A problem of Monotone Approximation

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-03
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00011294

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

A Problem of Monotone Approximation

Ryozi Sakai

Department of Mathematics, Faculty of Science, Kanazawa University

(Received April 10, 1974)

Let $1 \le k_1 \le \cdot \cdot \cdot \le k_q \le n$ be the positive integers and let $\varepsilon_i = \pm 1$, i = 1, ..., q. We denote by H_n the set of all algebraic polynomials p of degree n or less, and then we define the sets

$$H_n({}^{k_1,\dots,k_q}_{\varepsilon_1,\dots,\varepsilon_q}) = \{ p \in H_n; \ \varepsilon_i p^{(k_i)}(x) \ge 0 \quad \text{for } a \le x \le b, \ i = 1,\dots,q \} ,$$

$$F({}^{k_1,\dots,k_q}_{\varepsilon_1,\dots,\varepsilon_q}) = \{ f \in C^{(k_q)}(a,b); \varepsilon_i f^{(k_i)}(x) \ge 0 \quad \text{for } a \le x \le b, \ i = 1,\dots,q \} .$$

G. G. Lorentz and K. L. Zeller (1) approximated the function f in $F(\frac{k_1,\dots,k_q}{\varepsilon_1,\dots,\varepsilon_q})$ by the polynomials p in $H_n(egin{array}{c} k_1,\dots,k_q \\ \varepsilon_1,\dots,\varepsilon_q \end{array})$, and they investigated this problem, such problem is called monotone approximation problem, in detail.

In (1) they proved the following.

In [1] they proved the following. Let $f \in F(\frac{k_1,\dots,k_q}{\varepsilon_1,\dots,\varepsilon_q})$, $p \in H_n(\frac{k_1,\dots,k_q}{\varepsilon_1,\dots,\varepsilon_q})$ and $f \neq p$, then the set $A(f,p) = \{x \in [a,b]; |f(x)-p(x)| = \|f-p\| \}$ is compact and the function $\sigma(x) = \text{SIGN } [f(x)-p(x)]$ is continuous on A(f,p). Conversely, if a polynomial $p \in H_n(\frac{K_1,\dots,k_q}{\varepsilon_1,\dots,\varepsilon_q})$, a compact set $A \subset (a,b)$ and a continuous sign function σ on A are given, then there exists a function $f \in C(a,b)$ for which A = A(f,p) and o(x) = SIGN[f(x)-p(x)].

However they left whether one can take f here to be continuously differentiable with the properties $\varepsilon_i f^{(k_i)}(x) > 0$, $a \le x \le b$, i = 1,...,q. We can give a solution for this problem.

Theorem. Given a non-empty compact set $A \subset [a,b]$ and a continuous sign function σ , then for any $p \in H_n(\frac{k_1,\dots,k_q}{\varepsilon_1,\dots,\varepsilon_q})$, $k_q \leq \text{DEG } P$, there exists a $f \in C^{(2\,n-1)}(a,b)$ for which A = A(f, p), $\sigma(x) = SIGN[f(x) - p(x)]$ on A and $\varepsilon_i f^{(k_i)}(x) \ge 0$ for $a \le x \le b$, i = 1, ..., q.

First, we give a lemma. Let $\delta > 0$, n = 1,2,..., then the function

$$\lambda(x) = \lambda(\delta, x) = \lambda_{(\alpha, \beta)}(\delta, x) = \frac{\delta(x - \alpha)^{2n}}{(x - \alpha)^{2n} + (x - \beta)^{2n}}, \quad \alpha \le x \le \beta$$

has the following properties;

- (a) $\lambda(\alpha) = 0$, $\lambda(\beta) = \delta$, $0 < \lambda(x) < \delta$ for $\alpha < x < \beta$,
- (b) $\lambda^{(k)}(\alpha) = \lambda^{(k)}(\beta) = 0 \text{ for } 1 < k < 2n-1,$
- (c) if $\varepsilon_{i}p^{(k_{i})}(x) > 0$ for all $\alpha < x < \beta$, i = 1,...,q, there exist $\delta_{1} > 0$ and $\delta_{2} > 0$ for which $|\lambda^{(k_{i})}(\delta_{1},x)| < |p^{(k_{i})}(x)|$ for all $\alpha \le x \le \beta$, i = 1,...,q, or $|\lambda^{(k_{i})}(\delta_{2}, -x + \alpha + \beta)| \le |p^{(k_{i})}(x)|$ for all $\alpha \le x \le \beta$, i = 1,...,q.

Also, let $\gamma > 0$, then the function

$$\mu(x) = \mu(\gamma, x) = \mu_{\alpha, \beta} (\gamma, x) = \begin{cases} \lambda_{\alpha, \frac{\alpha + \beta}{2}} (\gamma, x), & \alpha \le x \le \frac{\alpha + \beta}{2} \\ \lambda_{\alpha, \frac{\alpha + \beta}{2}, \beta} (\gamma, -x + \frac{\alpha + \beta}{2} + \beta), & \frac{\alpha + \beta}{2} < x \le \beta, \end{cases}$$

has the following properties;

- (a') $\mu(\alpha) = \mu(\beta) = 0$, $0 < \mu(x) < \gamma$ for $\alpha < x < \beta$,
- (b') $\mu^{(k)}(\alpha) = \mu^{(k)}(\beta) \left(= \mu^{(k)} \frac{\alpha + \beta}{2} \right) = 0 \text{ for } 1 \le k \le 2n 1,$
- (c') if $\varepsilon_i p^{(k_i)}(x) > 0$ for all $\alpha < x < \beta$, i = 1,...,q, there exists $\gamma > 0$ for which $| \mu^{(k_i)}(\gamma, x) | \le | p^{(k_i)}(x) |$ for all $\alpha \le x < \beta$, i = 1,...,q.

Thus we get the following lemma.

Lemma. Let $\varepsilon_i p^{(k_i)}(x) > 0$ for all $\alpha < x < \beta$, i = 1,...,q, and let $\lambda_{(\alpha,\beta)}(\delta,x)$ and $u_{(\alpha,\beta)}(\gamma,x)$ be the functions defined as above. Then we have the following functions.

- (1) Let $f_1(x) = p(x) + \frac{\delta}{2} \lambda(\delta, x)$, then f_1 has the following properties;
 - (a) $f_1(\alpha) = p(\alpha) + \frac{\delta}{2}$, $f_1(\beta) = p(\beta) \frac{\delta}{2}$, $|f_1(x) p(x)| < \frac{\delta}{2}$ for $\alpha < x < \beta$,
 - (b) $\varepsilon_i f_1^{(ki)}(x) \ge 0$ for $\alpha \le x \le \beta$, i = 1,...,q,
 - (c) $f_1^{(ki)}(\alpha) = p^{(ki)}(\alpha), f_1^{(ki)}(\beta) = p^{(ki)}(\beta)$ for i = 1, ..., q.
- (2) Let $f_2(x) = p(x) \frac{\delta}{2} + \lambda(\delta, x)$, then f_2 has the following properties;
 - (a) $f_2(\alpha) = p(\alpha)$, $f_2(\beta) = p(\beta) + \frac{\delta}{2}$, $|f_2(x) p(x)| < \frac{\delta}{2}$ for $\alpha < x < \beta$ and f_2 satisfies the above conditions (1), (b) and (c).
- (3) Let $f_3(x) = p(x) + \frac{\delta}{2} \mu(\gamma \cdot x)$, $0 < \gamma < \delta$, then f_3 has the following properties;
 - (a) $f_3(\alpha) = p(\alpha) + \frac{\delta}{2}$, $f_3(\beta) = p(\beta) + \frac{\delta}{2}$, $|f_3(x) p(x)| < \frac{\delta}{2}$ for $\alpha < x < \beta$, and f_3 satisfies the above conditions (1) (b) and (c).
- (4) Let $f_4(x) = p(x) \frac{\delta}{2} + \mu(\gamma, x)$, $0 < \gamma < \delta$, then f_4 has the following properties;
 - (a) $f_4(\alpha) = p(\alpha) \frac{\delta}{2}$, $f_4(\beta) = p(\beta) \frac{\delta}{2}$, $|f_4(x) p(x)| < \frac{\delta}{2}$ for $\alpha < x < \beta$, and f_4 satisfies the above conditions (1),(b) and (c).

Proof of Theorem. Given A and σ , then we can find the finite sets of points; $\{a_j\}_{j=1}^m$, $\{b_j\}_{j=1}^m \subset A$ such that $a \le a_1 \le b_1 < a_2 \le b_2 < \cdot \cdot \cdot < a_m \le b_m \le b$, $A = \bigcup_{j=1}^m A_j$,

 $A_j = [a_j, b_j] \cap A$, j = 1,...,m, and σ is constant on each A_j , but σ changes its sign on the successive A_j and A_{j+1} . Here we will assume that $a \in A$ and $b \notin A$, though we can consider four cases such that (1) $a \in A$ and $b \in A$, (2) $a \in A$ and $b \notin A$, (3) $a \notin A$ and $b \in A$, (4) $a \notin A$ and $b \notin A$. Then

$$[a,b] \setminus A = \bigcup_{i=1}^{m-1} (b_j, a_{j+1}) \cup (b_m, b) \cup \bigcup_{i=1}^{\infty} (c_i, d_i).$$

We define the sets

$$\begin{split} \mathcal{A} &= \{ [b_j, a_{j+1}]; j = 1, \dots, m-1 \} \ , \ \mathcal{E} &= \{ [c_j, d_i]; i = 1, 2, \dots \} \ , \\ Z &= \{ x \in [a, b] \setminus A; P^{(k_i)}(x) = 0 \text{ for some } i = 1, \dots, q \} \ , \\ \mathcal{A}_1 &= \{ I \in \mathcal{A}; I \cap Z \neq \phi \} \ , \ \mathcal{A}_1 &= \{ I \in \mathcal{A}; I \cap Z = \phi \} \ , \\ \mathcal{E}_1 &= \{ I \in \mathcal{E}; I \cap Z \neq \phi \} \ , \ \mathcal{E}_1 &= \{ I \in \mathcal{E}; I \cap Z = \phi \} \end{split}$$

Here Z is finite, because $k_q \leq \text{DEG p}$. If $I = (b_j, a_{j+1}) \in \mathcal{A}_1$, we have

$$b_j < z_j = MIN(I \cap Z) \le z_j' = MAX(I \cap Z) < a_{j+1}.$$

Then we define the sets

$$\mathcal{A}_{2} = \{ [b_{j}, z_{j}], [z'_{j}, a_{j+1}]; [b_{j}, a_{j+1}] \in \mathcal{A}_{1} \},$$

$$\mathcal{A}_{2} = \{ [z_{j}, z'_{j}]; [b_{j}, a_{j+1}] \in \mathcal{A}_{1} \}.$$

Similarly we define as following;

$$\begin{split} &c_i \!<\! z_i'' \!= \! \operatorname{MIN}(I \cap Z) \!<\! z_i''' \!= \! \operatorname{MAX}(I \cap Z) \!<\! d_i \text{ for } I \!=\! (c_i, d_i) \!\in\! \mathcal{B}_1, \\ &\mathcal{B}_2 \!=\! \left. \{ (c_i, \!z_i''), \!(z_i''', \!d_i); \!(c_i, \!d_i) \!\in\! \mathcal{B}_1 \right\} \,, \\ &\mathcal{B}_2 \!=\! \left. \{ (z_i'', \!z_i'''); \!(c_i, \!d_i) \!\in\! \mathcal{B}_1 \right\} \,. \end{split}$$

We also define as following;

$$z_{o} = \begin{cases} \underset{b}{\text{MIN}([b_{m}, b] \cap z)} & \text{if } (b_{m}, b) \cap z \neq \emptyset, \\ & \text{if } [b_{m}, b] \cap z = \emptyset \end{cases}$$

$$\mathbb{Q} = \{ [b_{m}, z_{o}] \}, \ \bar{c} = \{ [z_{o}, b] \}$$

To decide the required function f we will give f on each interval defined as above.

Since the total number of the intervals in \mathcal{A}_1 , \mathcal{A}_2 , \mathcal{R}_2 and \mathcal{Q} is finite, we can take the function f such as (1) or (2) in Lemma with a constant $\delta^* > 0$. On A we take f such that $f(x) = p(x) + \sigma(x) \delta^*$. On each interval in \mathcal{A}_1 we take f such that it is continuously connected with f defined on \mathcal{A} and it is given by (1) or (2) in Lemma with δ^* . On each interval in \mathcal{R}_1 we take f such that it is continuously connected with f defined on A and

it is given by (3) or (4) in Lemma with δ^* and $0 < \gamma < \delta^*$. On each interval in $\mathcal{A}_2, \mathcal{K}_2$, and \mathbb{Q} we take f such that f(x) = p(x). Lastly, on each interval in $\mathcal{A}_2, \mathcal{K}_2$ and \mathbb{Q} we take f such that it is continuously connected with f defined as above and it equals to one of the following functions;

$$f(x) = p(x) + \frac{\delta^*}{2} - \lambda(\frac{\delta^*}{2}, x), \qquad f(x) = p(x) - \frac{\delta^*}{2} + \lambda(\frac{\delta^*}{2}, x).$$

It is clear for this function f to satisfy the conditions required in theorem.

(q.e.d.)

Reference

(1) G.G.Lorentz and K.L.Zeller, Monotone Approximation by Algebraic Polynomials, Trans. Amer. Math. Soc., 149(1970) 1-18.