cont1'ary to the results of Guccione et al園 Asmentioned in 

section the above finding is prope1'ly obtained as far as the function is 

assumed as Eq. fOl・ acohεrent light and as :for an incoherent !ighL 

It is supposed that the effective number of field mode would not be so large in th担

laser source， Therefore we deduce that the transition for a laser may b吃

somewhat larger than that fo1' an incoherent such as a Xenon lamp， of course 

assumig that the avεrage number of photon in the fIeld 1S thεsame， As essεa11 
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have been carried out use of the nonstationary fiεld (i固 e.， on the 

two-photon absorption， our results can not be compared with observations at presento 

However， in future， powerful stationary laser wil1 be available， and we believe that our 

theory wouid offer some insights into the problem in the absorption 

concerned with the photon statisticso 

The authors wish to thank Professor So Aono for his encouragement and valuable 

discussions. 
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