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§ 1. Introduction

It has been shown that there are two different experimental results about the
dispersion of sound velocity in some kinds of liquid. Benedek et al. show the existence
of the negative dispersion of sound velocity?, while Tiganov shows that the negative
dispersion of sound velocity does not appear®. Like this, expermenital results obtained
by some workers are often different from that obtained by the other. However, it is
important to remember that the single relaxation theory which contains only a single
slow internal process of relaxation has no solution of the negative dispersion of sound
velocity. Recently it has been shown that the experimental values for the absorption
of sound wave for some liguids (e.g. chloroform) can not be explained accurately by
this single relaxation theory®,

The aim of this paper is to calculate the dispersion of sound velocity and the
absorption coefficient of sound wave using the double relaxation theory which contains
two different processes of relaxation simultaneously, instead of the single relexation
theory.

In sec. 2 let us review shortly the experimental and theoretical situations of
Ravyleigh-Brillouin light scattering up to the present day. In sec. 3 we shall calculate
the dispersion of sound velocity and the absorption coefficient of sound wave by the
use of the double relaxation theory under some assumptions. Lastly we shall compare
the results obtained with the experimental values given by some workers.

§ 2. The review of Rayleigh-Brillouin scattering

a) Intensity
In 1922 Brillouin predicied only a doublet (Brillouin doublet or Brillouin components

+ Now at Department of Physics, Meijo University, Nagoya.
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1 components but alsc a central unshifted component

ygm(“ and Placzek esz:pfia,"‘

oral flucty

which does n ’n nore the Brillouin doublet comes
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Placzek used the fluctuation theory in adiabatic and reversible process to calculate the
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Fo0/2Fy (Jo, Ip are total intensity of central compor

w

and Brillouin components

respectively) and obtained the well-known relation 7,/2/,=7—1', But this ratio g

(I)

the greater value than the experimental value on account of many basic assumptions;

i.e., pressure fluctuation is adi

batic and reversible, and the fluctuations of the

g;

thermodynamic quantities are independent on the frequency of their instantaneous
change. In actual processes in liguid, we can not expect that the pressure fluctuation is
reversible if the hypersonic attenuation exists, at the same time, many thermodynamic
variables should exhibit the depe;zdency on frequency of their fluctuation'®. NMoreover,

CETY

molecules have the internal degr of freedom, non-adiz

pressure fluctuzation

ecome effective®, In order o avoid the above mentioned limitation of thermodyna-

or

mic consideration and to extend the theory applicable to the more general case, we
can derive the intensity distribution from the microscopic point of view based on the
statistical mechanical theory of the scattering of light. The intensity distribution is
formulated by the correlation function of the molecular density in liquid which is in
turn related with the kinetic character of molecules™,
b)Y Freguency shift of Brillouin components

The origin of Brillouin components is explained as follows: In liguid, there exist
thermally excited sound waves and the incident light couples with the one of them.

On the scattering process of light, the conservation laws of momentum and energy

E =k + g
w = w 2

&

here o, @ and £ are the frequency of incident light, scattered light and sound wave,

1y, Then frequency shift of Brillouin components is given Z=|o—ao’}

The sign -+ gcorresponds to sound wave creation giving vise fo Stokes line. The
sign - corresponds to sound wave annihilation giving rise to anti-Stokes line, Brillouin
scattering can be regarded as first order Raman scattering by acoustic wave, while
usual Raman scattering in liquid is due to molecular vibrations the shift of which are
much larger than the Brillouin shift.

The acoustic wave frequency £/2x~10° c.p.s., while the light frequency «/2zx~

10Y c.p.s., then o'/w~ § +10-%a=1. The dispersion relation for photon is given by

w = (k| = — |k (2

(2. 3)

here ¢/, ¢ and n are velocity of light in liquid, that of vacuum and the index of
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refraction for an optically isotropic liquid, respectively.

Thus we conclude that

(R ~1k| or |k—Fk|=2\%k| sin (2. 4

-
here 6=kANK. Eq. (2.2), Eq. (2.4) and the dispersion relation for phonon
£ =90 q] (2. 5

lead to the well-known results:

v .40
2 = 2n o—— sin—
c 2

v .0 _ .
or w—o' =42 el (2. 5)

where v, velocity of sound wave, is the function of 2. The form v (2) can he derived
from the relaxation theory. Indeed, the relaxation theory with single relaxation time

Ty gives
V2 0} NER
= 2.7
vE— vk -2t

Recently new experimental technique using injected phonons of well defined frequency
has been developed. Using this new technique, the frequency dependence of phonon
velocity is measured over wide range for which usual ultrasonic and Brillouin
scattering measuwrements can be carried outt.
¢} The width of Rayleigh and Brillonin components

The origin of width of Rayleigh component is attributed to the decay of entropy
fluctuation and that of Brillouin components is to the decay of phonons (decay of
pressure fluctuation). Assuming the damping form of amplitude of pressure fluctuation
as ¢~%*, the width of Brillouin components is given by

av
e

oY y. g = (2 8)

From the hydrodynamic consideration which is applicable only for low frequency, total

absorption coefficient of sound wave « is obtained as

o= e {é—77+77"—}—/c(?l_fclr;)}zohy—i—Oér//»}—cé,; (2. 9)
203 v P

here v, is sound velocity at low frequency limit, 7, 7’ are shear and bulk viscosity
coefficient, which are assumed to frequency independent®®, oy, «zs and ¢, mean the
absorption coefficients due to shear viscosity, bulk viscosity and thermal conduction,
respectively. Eq. (2.9) is not applicable to the case where strong ahsorption exists, because

we used the nondamping plane wave as a zeroth order basis on the way deriving this
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of the correlation function of the density The extension of Egq. (2.9)
wag done by L. I. Mandel’shtam and M. I. Leontovich who considered -
dependence of bulk viscosi‘cv and calculated it asccording o the velaxation theory v

faul’

they developed®. Their result about the freguency dependent of bulk vis

22— i
185 e o 9 10
() =15 P (2. 10)
77 () s ey C )
here o is density of liguid, 7, is single relaxation time of some physical quantity, v.

is phase velocity of so»;md wave at high {requency limit. Then the zbsorption coeffic-
3

lent due to bulk viscosity is

ws( 1+ 2219)

Recently R. D, Mountain calculated the relaxation time of shear wviscosity. But its
relaxation time is very small in usual liguid. We expect that this effect will be occu

at only wvery high frequency®, R. M. Herman showed that the fotal absotpm“n
coefficient o wvanishes in pure sound wave field in which #, thermal ccefficient of
expamsion; is equal to zero although 7 and 7’ do not necessarily vanish based on a

liguida®

s}

guantum statistical theory ir
As a matter of fact the accuracy of data published for the width of Brillouin
components is not so high. The relative errors are about 20% in the experimental data
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using the laser source combined with t
power of this device v/4dv does not exceed about 10% Hecently optical heterodyne

speciromeier has heen developed where the resolving power V/'/fy»wmi“a Experimental

data with more accuracy will be expected to be published in future by these improved

technigue.
On the other hand the width of Rayleigh component I° is obtained from the
. : ; . ar N — Tt igr . .

eguation of thermal conduction ol,— e =idT and T(r, {H~e g which is non-

propagating temperature wave. The result is

r= f4* (2. 12

oC, e
This formula is expected to describe well the actual experimental results so far as we
can be confined with the low frequency region in considering the Rayleigh component.
Recently J. B. Lastovka and G. B. Benedek tested the Eg. (2.12) using a laser light
source and 2 high-sensitivity optical-heterodyne spectrometer. Their result was in

good agreement with HEq. (2.12) for toluene.
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§ 3. Double Relaxation Theory

The origing of the dispersion of sound velocity and the absorption of sound wave
are attributed to many processes; e. g., relaxation processes associated with the energy
transfer from translational to vibrational degrees of freedom, configurational relaxation
or another some processes through the intermolecular potential. Although the question
about which process is dominant is very difficult to be determined completely, the
first process mentioned above seems to be dominant for some kinds of liquid, CH,Cl,
for example, because for this liquid Eq. (2.11) agrees with the experimental results
very well. But for chloroform the deviation of Eq. (2.11) from the experimental
results is observed‘!”. Some other difficulties of relaxation theory with single relax-
ation time were pointed in sec. 1. These difficulties may be removed in somewhat
degree, if we consider the relaxation process with multi-relaxation times. In general,
however, the calculation with multi-relaxation times is very complicated and parame-
ters which will appear can not be fully determined by the simple consideration. In the
following, for simplicity, we are concerned with only two relaxation processes which
arise from the time delay in the redistribution of energy between the vibrational and
translational degrees of freedom of molecules. The relaxation times to be considered
characterize the rate of establishment of the internal equilibrium corresponding to the
instantaneous value of pressure. According to our model, the pressure of liquid in
sound wave field now be regarded as a function of density o and the value of some
physical quantities &, &, which characterize the miacroscopic state of the liquid
concerned and also of entropy S;

P = p (40: El» 52) S) (3' l>

In the first order approximation, the rate equations are established as

£i=— 0 (5=1,2) (3. 2)

&,—¢
Tl

Here, &, is the equilibrium value of &, which varies in time and determined hy

density and entropy. In this approximation pressure fluctuation is entropy independent

because the first order derivative of entropy with respect to o and &, is zero. We

divide &),and &) into two parts;

/

= = 7
C50:E100+§N and 6i=§i00+gi

here, €,,0=0 and 550, E; vary with time associated with the change of pressure. Let

int i . r s ’
Further, we assume the time dependence of &, &, as ¢

1

us assume that o(f)~e

wa",giwe“im corresponding to the density fluctuation. Substituting this time

dependence of &% and &, into Eq. (3.2), we obtain
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From Le Chatelier’s principle, it is evident that
P o
i 3,p>‘:g} or  vh > v}
L 00 JEi, 6 \Je jeg
The Eq.(8.4) is combined with Eq. (3.5) to give
’U;%: < 3 ! - (i Rryvgw?—i82 (1t +1, )0 —28(veqy - 7ya) ) (8.
& i _szifz_gg(ri_iﬁfz)% i _—a

We may assume that ve="1. ly, i.e, the greatest dispersion is 10% at most,
22 —p3<2.1x 10 (cm/sec)? using the value v~ 10° cm/sec.

Mioreover we assume g, then | | and |4, | <10%< 0hasl0® (cm/s

hypersonic region. Thus we can omit 7,2 and 7y, in Eg. (3.8) to get
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Fig. 1 The dispersion of sound velocity
1 : The dispersion of sound volocity obtained from the double relaxation theory.
Il : The dispersion of sound velocity obtained from the single relaxation theory.
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Fig. 2 The solid curve represents Eq. (3. 12)).
The dotted line shows the values given by (18)
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Eq. (3.7) is transformed info
yf‘};v% D2t 7, — Qi Q2( 1, Ho1y)8
= — (8. 8
9% — 0§ (1 — @27 rg) 2+ 23( v, +1,)"
Let us assume r,=r7,=14 for simplicity, then Eq. (3.8) now leads a simple form

(8. %a)
On the
2 )
vy V2 per 2 ) ]
= (3. 9b)
vi—p  14-8%r7
0
The curves of (8.9h) and (8.93) versus #r are presented in Fig. 1.
According to this curves it is seen that in some freguency range v g <C vy (for

2'>2) hclds using double relaxation theory while the case is not obtained from the

ingle relaxation theory. From the above result, it is shown that the negative dispersion

@

of sound Velo«:ity is allowed in the case of our model. Eq. (8.92) and Eg. (3.9b)

are linearised with respect to v assuming small dispersion, L.e., v~v; O ¥y+u~320;

o= = (3. 10a)
Vg
Qeciiv? fvi— 1% )
— (3. 10b)
(142273
Then
“/js Ts 1+ 22 {Z>Z
—=(—)F — (3. 11)
4, 14 (1220 (84 8%8)
If we set
(8. 12)
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The curve Eq. (8.12) is presented in Fig.2. This curve shows that for a certain
frequency range the dispersion given by this maodel is smaller than the dispersion by
single relaxation theory. The systematically larger dispersion by an amount which
appear to be outside the range of experimental error than the predicted dispersion
was pointed out by J. E. Piercy and G. R. Hanes!%, Absorption coefficient due to
bulk viscosity defined by ¢y =1,% is obtained from (8.4) where % is obtained by the
relation, 2=v(2) k.

But, instead of the direct calculation, we start with the result obtained by the
single relaxation theory and transfer this result to our case by appropriate replace-
ments of parameters. From the single relaxation theory we obtain

. a
A S P

VL +a=v§

then

. Vida—ifiT ok ‘
”:@:‘“1%9= (3. 13)
—ifT,

On the other hand, from the double relaxation theory we obtain

2 VL(1—DPrywy) b @ —i8(r, 1) vl »
v, = . (3. 14)

’ 1—-Q%cv—i8(zv,+7y)

here we omitted the cross terms a,r, and @,7,.
Comparing (3.13) with (3.14) we can find the rule of the correspondence as

follows.

1) In the first terms of numerator and dencomerator 1 must be replaced by

1— 2277,

2) a, must be replaced by @, +a,. (3. 15)

3) 7y must be replaced by ©;-+7,.
Eq. (3.13) lead to the well known expression for

P s /oi—13
s :]m bh=_
20y (1 £27)

(3. 16)

Here we assumed small dispersion i.e. v%/¢2~1 in the last step in Eq. (3.16). By

Fabelinskii et al. and by L. V. Lanshina et al. Eq. (3.16) is used to explain the
experimental data for absorption of sound wave <719,

According to (17) Eq. (3.16) explains the experimental resuit very well for CH,-
Cl, in spite of the fact that molecule CH,Cl, has many vibrational modes and that

1

among these modes the pair satisfying C,/Cw~1 exists, here C,, Cy are vibrational

specific heat associated with r and ¢’ mode respectively.

This suggests that two internal processes of relaxation are concerned with two
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modes of vibraticn which have different vibrational specific heat each other. Here w

assure that we can set as

where Cy a

Let us transt

cccur simultan

dispersion. Then we obtain

Ul (1—pf702)2 - 8202 (5-1)%}

Recalling that total absorption coefficient « is equal to @y+aw+o;, we obtain finally

the form of «(£) for this case (assuming that absorption due to thermal diffusion is

negligible being compared with a7 and ).

gg = +B (3. 18)
(I—n@2cd)? + Qi (n+ 1)
 2(mF il i1} )
Here A=———— characterizes the ahsorption of sound wave at low
29,
frequency and
29
B== characterizes the absorption of socund wave at high freguency. Shear

l to be constant. From Bg. (3.18) we obtain

C{O ujh “« Y 2N i 3 El 2] o N,
— e = (I —nd e Qi ()3 (3. 20
02 2
Qh
Here
oy i ans
f m
20
g?g‘ 02

2

and «,’/8%, is the value of ¢y /9% at fixed hypersonic frequency 2,.

On the other hand, usual relaxation theory with a single relaxation time gives

Gt (8. 21)
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Hg.(3.21) gives only one curve once the values of #, «,/2¢ and b are

But

unforbunately, the curves for chloroform under these conditions does not agree with

the plots of o/8% ultrasonic megsurement; is, BEg. (3.21) does not show

experiment at ultrasonic region for the

80 large dispersion a
value of 7, given |
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A, @,/2% and B are fixed, Two curves of Eg. (8.18) and Bg. (8.21) are presented

From the experimental wvalues for the

ay/ 2 101 = 400sec?. cm?

Then Hg. (8.19) reduce to

Then
i i
(n+—)+(n+-—)2+59.8
we = z e ceeecurve 1
§.05
and
16— (1 —4 F;m,z ” 2
L \Z :,;_A.}“'y) s ecenneecurve 11
.55

Maximum value of (-+1)% % is given by nx=0.2%2 which corresponds to

/5 < 10710 sec.

t
I
b

(o)
w=10.88, Tgrm

From our consideration by the use of double relaxation theory, we obtain
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Some values of «/f? are shown by the mark x in Fig.4. Here we used the value of

7,=1/78 % 107" sec. The solid line shows the curve of ¢/ f2x 1077 versus f obtained from

the single relaxation theory. The broken line shows the results cbtained frem the

ultrasonic measurement.
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