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Abstract. In this paper we shall give three theorems on the almost everywhere
convergence of the rectangular partial sums of L2-multiple Fourier series. The first is
a result about the summation process taken by the individually fixed monotone
increasing path. The second is a general result on the lacunary partial sums and the
third result is concerned with sufficient conditions on the general rectangular partial
sums. All of them are extensions of theorems known in two-dimension to higher
dimension.

§0. Introduction.

The main purpose of this paper is to obtain some sufficient conditions ensuring the
almost everywhere convergence of the rectangular partial sums of L*-multiple Fourier
series.

Let R" be the n-dimensional Euclidean space, Z” be the set of all lattice points in
R”, and 7™ be the n-dimensional torus. For any x =(x,-%,), y=1-y,) in R", we
denote ax+ By =(ax, + Y1 aX o+ By ») Where a, SR, (x, ¥V)=%y,++%x,Y,and | x | =
(34 oo 22,

For a function feL'(7T"”) we consider the problem of the almost everywhere
convergence of the rectangular partial sums of the Fourier series of f,

Smpprmy [, 2) = 3 0 3 FG)e

[7ilEmy |jal<m,

where
207) — 1 —i(4,%) e
1) = g [ we o0 @ Gezn)
as n-tuples of non-negative integers (,...m,) tend to infinity.

In the case of # =1, the following decisive result was proved by Carleson and Hunt ;
for any feL?(T") (1< p < o0), .
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164 Michitaka KOJIMA

I suz%l Sa) 1 1o =Cuoll fl»

is valid with some constant C, independent of f, and so S,.(f, x) converges to f(x) for
almost every xeT! as m—>o0, )

On the other hand in the case of #>2, C.Fefferman (3] proved that there exists a
feC(T™) such that

.....

.....

restriction.

For the former problem, when indices run with mutual dependence the following
results are known.

C.Fefferman’s result (3] ; There exist §1.6,>0 and feC(7?) such that

Tim | Smymp(fy %) | =00 for all xeT?.
my, Mmy—>co

mls
—l<a

2

a=

C.Fefferman’s result (4] ; For any fixed §..6,>0, if feL?(T") (1< p <o) then

almost everywhere in 7" as m—co.

N.R.Tevzadze’s result (9); For any given two sequences of non-negative inte-
gers {m,?} (I=1, 2) increasing to oo, if feL?(T?) then S, M, (f,x) converges to f(x)
almost everywhere in 7% as k—co. In §1 we shall prove an extension of this result to
n =3 (Theorem 1).

On the other hand when indices run mutually independently, the following result was
proved by P.Sjolin (7). For any given lacunary sequence {m,} ,if feL?(T?) (1<p <oo)
then,

I sup | Snpn | o <Co I £l
,m

is valid with some constant C, independent of f, and so S,,.(f, x) converges to f(x)
almost everywhere in 72 as k£, m—oo. In §2 we shall prove an extension of this result
to # =3 (Theorem 2).

For the latter problem above mentioned, in the theory of 1-dimensional Fourier
series the following result is well-known as the theorem of Kolmogoroff-Seliverstoff-
-Plessner. If feL?(T") satisfies the condition
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S G Plog(1i1+2) < oo

j=—eo

then S,.(f, x) converges to f(x) almost everywhere in 7! as m—oo. Moreover since this
condition is equivalent to the condition

1
[amitas < o
0
where As(f, x)=F(x+s)— f(x), therefore if feL?(T") satisfies the condition

sup | As(f) | 2= O(ﬁ) as &+ 0 for some >0,
sl =¢ (Iog%)z

then S,,(f, x) converges to f(x) almost everywhere in 7" as m—co.
Our main purpose is to get its analogy for n =2.

When n =2, there is a following classical result of S. Kaczmarz [5). If fel?(T?)
satisfies the condition

S % 1 fGui)llog (17| +2) log (| 7] +2) < oo,

Ji=—00 jy=—cc

then S, m, (f, x) converges to f(x) almost everywhere in 7% as m,,m,—co.

Up to now, it is known that this result can be improved in the best form by the use
of the Carleson and Hunt theorem as follows.

P.Sjolin’s result (77 ; If

S 216,72 12 [log min (171 ] +2,17.1+2)]% < o

ji1=—00 j,=—o00

then, S, ,m, (f, ) converges to f(x) almost everywhere in 7% as m,, m,—c0
- E.M.Nikishin’s result (6] ; The factor [log min (|7, | +2, |/, | +2)] ? in the above
result cannot be more improved.

Some sufficient conditions on the modulus of continuity of a function are known.

P. Sjolin’s result [ 8] and M. Bakhbukh’s result (1] ; The condition

h=e =

S 216,712 logmin (|7, ] +2 17, +2)]> < o

is equivalent to the condition

, 1 1 o
fls‘§1|1A3m|Jz sloe T ds <

where As, s, (f, 2)=/(x,+51, X2+ S2)—Fla1+ 51, X2)— fx1, x2+52)+ (%1, x2). So if

sup | Aa(f) |2 = 01— ) as 6-+0 for some >0,

lsl =2 (log5)
then Sy, ,», (f, x) converges to f(x) almost everywhere in 7% as me,, m,—>.

M. Bakhbukh and E.M.Nikishin’s result (2] ; In the above result, it is impossible to
let e=0.
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In §3 We shall show that for n =3, if feL?(T") satisfies the condition

S B G 1P log(] iy 1420 log(| ja | +2) < o0
J1=—0®  Jp=—®

then Sn,,..m, (f, x) converges to f(x) almost everywhere in T" as m,, - ,m,—>o0
(Theorem 3). This assertion is given in the synthetic monograph of L.V.Zhizhiashvili
(10). However for the proof there is nothing to be referred to. Recently this assertion
is reported also by J.Chen and N.Shieh in Notice Amer. Math. Soc., 24(1977), A-241%
Our proof is analogous to the case of =2, and to do it we may use some result from
Theorem 2. However Theorem 2 needs not necessarily for our proof because the used
fact is valid easily under our conditions, but it seems to be of interest in itself.

Moreover we shall deduce from Theorem 3 some sufficient conditions on the modulus of

continuity of a function for the almost everywhere convergence given without proof in
the paper of L.V.Zhizhiashvili (11].

§1. On the almost everywhere convergence of certain partial sum.

In this section we shall prove the following extension of the theorem by N.R.Te-
vzadze (9] to general n=2.

THEOREM 1. If feL*(T™), then for each given n-Sequewnces of now-mnegalive infe-
gers {m P15, (I=1,,n) increasing to o,

Fsup | SuflmlXA 1 1 = C 1Sl
k20

.....

everywhere in T" as k—oo.

PROOF. We shall use the same methods with the case of #=2. For any given
sequences {m 9 }5- with m,Y=0, m4=—1(=1,--,»), if we set

Ak: %j:(ily'”)jn)ezn; | jv | émk(u) (Uzly'”:n)}

then we can devide A4, as following for each £=1,2,... . For each /=1,..,z and for any
given j,€Z", let A=1,=0 be such the integer as m,'“; < |7, | <mY and let

m, ¥ for 1=,=1-1
)

a,"(j,)=

m¥  for [+1=,=n
If we set
AP = {7 =01, dneZ; 17,1 2P () b=1,..,m)}

where ¢ (j,) = m'?, then we obtain that

* This work is performed independently of them.
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i) APNAW = ¢ if1+0
() A, :fZﬂ A

(i) can be shown as following. We suppose that there exists a j=(,....7 n)eALPNA Y
({<'). Then je A implies |7, | =¥ (/,) = m‘j}’ and so we have A,<A,. Similarly
7eAY) implies | 7, | <G 0= my,—1 and so we have A, <A,. Therefore we get a
contradiction and (i) is valid. To show (ii) if we give any j=(ji,....7») € A, then when
A=A, for all [=1,..,n we have jeAf", and when there exists some [, (2=</,<#n) such
that A, <4, for all /=1,...,» and A,<A,, for /=1,.../,—1 we have jeA{?. So we get (ii).

Then we can write as

I

s ]?(j)eiu,x): g s ]?(i)ei(”"’

S, %) = |
JjeA, I=1jeA "

n
lE S¥ (f, x) say.
=1

In order to prove the theorem it is enough to consider the only SV (f, x) since the rest
terms can be treated similarly. Now

SW(f,x)= 3 ( s f(]'l,j/)ei(j’,x'))eijlxl

L Tsma® 17,1 Sa®G)
V=20, 7

= 3 T, x)e"1* say,

i sm 1

where 7 =(/,,....7») and 2" =(x,,...,x,). Since

S - v, 30eir | 2
Tn_llfn!ém(;) [ =m§? =1 1j,| £a2G)
R V=207 o
= @2t = S L) IP=Co 3 1AG)IP < oo
[l =m& |7, a0 jezZn
V=2, M

so we have

Lo 3 T Parsey™ s 1f)F < «
(o) Je

Tn-—ll.1=_

Therefore, for almost every x’e7"™!, it follow that s | T5,(x") |> <oo and so, by the

Ji=—00

Riesz and Fischer Theorem and by the Carleson and Hunt result, there exists a function
Zx(x,)eL*(T") such that s T, (x)e”r*1 is the Fourier series of g,, converges to

1 =—®
gxl(x,) for almost every x,e¢7" and
N, i 2 2 - x ) 7y |2
” 2‘;}3 lll |Szm “’Y‘jl(x )e 141 , ” Lz(Tl)—<_—C” Ex “ L*(TY) - C][E_ool le(x ) l

is valid. Hence we obtain that SV (f, x) convergés almost everywhere in 77 as k—oo
by Fubini’s Theorem and that
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(1) 2 =* ’ ,
Isup | PO | pumsC [ % 1756 | 2a

Ji=—o0

’ 2. — 2
=C' 3 1) 1*=CT 1A

So the theorem is proved.

§2. On the almost everywhere convergence of lacunary partial sum.

In this section we shall prove the following extension of a P.Sjolin’s result (7] to
n=3.

THEOREM 2. (i) If felL®(T™ (1<p<oo), then for any giwen (n—1)-lacunary sequ-
ences {m$} (j=1,..,n—1),

| sup | SuBn® ) | s < Cyll 71

Ryyenkn,m

,,,,,,

almost everywhere in T™ as By,...,k,_,,m—>co.

(i) The result (i) cannot be move improved in the following sense ; for any given
m' =(ms,...,m ,)—00, there exisis a feC(T") such that

Tim | Soyimylf, %) | =00 for all xeT™

My, My 1 —>00

PROOF. (ii) follows easily by the use of the result of C. Fefferman [3].

To prove (i), we may restrict ourself to the case of #=3. For the case of n>4, it
can be shown by induction. We shall use the result and the method of P. Sjolin (7).
Simplifing notations, we write that

{mal = {mid}
{m’} = {(mi), m)} .

Then, {m,} is a lacunary sequence and for {m’} we can use the result of P. Sjolin (7].
For any gel'(T"), we define

Solg, x1) for k=0
Axlg, x1) = [
Smk(g) xl)—Smk_l(g, xl) for k:1,2,3,...

where m,=0, m,=1. Then there are two functions /" (x,, x"), /" (x., x")eL?(T?), where
x"=(x,, x3)eT?, such that

f G2~ B Baralf(e, 27); 20)

fln w0~ B Ao, 1) m),
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Sy, x)=F(x1, x)+"(x1, ') ae (x, 2")eT®
LAl =Coll Floy 1/ 1o=Coll fls
Here we used the theorem (4.11) from A. Zygmund (127, vol. 2, p. 231. If we put
Guwlxy, ) = Swlf(x1, *); 2)
Gy, ) = Sulf (61, +); x7)
Goulxy, &) = Sl (xy, +); x7)
then we have
Smpmlf; %1, 2) = Su(Gml( e, x7); 1)

= Smk(G’m’( ° x,), x1)+Smk(GI,m'( ® x/)y %)

Since for each fixed x’e¢7T? the Fourier series S(G' (<, x'); x,) of x,-variable
function G’ ,(x,, x’) has infinitely many gaps #,,_,< | ¢ | =Mz, with sgp—%n—if“—l> 1,
therefore we have by the inequality (1.20) from A.Zygmund [12], vol. 2, p. 164,

sup | SuG mle, x);20) | =C sup le Ko, =8) | Go (£, x7) | dt
= Cswp [ Kiw=1) | Sulf(t, +);2) | at
/ T

=C sup f K (x,—1t)sup | SwlF(t, «); x') | dt=CP*f ; x,, x°) say.
! m’

So we have

SUp | Sn(Gml(+, )i 2) | £ CPH( 3, )

and by the use of the result of P. Sjolin (7] and the theorem (7.8) from A. Zygmund
(123, vol. 1, p. 156,

TP e = Coll s = Culfly

IN

Similarily we have

Sup | Sp (G (e, x'); 20| = CP*(f; %1, %)
k,m’

and

1P = Col e = CWIlfls

Hence we get

I Sup [ Swpnl) | 1o = Coll flo
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§3. On sufficient conditions for the almost everywhere convergence of
rectangular partial sum.

In this section we shall prove the following theorem.

TueoreM 3. If feL*(T™) satisfies the condition
_ s 3 If(jn-.-,jn) [#log( | 71 | +2)---log(|j. | +2) < oo then Sy, . (f, %)
Ji=—  ja=—c0

converges to f(x) almost everywhere in T" as m,,...,m ,—>0.

We need the following lemmas for the proof.

LEMma 1. Let ge L3(T™) be given.
1) If we put

S*(g, x)= sup l S"lw'":mn(g, x) |
Ty emaz2/ log my -/ log m,

then we have | S*(g) |, = Cl gl. and so

S*(g, x)=0(/1og m, -+ V/log m,) a.e.

(i) If we put

o~
B

1 1 Legsr
*(g x)= su .3
78 m1,~-«,2kog2 J/log m,---/log Mg, | GagerF 1) (ln+1) ven=0 vu=

llzoﬂy"‘ylngz

then we have | o*(g) |, < Cl g, and so

Lot

In
Z Sml yyyyy Mrgr Veg+1reen Vn(g’ x)

l/ko+l=0 va=0

=0(lsysr =+ ln/log my -+ Vlog my,) ae.

(i) is shown in A. Zygmund (12), vol.2, p. 167 when n= 1, and was proved by S.
Kaczmarz (5) when n= 2. For z = 3 it can be proved dy the same method. (ii) can be

easily shown by the use of (i) and the theorem (7.8) from A.Zygmund (12, vol.1, p.
156.

LEmMma 2. If fe LA(T™) satisfies the same condition as in Theovem 3, then
Sl oMz (fox) converges to f(x) almost everywheve in T" as M,,...M,— oo.

This conclusion follows immedately from Theorem 2, under the only assumption
feL?(T™). But we shall prove this result easily under our conditions. We may write

S oM s oM (f, x)= 3 e > JfGlesP=3"+3"
7,1 s2Mb |, 2%
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where 3’ or 3" is the summation respectively over j= (j,,...,j,) with | 7, | = 1 for all %
or over j= (J,,...,7,) with 7,=0 for some . Now

= 3 S Unyenn (%)
m=0 tn=
where
U ptyepon ()= ) ) et
P P I e A E I T
Then,
S Vit ) L e 5 @F L[| s ) T
T Hyseeestin = . U ptpenpin \X ]
N 1
=Qn" [ 3 SU> L fG) 1217
e P A o N P T .
Therefore
fn S 3| uppn(x) | dx
m=0 =
=@ § - 8 L i
o =0 1#n=0 (/11+1)2"'(/ln+1)2
o] o0 AL 1
[ 2 3 (u+1P (utl? S 3 LFG) 17 )7
m=0 =0 2(’“_1)2<U1|§2#2' 21’ ;1 <24%n
o) o0 2. . . L
= A [J,E_oo"'j _E_wlf(i) [Plog (|7, | +2)-log(|j.|+2)]*? < o

So 3’ is convergent a.e. Similarly but more simply 3” converges a.e. and thus the
lemma is proved.

PROOF OF THEOREM 3. We shall prove it in the case of #=3. For #» = 4 we can
do similarly. For any given large integers m., m,, m,, let M, (k=12,3) be such
integers that 2" < m, < oMt Then Mz ~log m,. By Theorem 2 since the
sequence {ZMZ};=1 is lacunary, or by Lemma 2, we see that Sy puz e (%)
converges to f(x) almost everywhere in 7° as M,, M,, M; — co. So in order to prove
Theorem 3, abbreviating simply as Sy, m,.m.= Sm.,m..m,(f, ) and writing as

St maymy = (Smy,mams— S

ZMZ‘,mz,ma) +(SZM€ ymz,ma_SZva 2M5, ma )

(S, 01z, o3, = St gz, o ) TS aa g, bz

we need only to show that the first term in the riget hand side converges to 0 almost
everywhere in 7° as m,, m,, m; — oo , since the rest terms can be treated similarly.

By our assumption there exists a sequence {p;} with p; >0, p,=p_,, and incre-
asing to +oo as slowly as we like as j— oo, such that

o0

S % 5 1701 log(] 7 | +2log(| jz | +Dlog( | s | +2Dps,0sb5 < o0

Ji=—00 jy=—00 ji=~—
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So there exists a function g € L3(7®) of which Fourier series is

g~ jzzs 76) Vs, Tog([ 7, | +2) V' p,log([7. [ +2) vV pylog( | js | +2) e,
If we put

1 i
b,= (=0, =1, £2,..)
" Vbdog( k] +2)

then, b,=06_,, b, is decreasing to 0 as k— oo, and since we can take that the sequen-
ce {b.l7- is convex by the definition of {p,}, so we may assume that k2Ab,—0 as
koo, and 5 kA?b, <oo, where Aby=bu—bus, and A?Du=Abu—Abuer.

Now we can write

Sm,,mz,ma—SZM%,mz,m3: , > > S f(]')ez'(j,x)
2Ml<|jl|§ml |j21§_mz AR

A,k by
lio T <ms |7y | <ms J2:03% ]2, %73

where

A 1 -
A = > f(])—_ {5
J2:]
P M s m, b, bs,

Then, putting
B Hzspts =

> A
L . J2:]
[ol Spe 175 | Spss =

we get by the use of Abel transformation

Sml,mz,ma_szM%,mz,Ms
m, M3 2
(1) = E Z BﬂzvﬂsAb/.lz Ab#3+ Z B/lzymaAb”Z ° bm3+1
=0 13 =0 =
ms
+ 20 BMZ;#?IAb#K ° bmz+1+Bmz,ms bm2+1bm3+l :
o=

Here, if we let

T#h#z:/la = 2 z Z f(]) _b—blﬁj e 0 = S#l :H2y#3(g: x)
7195205

[l Sim il S s | S

then by the Abel transformation we have

ney
B#z»ﬂsz 2% 2+1 Tﬂl»ﬂzyﬂaAb/Jx_'— Tmnﬂzvﬂsbmn"'l_ TzM%, y;,#gszf+1 B
m= !

and we shall estimate (1) with this expression.
For the last term in (1), we know that from Lemma 1 (i),

T,Uh,um,ua: O(“/log M1 ‘/log M2 log /13) a.e.

and so we get
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Bmhms bm2+1 bm3+1

=O0(bp, b, 5 /Togm +Tog m; Y Togms Aby)

#1:2M§+1
+ Olbym, b, b, V' log m, /log m, v log ms)

1
= O(by, bm, bm, V'1og m, v/log m, v log ms)= Of =10 (1) a.e.
¢ s N /B B

my mg mg

For the second term in (1), we may write
w2
Z B/szs Ab#Z ° bma’i‘l
12=0

my ma
:bm3+1 Z 2 T/-ln/-lzvmaAbﬂzAb#l
= M? #2:0
=R M2
M2 M2
b +10mer1 2 Doy pmg 80— o O,y 11 #z_o Tou
=

#2"_-0

Ab,uz

2
1) p2 M3

Since, putting

(uarotts) 4 T — ! S
g 7 - E Musflzss T 2 M y/-tzwa(g) JC)

/_5220 #220
we get from Lemma 1 (ii),

o(;‘"‘“)z OV log 1y v log 1) aee.

so it follow that

5 5 ) (i)
2 Tmy/tz’,uaA b= 2 U(;Z' N2 bﬂz -+ omlz"ua A bmz +1

12=0 =0

=0(/1og 1 V1og us ZZO 120%0,.)+ O(V 1og 1 V' 108 15 my Aby,)
M2 =
=0(/1log uy v 1og us) a.e.
Hence we get

the second term in (1)

= O0(by, v log m, %h V1og w Abu)+ O(by, by, V'log m, V' log m;)

M|=2M2‘ +1
=0, b, V1og m, V1o )= 0—r =01 a.e.
( ] 3 g 1 g 3) (/p—m /p—m) ( ) €
Similary,
. . 1
the third term in (1)= O———=—=)=0(1) a.e.
vV Dm V Dmy
For the first term in (1), we can write
m, M,
Z Z Bﬂz,,ua Ab,uz Ab,ua
=0 13 =0
my My Mg
(2) = Z z Z Tﬂhﬂz:ﬂsAbmAbﬂzAbﬂa

m=2M 41 =0 =0
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ma, M3

3 3 Touwlbiutd

s ® Om, 1

u22=0m—0 ZM?v#z,#aAb”ZAbm ‘ sz?+1 .

To estimate the first term in (2), we let

M M2

Uﬂhﬂz:/»lsz 2 > § Toes= § §

Z S x
20,20 20 20,20 2y Sumnl8 %)
§ 233 M2
U,Un/h: z Z 2 Tlll Ve /JsAb/ta
n=01,=0 =0

put

ma, M3
Uﬂl = E E 2 TVJ P ﬂsA b,uzA b

=0 ,u2~0 ﬂs—

Then, by the Abel transformation, we have

the first term in (2)= E U8+ Uy Abg i —
,u;‘ZM‘+1

UZM%Ab

aMiy
Since now we know that from Lemma 1 (ii)

U,uu,uz,ua: 0(/.11/12/.13) a.e.,

so we get
M3
Uymzz = 2_:0 (Jmmw3 Azb,u3+ U,un/uymsAbmg+l
M=
s
=00z, 1, 3 1:0%8,0)+ Oletsptsmsbbm) = Ou) e,
M=
m
U, = 20 U D700+ Uy ma N 1yt
M2 =
m,
=0(u ﬂZzo 2N b))+ O maAby,)=0(n) ae.
and

the first term in (2)

ey
—o( 3
m=2Mit1

For the second term in (2), we let similarly

102b,,)+ O(myAb )+ 0@ Absr)=0(1) ae.

Viws= 5 5 Tomw= 2 3 Spuul& 2)
=0 1=0 o =0 u,=0
Mz Mg
V#z— E Z Tm

1) V2543 bm
=0 p=

Theh by the Abel transformation, we have

the second term in (2)= b, Z Viel\2b o+ b mysr Vg Ab oy

#z—

Since by Lemma 1 (ii)

Vﬂzy,Us: 0(/12/13 “/m) a.e.,
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so we get
ms 2
Ve :u32=0 VoitayielD2 0 g+ VoAb g 1
= O0(u, /Tog m, z’o s D2b,)+ O,/ Tog m; « msAby,)
M3 =
=0(u v/ log m,) a.e.
and

the second term in (2)

=0(bmVIog M, 3 a0, )+ Ob, /Tog 7: + mabny)

M=

= O(bn, /Tog my)=0( /_;m_)z o(l) ae.

1
Simiarly

the third term in (2)= O(—l—)zo(l) a.e.

From these estimates we conclude that the first term in (1) is o(1) a.e. and the
theorem is proved.

In the above proof the reason why we use the indices “2M*» is due to Lemma 2, and
if we appeal to Theorem 2, “2”*” may be replaced by “2%” .

REMARK. I don’t know whether the factor log( |7, | +2)--- log( | 7. | +2) can be
improved and an analogy of the theorem of Sjolin or Nikishin is valid or not for » = 3 .

Next we shall give a sufficient condition on the modulus of continuity of a function
ensuring the almost everywhere convergence. For s= (s,,--,s,) € [—1,1]" we put

As,(f )=f(x 1, Xt Sy X)) = &1, Xy x0) (B=1,+,m)

and

As(f, x)=As,  As,(f %) .
So

As(f, x)=f(x+s)—f(x)  when n=1,
and

As(f ) =F(x1+ 51,22+ S2)— fx1 4+ 51,%2) — (1,22 + 52)+ f(x1,4,) when n= 2.

Then for fe L*(T"), it can be shown easily by Parseval’s equality that

(o]

S S | fGrndn) 1210g( | 1 | +2) -+ log( | jn | +2) < o

Ji=—00 j,=—c0
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if and only if
S e 2 dsy o as < o
Hence we get the following corollary from Theorem 3.
COROLLARY. If f € LX(T™) satisfy the condition
O LSRN I gdsy e dsy < e
then Sy, malf %) converges to f(x) almost everywhere in T™ as m, -, m,— oo .

Now we consider the following conditions.

1) sup ] Aq () o= Ob—— ) (k= 1L,n)
I'sel =06 (logF)2
@) | s A= O T T
Sp | =0, —=)2 eee —=
Pl (log5p)* ™ (log )
(3)  sup ] A =0 -
sl <3 (logL)ZH

Then it is obvious that (1°) implies (2°), (2°) implies (3°) and (2°) implies (*). So under the
condition (1°) or (2°), Su,,**,m,(f; ) converges almost everywhere in 77 as -, m,—
oo . These results are given without proof in the paper of L.V. Zhizhiashvili (11] also.

REMARK. I don't know whether under the condition (3°) Sn,,*,m,(f %) converges
almost everywhere or not. When #n= 2, this problem has a positive answer by P. Sjolin
(8] and M. Bakhbukh (1]. Also I don’t know whether under these conditions with ¢=0,
Smprma i %) converges almost everywhere or not. When »= 2 this problem has a
negative answer by M. Bakhbukh and E.M. Nikishin [(2].
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