Nonlinear Critical Relaxation in the Kinetic Ising
Model

S5 eng

H AR E:

2FH:2017-10-03

*F—7—NK (Ja):

F—7— K (En):

YRR

X—=ILT7 KL AR:

il=F
https://doi.org/10.24517/00011275

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.



http://creativecommons.org/licenses/by-nc-nd/3.0/

Sci. Rep. Kanazawa Univ.
Vol. 21, No. 1, pp. 19-25
June 1976

Nonlinear Critical Relaxation in the Kinetic Ising Model
Hiroshi IKEDA

Department of Physics, Kanazawa University
(Received April 30, 1976)

Abstract By the help of the high-temperature-expansion method we investigate
the nonlinear critical relaxations in the kinetic Ising model. The associated exponents
are estimated by means of the ratio method. The results are consistent with the
dynamic-scaling predictions.

1. Introduction

The phenomenon of critical slowing down which means that the relaxation time of
a physical quantity becomes much longer as the critical point is approached, is one of
general behavior characteristic of the dynamic critical phenomena.”

In the past, the critical singularities of the relaxation times for the /near and
nonlinear dynamic response had been asserted to be identical in ergodic systems by an
intuitive expectation and a few verifications.® The intuitive expectation was that the
relaxation time has to be determined mainly by the final (linear) stage of the relaxation,
so that the difference between critical singularities of each relaxation time is negligeble,
because an ergodic system approaches much more closely its equilibrium situation as
time increases.”? A few verifications for this were the results of the high-temperature-
—-expansion method?® and the Monte Carlo method” in the two-dimensional kinetic
Ising model.? These results showed that Ay =~ AW, where A% and A% are
the critical exponents of the linear and nonlinear critical slowing down for the order
parameter (magnetization M), respectively.

Recently, it was found that the singularities of the linear and nonlinear relaxation
time can be different even in ergodic systems by using the mean field approximation
(MFA) for the kinetic Ising model.®” That is, it was found that such a simple contrary
evidence exists. The differences between AY) and AG*) has been confirmed for
other complicated cases”®? (different lattices with short-range interactions). It was
also reported that in the high-temperature series expansion® for the two-dimensional
kinetic Ising model there is an algebraic error and the estimate of A% is in
error.®-®
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Furthermore, on the basis of scaling analysis'®-?) it was shown that

A - oGt =48 (1)

for purely dissipative systems, where g is the critical exponent of the order parameter.
A simple physical interpretation of (1) is given in Refs. 11) and 12). It is natural that the
difference Al — A{7*) had been overlooked in the two-dimensional kinetic Ising
model, since g is very small in this case (8=1/8). The above-mentioned exponent
estimates”®® also support the scaling prediction (1). We can also consider the nonli-

near critical relaxation of the energy in the kinetic Ising model. For the energy E, the
scaling prediction becomes'V

AR — AL Z 1, (2)

The exponent A" will be evaluated in this report. Here o denotes the critical
exponent of the specific heat (¢=0 for the two-dimensional case).

Section 2 contains the formulation of the kinetic Ising model and the definition of
the relaxation time. In § 3, we discuss briefly the high-temperature-expansion method
and report the results for the nonlinear critical exponents calculated by the high-
-temperature-expansion method. Summary and discussions are given in §4.

2. Kinetic Ising model and relaxation time

The kinetic Ising model is a model of spin system interacting with a heat bath that
makes spins flip spontaneously. The system at time ¢ is described by the probability

P(or, -+, oy, ) to find the spins in the state (o, -, o), Where o,==*1 are spin variables.
The probability P(ei, -+, oy ¢} is assumed to be governed by the following master
equation :

4L Plo, -, oy ) = =3 Wio)P(oi, -, oy )
+ % Wj(_o.'i)P((ﬁ, “tty T 05 "ty O t), (3)

where the transition probability W,(s;) is assumed to be, for zero external fields
Wj(o'j) = >(1/2) (1 — 05 tanhK%m@) (4)

with % denoting the sum over the nearest-neighbors of the j-th spin, and K=J/%T.
Here the time scale is chosen to be unity.® Eq. (4) is the simplest assumption consistent

with the detailed balance condition® for the Hamiltonian H=—J p%raiaj.
When the probability P(s, -, oy) is determined by Eq. (3), the time evolution of a
physical quantity X=X( {s} ) can be written as

X(1) =3 Ploy, -+, oy, 1) X( {o}), (5)

where the sum lzal is over all possible configurations of spins. If the physical quantity X
vanishes in the final equilibrium state, namely, X(c0)=0, the nonlinear relaxation time is
defined by?
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iy [T_X(@)

Ty X0 dt (6)
with X(0) being finite and sufficiently large.?:® (In the case of the energy relaxation,
we can regard E(co) as the zero point energy.) If we take the limit X(0)— 0 in Eq.

(6), we obtain the usual linear relaxation time :%-1%

X(t) <X X(0)>e
X(O)—»of X(0) dtﬁ <xi>. &% (7)

where (¢ ¢ ) is the equilibrium average in the final state (/= o0). Thus the critical

exponents appearing in Egs. (1) and (2) are defined by
¥
SRR | (8)

’

—a@)
)~ ThY (9)

with e=(7/T.)—1, T. being the critical temperature. (X=M for the order parameter,
E for the energy, etc.) In the MFA, the exponents A(;Ig), A(}}'l‘) can be calculated
directly from the evolution equation for the quantity X.® In other cases such as the
systems with short-range interactions, the high-temperature-expansion method?-*»'® is
helpful. We will quote it briefly in the next section.

3. High-temperature series expansion
If we rewrite the master equation (3) as
—% P(Ul’ ttty UN: t) - —FP(UI’ ttty GN; t)s (10)

and introduce a function #(t) by Ploy, -+, op, t) = Ht) Play, -+, on, ©0), then we obtain

#2) = e L'y0), (11)
where L g=P(c0)"'"¢P(c0), or more explicitly
L= ; Wio;) (1—P;) (12)

with P, being the spin—flip operator: P,o,=— 0;0;4 + ox(1— ).
By the help of this Liouvillean-like operator L, the relaxation times (6) and (7) can
be written as

<L'X>;
%= x5 (13)

) — <XL'X>o

X <XE>o

where ( « ¢ «); denotes the average in the initial ensemble (#=0). Following Suzuki?,

we consider the case where the initial state is completely ferromagnetic (7=0, or
infinite external fields).

Since we can write the operator L as L,—L* where L* contains higher-order

T

(14)
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terms with respect to x=tanhK (—0 for 7 o), the term L~! can be expanded in the
resolvent form :

L™ = L3" + L3*L*L3* + L' L*L3'L*L3* +--, (15)
Thus, the relaxation times are expanded in powers of x as
) =3 an”, ) =3 ba (16)

If the coefficients @,, b, are known, we can estimate the approximate successive
exponents A, by using the ratio method (or other approximant technics).

In this report we consider the nonlinear-relaxation critical exponents for the order
parameter”® (in 2 and 3 dimensions) and for the energy (in 2 dimensions). The calcu-
lation of the coefficients in Eq. (16), which reduces to counting problem on a lattice, is
lengthy and tedious, and we report only the final results. The coefficients ¢, and the
relevant exponents A, are given in Table I~III for each case. From these results, we
conjecture that

A(M”'l') ~ 1.85 (for 2 dimensions),

AR~ 1.05 (for 3 dimensions),

ABH =0.5~1.0 (for 2 dimensions).
Table I. The coefficients a, and the relevant exponents
A, in successive approximations for the order-parameter

relaxation time on a square lattice. The critical tempera-
ture is given by x.=+ 2—1.

n an An
0 1

1 4 1.656
2 16 2.312
3 148/3 1.825
4 416/3 1.655
5 10444/27 1.775
6 433264/405 1.871

Table II. The coefficients a, and the exponents A, for
the order-parameter relaxation time on a cubic lattice.

xe=0.2182.

n a, An
0

1 6 1.308
2 36 1.616
3 518/3 1.137
4 776 1.081
5 17606/5 1.054
6 2174324/135 1.017
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Table III. The coefficients @, and the exponents A, for
the energy relaxation time on a triangular lattice. ».=~=0.2

679.

n an JAV
0 0.5

1 2.5 1.340
2 14.0 2.001
3 52.0 0.986
4 167.0 0.442
5 561.167 0.501
6 2075.646 0.947

Table IV. The exponents of the linear and nonlinear relaxation time for the order
parameter in the kinetic Ising model.

\‘wases 2 dimensions (8=1/8)
Yahata and Suzuki?® Suzuki and Tkeda? Réacz and Collins®
Ay 2.0+0.05 2.125+0.01
N ~1.85 1.95+0.15
\ 2-D 3 dimensions (8=0.31) MFA (5=1/2)
Stoll et al. ¥ Yahata®, Ikeda” | Racz and Collins® Racz®
N 1.850.10 ~14 1.320.03 1
A Geeb) 1.85+0.10 ~1.05 1/2

a) Ref.3). (high-temperature series expansion, ratio method)

b) Ref.8). (

"

)

c) Ref.9). (high-temperature series expansion, Padé approximation)
d) Ref.4). (Monte Carlo method)
e) Ref.13). (high-temperature series expansion, ratio method)
f) the latter in Ref.7). (

g) Ref.6). (exact calculation)

”

)

For the sake of clarity, we collect in Table IV the exponent estimates of the linear and
nonlinear critical relaxation of the order parameter so far available. It is seen that in
the kinetic Ising model the scaling prediction (1) satisfactorily holds true. In the two-
~dimensional case, however, it is difficult to conclude that Aly > A(*%) and that the
difference A‘,{g) — A(M’”') is certainly equal to B, because A is very small in this case.
Namely, a definite conclusion may not be obtained in the two-dimensional case.®>® The

result for the 3-dimensional case supports more convincingly the scaling prediction (1).
Since the successive exponents for the energy relaxation show rather erratic

behaviour, we can not definitely conclude that A(ﬁ'l‘) ~1.0 (I1—¢=1 and A%) =2.0 in

this case'®). Then, we only mention that the result for A(g‘“ may not be inconsistent
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with (2).
4. Summary and discussions

We have investigated the high-temperature series expansions for the nonlinear
relaxation time in the kinetic Ising model, and estimated the associated exponents. The
estimates have been performed for the case of the order-parameter relaxation in two
and three dimensions™® and of the energy relaxation in two dimensions. These results
support the scaling predictions (1) and (2). However, in order to obtain a definite
conclusion, especially for two-dimensional case (A" and A®"), it will be needed
to calculate the high-temperature series expansions up to order higher than the order
obtained so far.® These calculations will be reported by other authors.'®

We next refer to the scaling theory for the nonlinear critical relaxation'®'V, in
which a scaled equation of motion has been solved in order to analyze the relaxation
time. It should be remarked that in the scaled equation of motion'®!" there are no
coupling terms between different wave vectors, for example, ¢.-o and ¢u+o With ¢ being
the order parameter. The effect of such coupling terms may not be clear at this stage.

In order to clarify the effect of coupling terms, and to obtain a definite conclusion
in the two-dimensional case, the renormalization group approach'® will be helpful. We
note that the perturbational renormalization group approach by Suzuki and Tanaka!®
holds even in the nonlinear regime. This approach is now under consideration.
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