On Divergence of Fourier series

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-03
	キーワード (Ja):
	キーワード (En):
	作成者: 小嶋, 迪孝
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00011324

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

On Divergence of Fourier Series

Michitaka KOZIMA

Department of Mathematics, Faculty of Science, Kanazawa

University, Kanazawa 920 (Received 29 October 1970)

1. Introduction

Y. M. Chen [2] has proved that there exists a function of the class $L(\log \log L)^{1-\varepsilon}$ with the almost everywhere divergent Fourier series by construction similar to the well-known classical example.

The purpose of this paper is to show that there exists an everywhere divergent Fourier series of $L(\log^{+}\log^{+}L)^{1-\varepsilon}$, by Y. M. Chen's result [1] with respect to the best possibility of the order of the partial sum of Fourier series of $L(0, 2\pi)$.

2. The main theorem

We shall give the following theorem.

Theorem. Let $\lambda(t)$, $\Phi(t)$ be defined for $t \ge 0$ and satisfy the following conditions;

- (i) $\lambda(t)$ is positive, decreasing to 0, convex, and $-t\lambda'(t)$ is slowly varying.
- (ii) There exists a function $g(x) \in L(0, 2\pi)$ such that for every point $x \in [0, 2\pi)$,

$$s_n(g)(x) > \frac{1}{\lambda(n)}$$
 for infinitely many n .

(iii) $\Phi(t)$ is non-negative and $t\Phi(t)$ is increasing and convex.

(iv)
$$-(\frac{1}{x})^2 \lambda'(\frac{1}{x}) \Phi((\frac{1}{x})^{1+\delta}) \equiv L(0, 2\pi) \text{ for some } \delta > 0.$$

Then, there exists a function $f(x) \in L\Phi(L)(0, 2\pi)$ such that the Fourier series diverges for all $x \in [0, 2\pi)$.

3. Proof of the theorem

We put

$$\varphi(x) = \sum_{j=0}^{\infty} \lambda(j) \cos jx$$

where this series converges for all $x \in (0, 2\pi)$ to a function $\varphi(x) \in L(0, 2\pi)$ and is the Fourier series of $\varphi(x)$, because $\lambda(j)$ decreases to 0 and is convex.

Now we consider the function

$$f(x) = (\varphi * g)(x) = \frac{1}{2\pi} \int_{0}^{2\pi} \varphi(x-t)g(t)dt.$$

We shall show that this function f(x) is satisfactory.

(1) The Fourier series of f(x) diverges for all $x \in [0, 2\pi)$.

Otherwise, there should be a $x_0 \in [0, 2\pi)$ such that $s_n(f)(x_0)$ converges and let

$$s_n = s_n(f)(x_0) = \sum_{j=-n}^n \widehat{\varphi}(j) \widehat{g}(j) e^{ijx_0} \to s \qquad (n \to \infty)$$

where

$$\widehat{\varphi}(j) = \left\{ \begin{array}{ll} \frac{1}{2}\lambda(|j|) & \text{for } j \neq 0 \\ \lambda(0) & \text{for } j = 0 \end{array} \right\}.$$

Then by Abel's transformation,

$$\hat{\varphi}(n)s_n(g)(x_0) = \hat{\varphi}(n)\sum_{j=1}^n \frac{1}{\hat{\varphi}(j)}(s_j - s_{j-1}) + o(1) = s_n - \sum_{j=1}^\infty c_{n,j}s_j + o(1)$$

where

$$c_{n,j} = \left\{ \begin{array}{l} \widehat{\varphi}(n) \left\{ \frac{1}{\widehat{\varphi}(j+1)} - \frac{1}{\widehat{\varphi}(j)} \right\} & \text{for } 1 \leq j \leq n-1 \\ 0 & \text{for } j \geq n \end{array} \right\} \geq 0.$$

Since the matrix (c_n, j) satisfies the Toeplitz condition,

$$\widehat{\varphi}(n)s_n(g)(x_0) \rightarrow s - s = 0 \ (n \rightarrow \infty).$$

On the other hand,

$$\hat{\varphi}(n)s_n(g)(x_0) > \hat{\varphi}(n)\frac{1}{\lambda(n)} = \frac{1}{2}\lambda(n)\frac{1}{\lambda(n)} = \frac{1}{2}$$

for infinitely many n. So we have the contradiction.

(2)
$$f(x) \in L^{\phi}(L)$$
.

In order to prove this, as $t\Phi(t)$ is increasing and convex, by Jensen's inequality we need only to show that

$$\varphi(x) \in L^{\varphi}(L)$$
.

Since $\lambda(t)$ decreases to 0 and $-t\lambda'(t)$ is slowly varying, then

$$\varphi(x) \simeq -\frac{\pi}{2} (\frac{1}{x})^2 \lambda' (\frac{1}{x})$$
 as $x \to +0$

(A. Zygmund [3], p. 189).

Therefore

$$\begin{split} &\int_{\mathbf{0}}^{2\pi} |\varphi(x)| \, \theta(|\varphi|)(x) dx \\ & \leq \quad \text{const.} \int_{\mathbf{0}}^{2\pi} (-\frac{\pi}{2}) \, \left(\frac{1}{x}\right)^2 \lambda'(\frac{1}{x}) \, \theta((-\frac{\pi}{2})(\frac{1}{x})^2 \lambda'(\frac{1}{x})) dx \\ & \leq \quad \text{const.} \int_{\mathbf{0}}^{2\pi} (-\frac{\pi}{2}) \, \left(\frac{1}{x}\right)^2 \lambda'(\frac{1}{x}) \, \theta(\text{const.} \, (\frac{1}{x})^{1+\delta}) dx \\ & \leq \quad \text{const.} \int_{\mathbf{0}}^{2\pi} (-1)(\frac{1}{x})^2 \lambda'(\frac{1}{x}) \, \theta((\frac{1}{x})^{1+\delta}) dx < \infty. \end{split}$$

4. Corollaries

Corollary 1. Given any number ε ($0 < \varepsilon \le 1$), there exists a function of the class $L(\log \log^+ L)^{1-\varepsilon}$ such that the Fourier series diverges everywhere.

Proof. We choose η such that $0 < \eta < \varepsilon$. We put $\lambda(t) = (\log \log t)^{-(1-\eta)}$ for $t \ge 3$ and extend it to be convex for $t \ge 0$, and put $\Phi(t) = (\log \log^+ t)^{1-\varepsilon}$. Then the conditions (i) and (iii) are satisfied. The condition (ii) is Y. M. Chen's remarkable result [1]. Since

$$-(\frac{1}{x})^2\lambda'(\frac{1}{x})\varPhi((\frac{1}{x})^{1+\delta}) \leq \text{const.} \quad \frac{1}{x}(\log\frac{1}{x})^{-1}(\log\log\frac{1}{x})^{-\{1+(\varepsilon-\eta)\}}$$

as $x \rightarrow +0$, the condition (iv) is satisfied.

Corollary 2. If for any given positive sequence $\mu_n = o(\log n)$ there exists a function $g(x) \in L$ such that for very point $x \in [0, 2\pi)$

$$s_n(g)(x) > \mu_n$$
 for infinitely many n ,

O.E.D.

then for any given number $\varepsilon(0 < \varepsilon \le 1)$, there exists a function of the class $L(\log^+ L)^{1-\varepsilon}$ such that the Fourier series diverges everywhere.

The condition of this corollary is known as Zygmund's conjecture.

Proof. As before, we choose η such that $0 < \eta < \epsilon$. We put $\lambda(t) = (\log t)^{-(1-\eta)}$ for $t \ge 2$ and extend it to be convex for $t \ge 0$, and put $\Phi(t) = (\log^+ t)^{1-\epsilon}$. Since

$$-(\frac{1}{x})^2 \lambda'(\frac{1}{x}) \mathcal{O}((\frac{1}{x})^{1+\delta}) \leq \text{const.} \quad \frac{1}{x} (\log \frac{1}{x})^{-\left\{1+(\varepsilon-\eta)\right\}}$$

as $x \rightarrow +0$, therefore the all conditions of the theorem are satisfied.

REFERENCES

- [1] Y. M. Chen, A remarkable divergent Fourier series, Proc. Japan. Acad., 38 (1962), 239-244.
- [2] Y. M. Chen, An almost everywhere divergent Fourier series of the class $L(\log \log^+ L)^{1-\epsilon}$, Journ. London. Math. Soc., 44 (1969), 643-654.
- [3] A. ZYGMUND, Trigonometric series, Vol. 1, Cambridge, 1959.