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1. Introduction.

B. Sz.-Nagy [1] showed the following theorem.

Theorem A. If 0 < r=<1, f(x) decreases on (0, z), f(x —0)> — co and
xf(x) e L (0,n), then 271 f (x) = L (0, ) if and only if S w7 |b,| << oo where b,
= 91 Sz f(x) sin nx dx.

It is easy to check that the statement of Theorem A for 1 <<y <<2 is still true.
But when 7 =0, the theorem fails; as an example we may take f(x) = — x, then
x1f(x)e L0, ), |b.] =2n1 and X | b, | = co. Recently as a replacement for
the case r = 0 of Theorem A, R. P. Boas [2] showed

Theovem B. If f(x) decffeases on (0, w) zmds - x2|df (x)|<<oo, then f (x)
1S bounded if and only if n1 2 kb, = O(1) where by, = 271 S f (%) sin kx dx.

Moreover he [2] gave the followmg two theorems.

Theorem B'. If f(x) dem'eczses on (0, ©) and S - %2 |df(x) |<<oo, then f (%)
is bounded if and only if w1 Z a, = 0(1) wheve a, = — 2z71 S , (1 — cos kx)

(0, 7
ar(x).
Theoeem C. If g(x) =0 on (0,7) and x3g (x)=L (0, n), then xg (x)=L(0,r)
if and only if n1 kél k1b, = O(1) where b, = — 2z—1 SO (kx — sin kx) g (x) dx.

It is evident by Nagy’s lemma ([1], p. 119) that Theorem B’ is equivalent to
Theorem B. The aim of this paper is to give a generalization of these results being

due to Boas.

2. Theorems.

Theorem 1. Let m be a non-negative integer and f(x) be af unction of boun-
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ded vaviation on [e, ] for every ¢ >0. (i) If

@.1 {0 2 ldf )| <o,

then we have

(2.2) Losvlad_oq,,

k=1
where
) ( n - (Rx)? B

@8 a=2f{oos ke - 3 (- 10 G2 Lare k=1, 2,
(i) If

(2.4) [y w2t ldf (o | <o,
then we have

(2.5) LBl o,

’ n k:1k "

where

(2.6) bkm—g( - 131n i 2 (—1yi %} af (%) E=1, 2,

Theovem 2. Let m be a non-negative integer and f (x) decrease on (0, z).

@ If

2.7 §<w> x2m+2 | df (x) | < oo
and
1 a
(2.8) — kZ_% —pan = O(1),

where ays are defined by (2.8), then we have (2.1). (ii) If

(2.9 S(M) x2™+3 | df (%) | < oo
and
(2.10) L b o
: . R ’

where b,s are defined by (2.6), then we have (2.4).

The cases m = 0 in Theorem 1 (i) and Theorem 2 (i) yield Theorem B’. Similarly
the cases m = 0 in Theorem 1 (ii) and Theorem 2 (ii) yield Theorem C.

Now we prove Theorem 1 (i) and Theorem 2 (i). The proof for Theorem 1 (ii)
and Theorem 2 (ii) will be proceeded quite similarly.

Proof of Theovem 1 (3).

By (2.1) and (2.8), we have

ol s=f, 2 EDT ar )

4 1
e @ [ =C R k=1, 2,



Lebesgue-Stieltjes Integrabiilty of x™ with Respect to Unbounded Monotone Functions 11

Hence

IA

a
S
[
vtx’l

H/\

1 n
5l
Proof of Theorem 2 (i).
First of all let 2 = 0. Then

2
a=——f  (—coskn)|df(® 20, k=12,

0§~—£L—;Zlak§0, n=1,2,,
and
%%gak=—;—§S(O’m(l—coskx)]df(x)[
:S (1__1_ sin (n+ 2)x sm; ‘L[df(x)]
w0 o | n ZSm% }

z Cgs( , | df () | by Fatou’s lemma.

'%;21% <C, n=1, 2,
1 & 1 1 %
T w AR W R ™ >1C°S k= Z<"1> <<zx)>v GAT) A @
_ (=D"™ om 1 K1 E : (kx)2i
_S(M) @1 E%" o 23 g (cos k= 53 (= DiLER )}»Idf(x)[.
Therefore

n _1\m m=1 i
33 L (eos k= 33 (~10i B ap ).

And we know

12 B o (Bx)2
” Z} (cos kx 2 (—1)i HT R s
1 m Ty cos kx el (—1)mhig2i] & :
= D S R - S T S S e e
and
. xzm __L 7':. l) (kx)zj
Gt " w & (cos 1 = Z SN CHIRE
because

_ m—1 N <kx)2j (kx)zm
cos kx g( 1) oh1 =< @7
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Hence by Fatou’s lemma

T i -
?C_Z_ (2m)| S(o,n)xz |df(x>l
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