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In the previous paper [1] the writer gave the example of the Kleinian groups whose
singular sets have positive (%)-dimensional Hausdorff measure. In the process of
proving the existence of them there are some mistakes. One of them is that we used the
inequality with respect to the subcomputing function. The upper and lower bounds of
this function depend on the number of the boimdary circles. The others are trivial ones,
which are easily corrected. But our assertion remains valid.

To get out of the way of using the above inequality, we were obliged to treat the
infinitely generated Kleinian groups with some properties. And we proved that the
values of the subcomputing functions with respect to the outermost boundary circles of
the fundamental domain tend to zero according as the number of the boundary circles
increases and tends to the infinity. By using this fact instead of the above inequality,
we could prove the existence of the desired groups completely. The essential parts of
the proof are almost all the same as ones of the previous paper. The purpose of this
paper is to correct the mistakes and report rapidly that our assertion is true. Here we
state the results only without proofs and the details of the proof will be given in this
Science Report.

1. At first we shall give the preliminaries and notations.

Let {K,;}2, and {H; H/|2,., be an infinite number of circles external to one
another in the extended complex plane C= {z;|z| <+oo}, where {H, H/|%,.,
tends to only a finite point @ for ¢—oo. Let B be a domain bounded by these circles.
Without loss of generality we may assume that these circles are contained in a closed
disc Dy= {z,;]| z| =p,l for some number o, (> 0).

{T,1%, be the elliptic transformations with period 2 corresponding
to {K;} %.,, each of which transforms the outside of K, onto the inside of itself.
Let {7} %,., be a system of hyperbolic or loxodromic transformations, each of which
transforms the outside of H,/ onto the inside of H, Then the system (U ={T,
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T2, (T,=T7', 1<71<p) generates an infinitely generated discontinuous group
denoted by G and we call U the generator system of G, where T;' denotes the inverse
of T,

Take a positive integer ¢(>p) and consider a subset Yy= {T;}2, Y {T,
T7M 9pn (N=2g—p) of Y. Then 7{/ N generates a finitely ggnerated subgroup Gy of
G. If we denote a domain bounded by {K;}2, Y {H, H/|%p, by By (N=2g—p), it
is well known that By coincides with a fundamental domain of Gy which is the
(2g—p)-ply connected domain. We shall get G from Gy for N— oo,

2. Denote by 7(H) the radius of a circle He {H; H/}%,.; and assume that
there exists some positive constant K independent of H such that it holds
7(H)

< K,
(&) IH) =

where [(H)=inf | z— ¢ | and the infimum is taken for all point z€H and for all points ¢
on any circle from { H;, H/} %pn — {H} .

Defining the product ST in G by ST(z)=S(T(z)), we can write any element U of G

in the form

U=T; o« « T, T, (T, e Y U=j=n); T3, +T:).
We call the positive integer % the grade of U and for simplicity we use the notation S
to clarify the grade of U.

Since we can let the generator T,(e %) correspond to the boundary circle H, we
shall denote by CTi and CTz‘_l the circles H; and H/, and further by DTZ‘ and DTi -1 the
closed discs bounded by CTi and CTZ,—l, respectively. Then it is obvious that
Cr,=T(Cr,~1).

Now let us impose a restriction with respect to the accumulation of circles for G.
Consider the circle Cr;: | 2— a(T,) | =77, of radius r7; with center o(T;) for any T, (e
@/). Take some boundary circle C7}»( T,+T.) of B and denote the distance from «(7;) to
CT]. by 0,(T;), that is,

oi(T)=inf | z— a(T) | .
ZQCTj
We assume that there exists a positive constant K,(a) depending only on some
positive number o (0 <a<2) satisfying

7/(T‘z') a
T,o)= 3 (———) = K,\(a),
(B) W(Tua)= % ) (a)

where TZ’ denotes the sum with respect to all T+ 7). Then we can determine the
7€

unique number a, (=0) such that
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D a,=inf {a; K () <+oo} .

We note that a, is always equal to 0 for Gy. We shall call such discontinuous group
with these properties (A) and (B) the Kleinian group with properties (A) and (B) and
denote it by G*(a) and the generator system by 1/*(a,).

3. Let Spy=Ts,« « « T:,T:;, (T, €1,) be any element of G and assume that
T3+ T for a fixed element T (e (LjN) and take any point z € Dy If we denote by
Rs(n) the radius of the isometric circle of S(,, we obtain easily

dS(n}(Z) |€i :( Rs(n)

# 0<u<d),
dz 25 | (Osr<d)

!

where Si, denotes the inverse (S¢,)'=77! « « « T3} of S, Here we note that z e
Dr and Sgi(e0) € Dy (T#T5).

Forming the sum of (/N-1)" terms with respect to all S, (¢ Gy) and (N-1)""! terms
with respect to all Sy (€ Gy) for S»=7T:Su- such that T3 #+= T and
T; LF T3 L= 7<wn—1), respectively, we have the following two functions :

Rs
iD= 3 (Y,

(2) (,)EGN , Z— S(;é(oo)l
(iTTs), Stm__\m —
AN (Z)_s(E)ecN (12—5<7zl>(0°)!)  Sw=Ts,Sn-v),

and called )( ) (z) and )(,({*NT T"")(z) the u-dimensional computing function and
subcomputing Tin—function of order » on 7, respectively. The domain of definition of
both functions is Dy ((1]).

Since each term in the sum of them is positive, )(2, 2 (z) and )( T 1) (z) have
necessarily the unique limit containing the infinity for any z € D, if N tends to the
infinity. Then we can define the following functions :

. (u; T) : T) R5<n> u
lim y%5 @) =24 = 3 ()"

N— oo SmeG |Z S(”)(oo)l
3 R
. (u;TT.) (# T,T,,) Son “
lim ¥, =Xn, 0 = 2 o)
N— o AmN ( ) ( ) S(n-l)eG( |Z_ S(_nl)(OO) | )

and we shall call them the u-dimensional limiting computing function and limiting
subcomputing T';, —function of order # on 7, respectively.
Now let us give the following definition ((47).

DErFINITION.  Lef | ;(fz”mT)(z)} (n=1, 2,..) be a sequence of the r—dimensional limiting
computing functions on T e Y. If it holds

(4) lim x3L7(2)=0 (or o)



18 Tohru AKAZA

Jor some element T € U and some point z € Dy, we call G the u~convergent (or divergent)
type. If it holds

(5) 0 < lim y¥:D(z) < 11m 14D (2) < + o0
n— 0o
Jor some element T (€ @ ) and some point z € Dy, we call G the v—finite type.

4. Now let us seek for the properties of computing and subcomputing functions
and the relations between them.

Proposition 1 ([(1], (2)). It holds the following relations between two computing and
two subcomputing functions on the different elements of (l} N°

© 2N @) >KGy 1 1) xS @)

S T.LT)

(S(U(Z)),

where S(,H,):S(n)S(L,:TiT(,H)TLS(Z;U and K(Gy, | 1) and k(Gy, [, 1) are constants
depending only on Gy, [ and r.

;s TT) -
252 > kG 1) 2

ProrosITION 2 ((2)). It holds for any elements T and T, (e %v) and any lwo points z
and z, € DT

o K\ Gw ) 125 ) = 1o @) < KoGu ) 20 z0)
7

EiGut) 18 T) < 1¥0 ) = ka(Gy w1 )

where K (Gy, 1) and k(Gy, 1) (i =1, 2) are constants depending only on Gy and .

There exist the following relations between the computing and subcomputing
functions.

ProposiTION 3 ((1)). 1t holds for any T and T'; (€ Y,) and any point z € Dy

(u;T) N
®) tnir ()= 3 i ),

) KyGn ) 24370 < 2450 ")+ v 5 )

< K, Gy 1) 1530,
where K (G, 1) (i =3, 4) are constants depending only on Gy and 1.

I/\
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REMARK 1 In the former paper (1), we gave the middle term in (9) as the form
)(;”15 T )( )+ )(n+1 N (z) But in this case 7; is the elliptic transformation with period 2.

ProposiTioN 4. It holds for any T'; and T; (€ UYn)

s T,,T),

(10) KsGy 1) 2457 ") < A7),

where Ks(Gy, 1) s a constant depending only on Gy and 12 and z € DTj and 2% € DTi‘l'
5. By using the above propositions 1-4, we have the following theorems.

Tueorem 1 ((17, (2)). The following five propositions ave equivalent to each other : (I)
1t holds for some fixed element T* (e Y ) and some point z, € Dy

an lim 7 Teo)= oo (07 0).

(1) 1t holds for some T* and T (€ Y,) and some point z, € Dy
(12) Jim 2y Tzo)= oo (or 0).

(IIT) It holds for any T* (< (fy)

(13) hm )((” ~ )(z)— ’ (o7 0)

uniformly on Dy..
(IV) It holds for any T* and T (e U,)

(14) lim 25" )= oo (07 0)

uniformly on Dop..
(V) It holds M w5 (En)= oo (07 0), where Ey denoles the singular set of Gy.

THEOREM 2 ((2)). The following four propositions ave equivalent to each other: (i) It
holds for some T* (e Ufy) and some point z, € Dy.

(15) 0 < Jim 7y 20) = Tm 70 o) <+oo.
(i) 1t holds for some T* and T (¢ UY) and some point z, € Dp«

(16) 0 < lim ziv leo) < Tim piy Tze) < +oo.
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(iil) 0 <Muy (Eyn)< +oo.

(iv)  The Hausdorff dimension d(Ey) is equal to —/25

ReMARK 2. It is easily proved that the above propositions (i) and (ii) hold for any
T* T and T’ (¢ UYn) and any point z, € Dy.. We have from (16)

(s T, T’)(Z)

. Xn,N
17 0 < k(GN, /JN) <;3£2W
Xn,N (z)

< K(Gy, ty) <+

(ups T, T)
TN @)
= T Ty
n— oo na >
Xn,N (Z)
for d(EN)=%, where K(Gy, *y) and R(Gy, My) are constants depending only on Gy and
“y. We made a mistake in (1] as follows:

(N T, T

(18) o<k<3g§°%<1{<+w
Xn,N (z)

for some numbers K and % independent of Gy and wrp. By using (18), we showed the
existence of the desired Kleinian groups. Hence we must take another way to prove
this fact.

6. In the former papers ((4], (5)), we obtained the following results with respect to
the singular set £ of some infinitely generated Kleinian groups G*(a) with properties
(A) and (B).

Tueorem 3 ((4)). (1) G*«y) s the u-divergent type if and only if Mujp(E)=co.  (ii)
G*(ao) 1s the u-convergent type if and only if Mus(E)=0.

THEOREM 4 ((4), (5)). Let d(E)= A;" be the Hausdorff dimension of the singular set E

of G*(ay). If ”2" > a,, then it holds 0 < My, )(E) < +oo and from this fact G*(a,) is the
o —finite type, that is,

(19) 0 < lim xies " e,) = Tim ¥ ,) <o
Jor some T* (e Y*(ay)) and some point z , € Dp..

Now Theorem 4 contains an important meaning, that is, there exist positive

constants K*(G*(e,), T*, 1,) and k*(G*(a,), T*, r,) depending only on G*(a,), T* and
4, such that it holds
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(20) 0 < kG @) T 1) < lim yio; " z,)

< hm i) < K* (G (a,), T*, 1) <4co

for some 7* and some point z, € Dy

7. Now let us seek for the desired Kleinian groups whose singular sets have
positive (%)—dimensional measure in the subgroups of G*(ey). For this purpose we
reconsider the example of the group given in (1). Since the Hausdorff dimension of the
Kleinian group is invariant under the linear transformation ((6]), we transforms that
group by 2’:—;—. Then it is obvious that the transformed group satisfies the property
(A). Next we consider the property (B). Generally it is easily proved that W(7},
@) converges for any T, if W(T';,, o converges for some 7T, and some o If we put
a=— 2, then W(Tlo,%) converges for some 7' in this example and we have a0<%.
Hence this group also satisfies the condition (B).

For the convenience of the discussion, we shall consider G*(a,) as the original
Kleinian group with the accumulation point at the infinity, which is obtained from the
subgroup Gy in this example for N— co.

The total number N of the boundary circles of the fundamental domain of Gy is
equal to N=3¢(q +1)+1 denoted by N(q).

Assume that the Hausdorff dimension d(E)— *(ap) is
greater than 7 and sufficiently near to % Take a large integer » and S, , as 7* in
(20) and let them be fixed. Then there exists lim )(Ef‘ ‘;\;;3“'*’(20) at the point z, (¢ Ds, )
and it holds e

0 < B*(G*(ap), So,0, 1) < }LHCL )(if‘};’}j“'”(%)
< K*G*(ey), Sg,0, #) <00,

21)

Hence there is a positive integer ¢, depending only on small number e (>0) so that it
may hold for any positive integers p and g greater than ¢,

( 0. 0
(22) )= )| <6 (NG < N@).
B u o) (#o ; 0.0 Sx‘.j) .
Since )(,, Ny (Zo)= > Yn.N(a) (z0), we obtain from (22)
St U ,
(& 5 S0,0,S1,5)
(23) | > Xn,N(g) (z 0) ‘ < e

St Ung™ Y

If we can show thatnlingo )(fff;S“)(zo): +oo for any ‘5* (%< ‘é < /;" ) at some point z,

(¢ Ds,,), this means that our assertion to the existence of the desired group is valid.

From the definition of the computing function we can modify )(,, N(q) (S(m)(oo))
(Sim=3S4,06S(m-1)) in the following :
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e
2 BsuSem
Xn N(q) (S(m)(oo)) H @ 3
S Rg!
S(l/—l)S(m)
(24) Sty
¥ (#*"Si,j)
> RS(,,,,)S(,,» { X1,N@) (Sew-1yS(m ()}
— ﬁ S(I/—l)
=1 : “* ’
Y — SZ RS(U‘I)S(M)
(v-1)

. 3
where S(,—1)Sm=5:5,-2Sm. Sinc and )(1 N(q) (z ) is

2
a continuous function of w#* for fixed N(g), S, ; and zo, we can estimate the values of

N (S(u—1)5<m>(00)) from below approximately by 2\ wei (S (-1 S m(c0)). Hence we

have the following estimation ([1J):

> 1.129, when S, ; corresponds to the circles
from 0-th to ¢-3 th rank,

> 1.069, when S, ; corresponds to the circles
of ¢-2 th rank,

> 0.918, when S, corresponds to the circles
of ¢-1 th rank,

> (.5574, when S, ; corresponds to the circles
of g-th rank.

("5 Si)
(25) XI,AI:/(q) (S(u~1)5(m)(oo))

Substituting these values into (24), we have

'So.0)

)(n N(q) (Sim(00)) >

1:S0.0,S *:50,0,5:,
y [1129 30 2L (S (00 )+ 1.069 z% (S oy (0)

> 11
(26) y=1

- ¥ S0.0050 %500, _
0.918 SZ_“’ )(U 1.N@) (S(m)(oo))—f— 0.5574 Z(“ )(,,_IN(q) (S(m)(oo))
2,]
‘ *:S0.0:50.)
2 ( Azi(k) X(f—l,N(q) (Sim(c0)) _

k=1

where Z“" (k=1, 2, 3, 4) denote the sum of values of the subcomputing S;, ;~functions
of order u~1 on Sy, at Sim(0)=S,,, S(m-1)(c0) with respect to S;,; corresponding to
the circles from 0-th to g-3 th rank, to ¢-2 th rank, to ¢-1 th rank and g-th rank in

turn, respectively. If we denote each sum in the brace by Z“” xw-1, Nq), S;,; u¥), we
have

B 1.129 7
0,0 (&) 1.V Sz B ¥
@) 1 Sml0) > 2L N A-DN@ S, )
- S0 (= DN@S 5 )
ij

Further we see easily from (21)
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(28) R*(G*(a), So.0, 1) < x5 % (Sem(0).

Hence we obtain from (27) and (28)

(e* 5 Sa,u)
v (Sim ()
(29) -
> H1 1.129 / {1+2

Mo

(
2

k

Sz,j
R*G*(ay), Sy, 4, )

8. Take any large number M and any small number & such that 0 < & < 0.129.

S y((v—1), N@) S, ) J
}

Then we can determine a small number ¢ (>0) satisfying

1.129 2¢e
1+o ~ YT 2 (Ca), Sy0 1)

(30)

and further choose a positive integer # so that it may hold
(31) T+o)" > M.

So we can determine the positive integer ¢ in (23) such that
(ﬂo;sﬂ,o;si,j)
(32) s Yottg) (Sim(0) < & (v=12,.,n—1),
Si<UNg~ Y Ng-3)
for the above fixed ¢ and #. Since the left hand side in (32) is the sum of the continuous

functions of «, we can choose a number #* (%<ﬂ*< 1t,) satisfying

*:S0,009¢, 5
(33) |3 NS S (o)) | < & (v=1,2,...n —1).
Sij YN~ INg-3)

Thus we have from (29), (30), (31) and (33)

*:So 0
(34) 2 IS (o) > (L4 o)" > M.

We repeat the above method to the number M, (> M) for the above fixed §and e. Then
we can also choose the numbers #, (>#), ¢, (>¢q) and ¢*, (%<,u*</~z*1) so that it may

hold

(11:S0.0)
(35) an,N(ql) (Sim(0) > M,.

Continuing this procedure successively, then we get the sequence of numbers for
fixed s and «

pE L e e e S e e e ——

(36)
Ng) < Ng,) <+ +<Ng) < e+ — 0
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such that it holds for any large number M; (i=1, 2,...)

37) Yoig) Sim(o0)) > M.,

Since each function )(n N(; )°)(S<m>(00)) is a monotone decreasing function of u« and a

monotone increasing function of ¢, then we have for any #, and M, and fixed element
SO 0

(38) 280 5o (Sm(e0) > M, (1=12,.).

So we can find that hm )(fz o D)(S y(00))=co and hence from our result (4] Mu*/z(E)

for «* (3<u*<yy). We have already found in (3] that the Hausdorff dimension —2- of
the singular set Ey of Gy increases strictly according as the increment of the boundary
circles of BN Hence there exists a sequence of the Hausdorff
dimensions {——} of {Ey} such that hm —#—év—— o (> 3) Thus we could show the

existence of the Kleinian groups Gy Whose smgular sets have positive (—)—dlmensmnal
measure.

ReEMARK 4. Observing the above method using an infinitely generated Kleinian
group, we shall easily see that our conjecture in (1]

(v S Osk,[)

) v z
lim Aol G (s, s,
—> CO 0,0 ,j
" Xn,N (20)
is not true.
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