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Abstract A theory of two-photon absorption from polychromatic stationary
radiation field is presented. It is found that the transition probability of two-photon
absorption depends on the statistical properties of the light employed. Namely, the

transition probability for a coherent light is somewhat larger than that for an
incoherent one.

I. Introduction

It is very interesting to consider whether the statistical properties of the radiation
field affect the two—phbton rate or not. Numerous reports have been presented on this
problem?~®, For instance, a theory of the two-photon absorption from a single mode of
the radiation field was described by Lambropoulos et al. (1966). They showed that
assuming the same intensity for incoherent and coherent fields, the transition probability
for incoherent light is twice as high as that for coherent one®. For polychromatic modes
of the field, another theory was described by Carusotto ef a/. (1967); they suggested that
the results from a single mode of the field have no direct applications since almost
experiments have been performéd by polychromatic lights, and they showed that the
two-photon absorption probability depends on the statistical properties of the light
employed?. Guccione et al. pointed out that Carusotto ef al. compared.the transition
probability for a light pulse generated by a laser with that for thermal origin. Guccione
et al. developed a polychromatic field theory and drew the conclusion that making use
of polychromatic light, there is no distinction between the transition probability for
coherent light and that for incoherent one®.

As will be shown later on, the two-photon absorption probability is proportional to
a certain correlation function, while the properties of the field is included in a statistical
distribution function which is incorporated in the correlation function. We expect that
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the difference in nature (i. e., phase and photon distribution) between a coherent light
and an incoherent one, will affect the two-photon absorption process.

In addition to the reexamination of the above problem, we are particularly
interested in dealing theoretically with the two-photon absorption from two independent
light sources, a coherent light source and incoherent one, illuminating the sample system
simultaneously. A few experiments have been reported for this technique®®.

Calculations are performed by means of the usual quantum mechanical perturbation
theory ; and our procedures are similar to those described by Guccione et al®. The state
of the radiation field is described by the density operator, the basis for the state
description being constructed with the coherent states.

II. General Theory

In the presence of the radiation field, the Hamiltonian of the system is described by
H=Hr+Hp+Hint=Ho+Hint, Ho:Hr+pr (1)

where H, refers to the radiation field and H, to the particles. H, is the Hamiltonian in
the absence of interaction between the particle and the field. H, is written as

Hrzgwka:aky (2)

where a} and a, are the creation and annihilation operators for the k-th mode in the
field, respectively. w, is the frequency of a photon of mode k. In the present paper, we
put %Z=c=1, for convenience. aj and a, satisfy the following commutation relations,
(aw, ai’ )=06w, Law, ax')- =(a}, at’)- =0. H, is written as

Hy=Z e clcs, Q)

where ¢ and ¢, are, respectively, the creation and annihilation operators for the s-th
particle state. They satisfy the following commutation relations, (c¢s, ¢)i = 8sr, (Cs)
¢ ). =(c& ¢l =0. es is the energy of the particle in the state |s)>. H.. is the
interaction Hamiltonian between the particle and the field, which is described in the
nonrelativistic representation as

Hin= — 5 AP+ -£— A?
int = — — Ao +-2’TE‘A. 4)

The symbols in the equation have the usual meaning ; A is the vector potential operator
in the Coulomb guage, P the momentum of the electron, and » and ¢ are the mass
and charge of the electron, respectively. As has been discussed by various authors, the
A? term does not add any new features to the present problem of photon statistics®-®.
Thus, we ignore the A? term and shall discuss only the A+ P term.

Now the vector potential A can be expanded in terms of the plane waves
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A= (%>1/2 % wkl/z e, (a,e™ " + adjoint), ®)

where V is the quantization volume, and %k and e, are the wave vector and polarization
vector, respectively. Substitution of Eq. (5) into Eq. (4) gives

Hine =3 (virax + v¥ai)cicr (6)
where
2 .
vk = —(%—)(s | Pee, exp(ikor) | 7). )

The coefficients v & may be evaluated by introducing the truncation of ¢**” up to the
dipolar term, since the wavelength of the radiation must be long compared to the size of
the atom.

The density operator p; in the interaction picture before the interaction, namely at
t=0, is related to the density operator o, after the interaction as

pr=U (1) o U*(2), )

where U(t)=U(¢, 0) is the time developement operator. In Eq. (8) are included any
informations for the all transitions from the initial state. The operator U(#) satisfies a
differential equation

iS5~ U, 0) = HU(, 0), ©)
and integrating the equation with respect to time gives
U0 =1-i [ BEUE ds 10)
here H(t) is defined by
Hi(t)y=exp (tHot)H ;ns exp(—iH,t). (11)
This equation is combined with Eq. (7) to give
Hl(t):s% {v&aexp(—iwnl)+adjoint} cécrexp(fwsrt), (12)
where we have used the relations
exp(iH »t)a, exp(—i H t)=aexp(—iwst),
“exp (tHst)cte, exp(—iH st)= ¢ icrexp(iwsel), (13)
Wsr= Ws = Wr-

The solution of the time developement operator takes the form
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U)=1+(—1) ftH](T)dr-f-(—i)Zf drﬁrdr'HI(f)HI(r')+ '''''' . (14)

The second term of Eq. (14) is concerned with the one-photon transition, the third term
with the two-photon transition, and so on. As we are interested in the two-photon

process, we consider only the third term and denote it by U®(¢). Substitution of Eq. (6)
into Eq. (14) yields

t T
UA(t)=(— i)zf dz| d7 3 Zr VEL VR @ apchercde (15)
0 0 T

S, 7, k1 S k,

X exp(— i wp, t)exp (— iwkz 7).
Before interaction the atom and field are uncoupled, and one can assume that
P:= P pi O rs (16)

where 0,;, = |7 >( 7| is the density operator of the atom in the initial state, and o ,; is
that of the field. In order to describe the radiation field, we introduce the following
coherent states | o) as the basis,

Ar | ar)=ar | ar, (17)

where the range of the eigenvalue ¢, is the entire complex plane and ¢, is in general a
complex number. Similarly the multi-mode coherent states are defined by the products
of single mode coherent stats, i.e.”,

Hak} > =1l | ar. (18)

The density operator p,; can be expanded with these eigenstates

Pri =f'fp({ak})nk | ak><01k | dzak, (19)

where  d?e= d (Reo) d (Ima],

and the function P ({a.}) has been called “P representation”, which may be thought of
as a weight function that characterizes the radiation field. Thus, the density operator
before interaction p, is obtained. The transition probability for two-photon absorption
is obtained by tracing of Eq. (8) over both the field states and the final state of the
atom. Thus, we introduce the reduced density matrix, y*(¢), which has already been
performed a trace over the fields states®. Then, the transition probability from the
initial state to the final state becomes

k k kg kk
S a2t |f>k: zk (v 05! v*lisvfl‘l(wkg_wji)il(wkg_wli)_l}
LR2,R3, k4

. - Sin (CUk + wry— wﬁ) t/z
X Aexpl—1(we, + Wy — wry — wr )5 ) 3 2
{exp(—i(wn, + we, Wy — Wiy W5 (wn, +an, or)/2

(20)



Theory of Two-Photon Absorption 25

Szjll(ci:kizzk“_;:’)‘;)zt/z }ffP( {aw)) ar, aw, ak, ok, J1ad?as.
It should be noted that only the last integration factor in Eq. (20) depends on the
statistical properties of the light employed. Therefore the transition probability for
two-photon absorption is proportional to the integration factor in Eq. (20), which
corresponds to the second order correlation function introduced by Glauber®.

ITI. Transition Probability for Stationary Field

In this section we shall compare the transition probability for a coherent light with
that for an incoherent one. We assume that the radiation field is stationary and the
transition rate given by Eq. (20) increases linearly with time for short times. The
transition probability is then given by

SN2 | fr=2xrt = Mk1k2k3k45(wkl+wk2_wfi)

Ry key ks By

X Slewn, + wry = Wiy —wk)f'fp({ak Dok, any by g d? ax, 2D

where we denote the terms in the first set of braces in Eq. (20) by the symbol M ,; z2s 24,
in which all atomic informations are included. With the condition #)wz}! the terms in the

second set of braces in Eq.(20) are replaced by the & functions. As the first of the &
functions is not applicable to the infinitely sharp energy levels, we introduce a finite

width in the state density of the final state o (e/) to avoid the difficulty, and define a new
transition probability w(#):

w (O =[< 1 290 | Pe)des

=21t 3 Moy nysrgpln, + wr, +er) (22)

ki, ky ks Ry

X 5(wk1+wk2*wk3*wk42/"fp({ak Daw, ar, ars a:4£1dzak-

Now we recall that we can discriminate a coherent light from an incoherent one through
the last integration factor in Eq. (22). We shall evaluate the transition probability both
for a coherent light and incoherent one.

For a coherent light we assume that the weight function takes the following form
. 1 2n _
Plah)= 2= [ Tp(aas, (23)
where Pla,)= §7( | ax | €%~ an),
where 6(a)=06(Rea) 6 (Ima).

The @ integration in Eq. (23) means complete ignorance of the phase of the high
frequency field (Glauber 1963). Substituting Eq. (23) into Eq. (22) and performing the
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integration, we get
w(t)=27rt%: Mk,k,klkl ,O(Zwk1+€i) <7’lk1>2
+47fl;§};Mklk2klkzp (i, F wry T X7 DMy (24)

+ 27t 3 ]yklkykgk4p(wkl+wkz+€i)

ks ka, ks, ke

X 8 (o, + oy — wry — e B OV, B DB (i D,

where (n,>= T, {patar} = | ax |? is the average number of photons in the field. The
symbol, klEk , denotes excluding the case of k,=k,, while the symbolkhkzzy;ayk{neans
restricting to the cases where k,, k., ks, and k, differ from each other.

On the other hand, for an incoherent light, we assume that the weight function takes
a Gaussian distribution. If we write o= | ax | €%, the integration factor in Eq. (22) is
given by

[ [PUan) L an 1l any 11ty 1 a2, | 0+ 8=t g, (25)

where in order to make the integration nonvanishing,the phase factor of the exponen-

tial part of the integrand in Eq. (25) must be equal to zero. The following cases satisfy
the above phase condition :

(1) 0w, =0k, =0, =0n, Or Ri=ko=ks=Fk,,

(2)  Ony=0ry, Ony =0, O ki=Fs, R2=Fk,,

&) O, = Orys Ony=0ry OF Ry =Fky, ky=kFs, (26)
(4) O+ 60, =06uy+0n, and ki F Ry F R F by

As assumed above the weight function P ({a.}) for an incoherent light takes a
Gaussian distribution

_ 1 .
Pllanh) = T —p s exp (—] aa|*/<m). @7
Substituting Eq. (27) into Eq. (25) and invoking Eq. (26), we have
w(t):‘iﬁt% Mklklklkl ,O(zwk1+€i)<nkl>2
+47rtk§;2Mklk2klk2 p(wk1+wk2+€i)<nkl><nkz> ) (28)
+ 2”51,1%,/k3,%k1 kphgky 0 (Way T+ wry + €i)<3_7§)2
X 8 (@ay 0y — wry — on K20, Y0, 5 Y T

In Eq. (24) and Eq. (28), the first terms reproduce the single mode contributions
derived by Lambropoulos et al. It is clear that for the absorption from a single mode of
the radiation field, the transition probability for an incoherent light is twice as high as
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that for a coherent one. The second and the third terms in Eq. (24) give the multi-mode
contributions for a coherent light and those in Eq. (28) give the multi-mode contributions
for an incoherent one. Guccione et al. compared the second term in Eq. (24) with that of
Eq. (28) and concluded that there is no distinction between a coherent light and an
incoherent light with respect to their transition probabilities for multi-mode of the field.
However, if we assume the weight functions as given by Eq. (23) and Eq. (27), the third
terms in Eq. (24) and Eq. (28) shoud emerge, which have not been found by Guccione et
al. Namely, the transition probability of two-photon absorption depends on the
statistical properties of the field.

Later, in section V, we shall show that the third term in Eq. (28) equals zero as the
corresponding correlation function vanishes. Therefore we neglect the third term in Eq.
(28). Next, considering the spectral width of the radiation field, we shall perform the
summation in Eq. (24) and Eq. (28) ignoring the contributions from a single mode of the
radiation field. As an example, assming a square spectral shape, we shall evaluate w(¢)
for the two situations; (i) the spectral width of the radiation field is narrow compared
with the width of the final state Ae¢, and (ii) the reverse case of (i).

(1) Aw)le

By fixing the mode k., the summation of the second term in Eq. (24) and that in Eq. (28)
can be carried out convenientry ; the number of mode %, such that the sum w., +ws,
falls within the band of the final state equals ?j , Where Sw is the mode spacing. In
addition, we assume that the spectrum is centered on the frequency w, = aéf ‘. On the
other hand, the summation of the third term in Eq. (24) is performed under the
conditions that %,+ %, equals k;+ k%, and that the sum ws, + o, falls within the band of

the final state. Consequently we get

w(t)zZm‘Mo(Aw)‘l(% 2N (coherent field),

w(t)=4xtMo( Aw) " (—L- ¥ (incoherent field). 29)

where we assume that {7, )>=<{#,>={,,)=<{n,,>=<{n) is the number of photons per
mode. N is the number modes in the radiation spectrum defined by Aw/dw, and E is the
total energy of the field given by N<#)wy.

M, represents M, n, of My, 4,n,., as the case may be, evaluated under the frequency
condition

Wry = Why = Whg = Wky = Wo-
(i) AwfAe

In this case, there is no restriction on k., k,, k; and k,, one of which is dummy in the
summation in Eq. (24) because of the occurence of the § function. Thus, summing over
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these %2’s from 1 to IV, we get
EN? .
w(t)=2xiMo(2e)(£)" N (coherent field),

w(B)=4xtMo(Ae) " (& ) (incoherent field). (30)

Therefore, the transition for a stationary coherent light is N/2 times as large as that
for an incoherent one.

IV. Simultaneous Application of Coherent and Incoherent Light Sources

In this section, we shall consider the two-photon absorption induced by the
simultaneous application of a coherent light and an incoherent one ; the frequency of the
coherent light is assumed to be too small to induce the two-photon absorption by itself,
and the intensity of the incoherent light is assumed to be too weak to induce the
absorption. Eq. (22) can be recast as follows

w(t)zzﬂtk kzk /yklkzkglm,O(Cuk1+wk2+€i)3(a)k1 +wk2—wk3—wk4)
x [ [mdaP(ah) L |1an || d, ]t | 60F00m0) (3D)

where, as a matter of course, either k2, or %, refers to the coherent field, and either Z;
or k, refers to the coherent field. Assuming the weight function as

P({ax})=6%(] ar,| €"%1— 2 )02 | ary| €% —au,)

X ([ mayp) e ™ Lo VM (1 gy, Yyt L om 17/<na), (32)
and substituting Eq. (32) into Eq. (31) we have

w(t):47f£§;anlk2klk2 8 (we, + wry + €2y PPk, 33)

It may be noted that Eq. (33) has the same form as the second term in Eq. (28) obtained
for the application of an incoherent light. We can see that the transition probability for
anyone of the two light sources.

V. Discussion

Certain correlation functions play the dominant role in the two-photon absorption
process from the viewpoint of the coherent properties of light. According to Glauber. the
n-th order correlation function is defined as®

g(n,n)(kh kn; 1?71«)—1"'13271)E ili[fl:rsﬁl+?ks> (34)

2n

n
=T 0 ab 1
r | 'Or:1 ak"s n-i—lakS} :
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In the above equation the properties of the field is incorporated in the density operator
0, which is defined by 2 | #>{m | pom in the n representation for the pure coherent field,
and by b | ny<{n |p,m for the incoherent one. The n-th order correlation function is
decomposed as follows

g (kb knﬂ...kzn):.f_'["lg“'”(kj, k;) (coherent field), (35)
sy e lon Fenes-e+an) =3[ ¢k, 1) (imcoberent field), (36)

where the subscript P in Eq. (36) means that the summation should be carried out over
n! permutations. From the n-th order correlation function in Egs. (35) and (36), we obtain

the second order correlation functions
g®ky, k2 ; ks, ki)=<a%, ai, ar,a,> (coherent field),
822 ky k2 s ks, ki)=<ak, )@k, a@r (37
+<ai, ar<ai, ar,y (incoherent field). .
For the incoherent field, where p is a diagonal matrix, we have the relation
Car,arpy = | an; | * 6
whereas, for the coherent field,
ak; arp =ai; ar;
Therefore Eq. (37) becomes
g ks, k2 ; ks, ky) = aw, an, aiy af, (coherent field), (38)
g® Nk, ks ks, ki) = 2| aw, P |aw, | (incoherent field). (39)

The value given by Eq. (38) corresponds to the sum of the second and third terms in
Eq. (24) and that given by Eq. (39) to the second term in Eq. (28). The third term in Eq.
(28) equals zero for the corresponding correlation function vanishes. Therefore,
comparing the transition probability for a coherent light with that for an incoherent
light in Eq. (29) or Eq. (30), we find that the transition probability for a coherent light is
(IV/2) times as large as that for an incoherent one, when the average number of the
photon is the same, contrary to the results of Guccione et al. (1967). As mentioned in
section III, the above finding is properly obtained as far as the weight function is
assumed as Eq. (23) for a coherent light and as Eq. (27) for an incoherent light.

It is supposed that the effective number of field mode would not be so large in the
laser source. Therefore we deduce that the transition probability for a laser may be
somewhat larger than that for an incoherent light such as a Xenon lamp, of course
assumig that the average number of photon in the field is the same. As essentially all
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experiments have been carried out by use of the nonstationary field (i. e., pulse) on the
two—photon absorption, our results can not be compared with observations at present.
However, in future, powerful stationary laser will be available, and we believe that our
theory would offer some insights into the problem in the two-photon absorption
concerned with the photon statistics.

The authors wish to thank Professor S. Aono for his encouragement and valuable
discussions.
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