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1. Introduction

In our former paper [ 2] we got a result on the minimum problem of some
subharmonic function. The purpose of this paper is to extend this result.
Let U denote a closed disc and p;EU (=1 ,--+--- #) and peU be » fixed points
and amoving point, respectively. We consider the following function
1 n 1

(1) Fﬂ(p)=§1 PPia =@§1m

(¢>0),

where pp; denotes the distance between p and p; and z and z; represent complex
numbers corresponding to p and p;. Since each term of (1) is an absolute value of
the regular function, it is obvious that F,(p) is subharmonic in U. We gave the result
about the minimum of (1) in the case that «¢=38 and # points are located in the

special situations ([ 1]). Here we treat such similar problem in the case of any
number ¢ (>0) with some condition.

2. Problem

Let Dy, be a closed unit disc bounded by the unit circle C,,,. Next we describe
the six circles Cy,j, (1= 1,--,6) with equal radii 1 so that Cy,;, (j;=1,---,6) are
tangent externally with each other around C,,, and hence the segments, which join the
centers of Ci,;, successively, constitute a regular hexagon R;, where the center of C,,,
has the coordinate (2,0) with respect to rectangular coordinate system. Further we
describe the twelve circles Cs,75 (j.=1,2,---,12) with equalaradii 1 so that G, (Fo=
1,2,---,12) are tangent externally with each other around C,,;, and hence the segments,
‘which join the centers of C,j, successively, constitute a regular hexagon R,, where
“the center of C,,, has the coordinate (4,0). We continue such procedure by turns.
‘Generally, we describe the 6z circles Ci,jn (j2=1,2,---,6s) with equal radii 1 so that
Cuin (ju=1,2,---,6) are tangent externally with each other around C,—i,j.—; and
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hence the segments, which join the centers of C,,;. successively, constitute a regualr
hexagon R,, where the center of C,,, has the coordinate (2#,0). It is obvious that the
total number of circles Cy,o and C;,j; (6=1,2,,4 ; 7;=1,2,---, 62) is equal to 3%(z-+1)
+1. Let us denote the center of C;,;; by z;j;°Let p be a moving point in Dy,
which has the coordinate («,y), z=x-+iy. We consider the following subharmonic
function

(2) F.)= % 3

i=1 ji:]' lz_'ziaji‘a

(d>0); VZ EDO:O‘

Our problem is to determine the point at which F,(z) attains its minimum in Dy,.

This problem occured in the investigation whether there exist or not Kleinian groups
whose singular sets have positive (%)-dimensional measure ([ 1]). In the case of
=38 in (2) we have already solved this problem in [2]. With some restriction

about a number ¢, we shall solve this problem and extend the result gotten in [ 2 ].
3. Theorems

Now we shall give the main theorem.

TuroreM A. If a is a positive number such that
2\ 9 1/"3‘)(;
(3) ( )+ 22X > 3

s satisfied, them F,(z) atiains its minimum at the origin.

For the proof we prepare the following theorem as lemma.

Tuzozem B.  Let Pi=P(1,r), P,=P(1,—5) and Py=P(1,%) be fized poinis on
the unit circle |z|=1 in the complex z-plane, and P=P(r,0) be a moving point on the
Jixed closed disc Ug : |z2| <R (£ (3+4v5)/2), where (#,0) denotes the polar
coordinate. Then for any positive number o the function

Fig. 1



On the Minimum of Some Subharmonic Function (II) 63

T @i=5)

3 .
(4) fa(P):};l FEU‘ = JZ:IW’ Z2j=¢ 3 ’ (]_1,2:3)

[24
attains its minimum 8 at the origin C when 3<< (R+1)*+ 2 (R2—R+1 Y 2, or
(24
its minimum (R+ 1)+ 2 (R2—R+1) 2 at Q; (j=1,2,3) when 3>(R+ 1)+ 2

o

(R2—~R+1) 2, where PP; (j=1,2,3) denoles the the distance between P anb P;
and z andz; represent complex numbers corvesponding to P and Pj and Q; (j=1,2,8)
is the intersectng point of the circumference of Uy with the extension of the line
segment P;C toward the center C of Uy (see Fig.1).

4. Proof of THEOREM A

Suppose that Trrorem B establishes. We put R= -;— in Treorem B. Then it im-
3

. . 2\ 2V 8\ .
plies that (R+ 1)+ 2 (R*~R+1) 2 = (—3~) -+ 2( 3 ) . Take a positive number

2\ 2V 8\¢ . .
a such that —) + 2(T) >3, Then for such ¢ Tusorem A is easily proved

3
from Taeorem B. For the function (2) is decomposed into pieces consisting of three

terms, each of which corresponds to centers of three circles so that such centers are
vertices of a equilateral triangle with centroid at the origin C. We can apply TaeoreM
B to each piece, since we can consider that the distances from the origin to the fixed
points and the radius of Uy in Tarorem B are relative.

Therefore if each piece attains its minimum at the origin, then it is easily
seen that the sum of pieces attains also its minimum at the origin.

ReMaARrk. We shall'investigate the condition (3) of Tueorem A. We know

. 213 . .
easily that ( %>a+2(—l3/i)a is greater or smaller than 8 when « is 1.5 or 1.

e
Hence a root of th sh the equation (%)a+ 2 ( —%é)a= 3 1is in the interval (1, 1.5).

If o is any positive number greater than or equal to 1.5, TusoreM A establishes.
5. LEMMAS for the proof of THEOREM B

For the proof we shall prepare the folowing lemmas.
Lemma 1.  Let 0(>0) and 0, (= 0) be fixed numbers satisfying the following
inequality :
(5) 0= pcos 0, 1.

Consider the function of 0 g(0)={o—cos(0+9¢)} {0—cos(9g—0¢)}. Then g(0) takes its
maximum at 0= 0, that is, max ¢g(0)=g(0), if

1616,
(6) 10] < 0:(0) = |cos™*(20 cos O,— 1)].
Proof. Consideering the difference

g(0)—g(0) = (1 —cosf) {cos0—(2p cos Oo,— 1)},
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we can easily prove this lemma. g.e.d.

For the later use we shall give some remarks.

Remarx (i). Put 60=% and o= (#/y/3+v 8/r)/2. If we suppose that 1 =<7
< 3, then we obtain easily from (6)

. 2
(7 cos 0, = 1=+ 8

Remark (i1). Put 60=% and o=(1/7+#)/2. Then the sufficient condition for
6,=n/3 is the following inequality :

(8) B=vBE) o, < 8+V5)
2 2
Levuma 2. The function
(9) (o) = sin“(ﬁ—i—%) {(2sin 0)—¢+ 21, (¢=>0)

is positive in 0<6<%7r and takes its minimum and maximum only once ai 0= z

6
and 0=0%(a) (%<6*(oc)<%), respectively, where 0%(a) is th value depending only
on a.

Proof. Defferentiating %(6) with respect to ¢, we obtain
o sin"‘—l(ﬁJr£

’ — 6 £ 3 a+1__
(10) W) = (3 sin oyF {2 cos(ﬁ+6) (2sin g)e+i— 11,

Since the factor « sin*! (¢ —l—%) /(2 sin ) %+t is positive in (10), the sign of A’/(8)

coincides with one of %,(0)=2 cos (@ +%) (2 sin 0)o+t— 1, that is,

Sign [#/(0)] = Sign [%:.(0)], 0<0<~2—7t.

Further differentiating %,(0) with respect to ¢, we have

an h'(0) = 2(a+2) (2 sin 6)° ’{COS(?@Jr%)Jr%J

. V3« vy Voo 5
Since °<2TaTT)<T for 0 <a<<oo, A,/ (8)=10 (O<6<—6—7r) has only two roots.

0% and 0,* which satisfy the following inequalities :

z % r x %« 3
g <0t <g, g <bt<g7,

respectively. It is obvious that
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[ h1<0)=—1; h'(0)= 0

(12) w(g) =0 . w(E)=o
l m) < 0 in % < 0<-2—7c.

Then we have the following table :

0 0 % 0% 0% _g 0,
RO 0 + 0 - - 0
Sign [2:(0)] - 0 + 0 - -
where
(13) -g—<01*<0*<%<9z*<%”-
Further we have éim0 h(0)=co and lim A(6)=0 . q.e.d.
’* 05"

6. Proof of THEOREM B

Now let us prove Turorem B. From the symmetricity of the figure (Fig. 1), it
is enough to prove the theorem in the closed sector D bounded by two line segments
CQ, and CQ4 and a circular arc @3’, respectively.

The proof is divideded into two parts (I) and (II).

(I) At first we shall show the minimum of f,(P) lies on the line segment
CQ,.

6.1. The case R 379 .
Let us take P, as the pole of polar coordinate system and denote the coordinates

of P,, P; and P by (/3, —%), 3, %) and (7,0), respectively. Let » (1 <7<R)
be fixed. Putting g;(6)= (PP, - PP,;)?, we obtain easily

I

9:(6)

{2 _ Iy I f _ T _T
” {7+ 3 21/3rcos(0|—6)}1r2+3 91/ 37 cos(6—2) |

67)

I

(2T {o—cos(0+5) } {o—cos0-F)1 ,

where o=(r/y/ 3 +v3/r)/2 .
Take a point P in D and rotate the radius vector I—’l—ﬁ around the pole P; and
denote by P’ the intersecting point of }317’) with the line segment CQg’. Denoting by

—_— —_—
0:(r) the argument of the radius vector PP’ that is, the angle which PP’ and the
polar contain, we obtain
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3+1v 4y2—3
g = — 2 =7 2,
(15) cos 0, ir

Because from the rule of sine sin(%n: ) / 7
= sin (%75—!—02), we have cos 0,=(8 +
V72— 8)/47r and we see easily that ¢
moves from % to % for cosf=(38 —
Viz2~=38)/4r and on the other

hand from 0 tog for cos0=(38 +

V4,2 -3)/4r when 7 varies from 1
to V3 (> 3/2).

Then it holds from (7) in Remarx (i) of No. 5, (15) and the assumption 1 <7
<R that

3+vVAyr—3 7:—27+3
4y 27

r—1) {2—-(—1)% .
r{2@r—1)4+y 4, 2=3+1} =

cos Oy—cos 0, =

(16)

0

Since 0, is less than %, we obtain from (16)

an 0< 6, < 0, .
Thus we have from (14), (17) and Lemma 1]
(18) max (PP, PP;)? = max 9(0) =g,(0).

0=0=05 0=<0<0, 21/ 3

Therefore we could proved that (18) holds in the closed domain D’=DnK(P;,
1 +3y/79), where K (P, 1 +%)/9) denotes the closed disc of radius 1 43/ 9 with
center at P,.

6. 2. The case 3y/ 9 < R < 3+—2]/5— .

In this case we take C as the pole. Then P, (k=1,2,3) and P have the following
polar coordinates (1, (2&+1)z/3) (k=1,2,8) and (7, 0), respectively (Fig.38).
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el’lT= P

- P,= i)

Fig. 3

Let » (3/ 2 <#<R) be fixed. Putting g, (0)=(PP;, . PP;)?, we have

9:()={r*+1 — 27 cos (0+~375-)} {r2+ 1 — 27 cos (0-%}}
(19)

=(27)2{p—cos (ﬂ—l—%)} {p—cos (e__%} ,

where o=(1 /r+7)/2.
Now we want to get the sufficient condition for 60, defined in Lemma 1 to be

greater than % If such condition is gotten, ¢,(#) in (19) takes its maximum at

0= 0 under this condition. It is obvious that %<61 is equivalent to cos 6,=20 cos%
— 1 <cos —g . Since p=(1 /r+7)/ 2, we have
1.1 1
G- I<g,
and hence we obtain
(20) _3_1/_5_ < 7y < M ,
2 2
which is the desired condition (see Remarx (ii) in No. §).
Suppose that (8 —3/5)/2<3%/2< < R <(8+v5)/2. Then we get —g<(i1
and hence the assumption (6) in Lemma 1 is satisfied in the case 00=% . Thus we

have
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1

@n max (PP« PPy)* =max (—5—)* 02(8)=0:(0) .
s T
0§0§§ Ogogg
Since
(22) PP2=y24 1 +9 cos 0,

PP attains its maximum on the line segment CQ, for fixed 7.

6.3. Arranging the results (18), (21) and (22), we can easily see that PP, and
PP, - PP, attains their maximums on the line segment CQ,; in both cases 6.1 and 6.2,
respectively.

If P, or C is taken as the pole according to the cases 6.1 and 6.2, and 7 is fixed,
then f,(P) is written in the from of the function of 6, tha tis, fo(P)=F(0). Hence
we have from Lemma 1 the following inequality :

(28) F(0)zmin F(a)gmﬁin(P—H)—“Hr;in{(P_Pz)‘%(PP?)‘Q}
zmin(PP)~*+ 2 min{ (PP, - PPy 2}

={rr;ax(1”>?§)}—a+ 2 {rr;aX(P_Pz -PP)} 2z

[+4
={P(0)P} 2+ 2{P(0)P, - P(0)P;} 2,
where max and min mean the maximum and minimum in 00 é% or 0=9¢ é%
6 0
according to 6.1 or 6.2 and P(0) denotes the point on the line segment CQ;.
Since PP,=PP,, if P moves on the line segment CQ,, it holds

(24) 2{P(0)P,+ P(0YP,} 2={P(0)+ P} *+{P(0) « Pg}™,
and hence from (23) and (24)
(25) F(0) = n;in F(0) = F(0) .

Thus we could prove that

Fa(P) attains its minimum on ’
the line segment CQ;. ¢
7. (II) Next we shall prove
that the function f (P) takes its
minimum at the point C and its 1 = cs n/s-ep Q

maximum at some point P* on
the line segment CQ,, when P
moves on the half line from P,
to the direction of C.
Let 6 denote the angle Fig. 4 . P
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which two sides P.P; and PP; contain (Fig.4).
It is easily found from the rule of sine that

. b . .
sinf sm(Fn:—ﬁ) sm(F) 5
— = = — = e 0 - °
(26) 272 V3 pp, (0= 0<7%)
Then we have
) sin (0+)
PP, ~ V3 sind
(27)
. T
l 1 2 sin (0—}-?) - L
PP, Vs - PR

Thus the function f,(P) is written in the following form :

2
V'3

fa(Py=(7)" sin® (0+5) {(2 sin O)*+2} .

By using 2(0) in Lemma 2 we have

e 2 a
fa(P) = (1/?) r(0) .

Hence from the result of Lemma we can conclude that f,(P) takes its minimun 38 at

P=C when ¢ is %, and its maximum at P=P* when 6 is 6* It is obvious that

!

fo(P) takes the boundary value (R+1)-¢+ 2 (R?—R-+1)"2 at three points @,
(k=1.2.8) on the circumference of Uy (Fig. 1). Therefore f,(P) attains its minimum
3 at the origin C when 8 <(R-+1)=%+ 2 (R*—R-+ 1 )—%, or its minimum(R-+ 1)-¢
+ 2 (R*—R+1 )_% at @; (7=1.2.8) when 3> (R+1)%+ 2 (R?*—R+ 1 )_% in the
closed disc Uz : |z] £ R (£(8+v5)/2). Thus our proof is completed.

q. e. d.
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