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On the Dimension of Partially Ordered Sets.
By

Toshio HIRAGUCHI

The present paper is concerned with several problems on the dimension of posets®?
(partially ordered sets) in the sense of Dushnik and Miller (1) and aims ultimately at the
study of the least upper bound of the dimension of posets defined on a set or that of
the number of elements which are necessary in order to define a poset having given

dimension.
§1. Partial orders and posets.

We will distinguish a partial order from a partially ordered set.

A partial order™ on a set P is a subset P of PxXF which is not a subset of
P7X P’ for any proper subset £’ of P and satisfies

Pl For all x, (x, x) € P.

P2 If (x, ) €P and (y, x) €P, then x=y.

P32 If (x. y) €P and (x, 2) €L, then(x, z) € P.

A partial order £ on a set 2 which satisfies

P4t Given x and y, either (x, y) €L or (y, x) €L,
is said a Ziner order on P. ‘

The null-order on P is the set {(», x) | x € P}.

A poset P is the set P associated with a partial order on it. When the associated
partial order is a linear order it is said a cheiz on # and when the null-order is
associated with it is said to be wnordered. , »

When (x, y) €P we say that x inc/udes y in P and write x =2 y in 2. When (x,
) &P and (p, x) € P we say x and y are non-comparable in P and write x ¢ y in
2£. Either notations will be used according to circumstances.

Let £ is a proper subset of a partial order P which satisfies the conditions 1, 72
and 23. Then there exists a subset £’ of £ on which the partial order PP’ is defined.
There are two cases. When 27 C P, P’ is said a partial suborder of P and P~
with P/ a subposet of P. When P’=P, P is said a extension of P’ and denoted by
P > P

Let {2, | €O} a system of non-overlapping posets associated with each element of

%) For the brevity’s sake we adopt this convenient term suggested by G. Birkhoff.
# #) The partial order thus defined is essentially no more than the oriented graph of the correspon-

ding poset.
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a poset Q. Then the set

P=UoP, U {(x,y) | xEP,, yePy, (g9, ¢) €Q}
is a partial order on the set #=\JgP, which is said the sum of partial order P, with
the basic poset @ and denoted by Y oP,. The poset 2 corresponding this partial
order is said the sum of posets /2, with the basic poset Q and denoted by >lo Zy.

Let {P, | #€ 7} be a system of partial orders on a set 2 and {7, | €7} the
system of corresponding posets. Further let {7, | #€7} be symply ordered by the
relation of being an extension of or equal, that is, 7, == P or P, < Pp for any #, 2’€ 7.
Then

P= UTPt

is also a partial order on the sst Z. The corresponding poset is denoted by V7. It
is obvious that Vo7, = P, for all 7 € 7.

§2. Linear extensions of a poset.

An extension Z of a poset £ issaid a Zinear extension provided L is a chain on 2.
It is obvious that if ¥ ¢ p in 2, then x=%y and (&, ) €L or (y, ) € L where L is the
linear order on 2 associated with L, that is # > yin L or y > « in L. Conversely
it has already been proved that

@. VD) Ifp ¢ g in a partial order P, then there exists a linear extension L of P
such that (p, ¢) €L (Szpilrajn(2)).

Proof. ‘The following proof does not differ essentially from that of Szpilajn. For p
and ¢ such that p $ ¢ in 2 there exists an extension ¥ suych that (p, ¢) €P*. In
fact the poset corresponding to a partial order

P*=P yu {(x, ) | (v, p) €P, (g, y) €P}
on 7 is a required one. Now let & = {7, | #€7} be the system of all extensions of
2# such that (p, ¢) €. © is a poset by the relation of being an extension of or equal.
Let {#, | # €77 & 7} be any chain in ©. Then V7P, €& is an upper bound to
the chain. Hence © contains a maximal element 7, which is a required linear extension.

Let us prove further the existence of some particular linear extensions which are of
use later.

A linear extension Z (@, P) of a poset 7 is said to be Zeft with respect to an
element @ of P provided that x ¢ @ in 2 implies (@, x) €L (a, P). Dually a right
linear extension M (@, P) with respect to @ is defined.

(2. 2) For an element a of a poset P, 8 (a, P) = 0 QN (a, P) == 0) where
e (a, P) (M (a,-P)) is the system of all left (right) linear extensions of P with
respect to a. A

Proof. Let P, P¥, Q and Q% be subposets of 2 on the sets Pa={x | (x, @) €PI,
Pot=P—Pa Qu=1{x|(a, ) € P} and Qu*=P—Qq respectively. Let 84, 4%, Do and
i4* be.the systems of all linear extensions of the subposets 2, 7%, Q and Q% respecti-
vely. Further let Z(a, P)=La*+ L be the ordinal sum of L<* € Q% and Lq € L.
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and M(a, P)=M + M* that of Mo € My  and M* € M*.  Then L(a, P) €
8(a, P) and M(a, P) € W (a, P).

One sees easily that C(e, P)={L 5+ Lo | LFER S, La€RY and Wi(a, P)=
{Mo+M* | Mo Wa, M*EWXY,

A linear extension L is said to be Zeft (right) with respect to a chain C in P
provided L is left (right) with respect to every element ¢ € C, that is, provided L €
Ne 8(e, P) (L €Ne M, P)).

(2. 3) 8, P=Ne8 e, PIFO (NC,AD=NeMe, P)E0) if and only if C is
a chin in. P.

Proof. Let ¢, ¢ € Cand L €8(C, P) and assume that ¢ ¢ ¢/ in 2. Then since
L €8, P) and L €8(, P), we have both (¢/, &) € L and (¢, ¢) €L. 'Thisis

contradictory. Hence ¢ and ¢ are comparable in 2 that is C is a chain in 2.

Conversely let C be a chain in 2. Decompose the set Z to the sum of folloing
three non-overlapping subsets ,

Py={x|(x,¢) €P for no ¢ € C},

Py {x | (x, ) €P for all ¢ 'G Cy—A,

Py, = P=(P U Py).

Let Z; be any linear extension of the subposet .Z; of P for 7/=1 and 3. A linear
extension Ly of the subposet /% of 2 is constructed in the following manner. For each
element x '€ Py put .

Co={c€C | (x, c) EP},

and let », y € P, be equivalent if Cy,=Cy. Then the set P, is devided into classes

I

{P: €€ X} where X is the set of representatives. Since C is a chain in Z the system
{C: | €€ X} is a chain by the relation of the set-inclusion. Hence X associated with
the linear order
X=1{( &) | C:=Cer}
is a chain. TLet Z: be any linear extension of subposet Pt of 7 and L;=3>x L the
sum of Ze-s with the base X. Then Z, is a linear extension of 7. Since Zs is a chain
on P and YxPs < Swhx =L, in order to prove this it is sufficient to show that
P, <> P:.
Let (x,3) € Po. Whenwo € Py andy € P, (x, ») € Py C 2x Ps. When
x € Py and y € P for §£§, (§, &) € X. For otherwise there exists ¢ € C such
that ¢ € Cs- but ¢ &€ Cx. ¢ € Cy- with y € P implies (y, ¢) € Py, hence (x, ¢)
Eﬁ P. On the other hand ¢ ¢ C with « € P implies (v, ¢) & Ps. This is
contradictory.  Hence Py & >ix Px.

Now let L=} Z; be the sum of above three linear extensions with the base 3.
Then L is a linear extension of 7. In order to show this it is sufficient to see that #
< D% P, since it is evident that Z is a chain on P and >3 2, < L. Let (&, y) €
P Ifx,y € P, then (w, ) € P, C35 P;. Ifx € P,y € P, thens > j. In

1) The sum 32, where Q is the chain 1, 2,..., » will be denoted by 31q2; or P+ Lp+ ...+ 2,
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fact if x € Prand y € Po U P then (&, o) ¢ P for any ¢ and (y, ¢) € P for
some ¢/. The latter implies (x, ¢/ )€ P, which contradicts the former. If x € 7
and y € 2P, then (x, ¢) & P for some ¢/ and (5, ¢) € "P for all ¢. The latter
implies (x, ¢) € P for all ¢ which contradicts the former. 7 > j implies (x, y) €
S5 P;,. Hence P =35 P;i e, P 5 P

Moreover Z € & (C, P). In order to show' this let Z. and Z.® be subchains of
L on Po={x | (x, ) € P} and on P*= P—P. respectively. Evidently Z.* € &,%*
and L. € 8. and hence L&+L, €8(C, P) where 2.5 and 8. are systems of all
linear extensions of subposet Z.* and . respectively. Hence it remains only to show
that Z=L.*+Z.. TFor the purpose it is sfficient to show that (¢, x) € L whenever
(x, ¢) € P and that (x, ¢) € L whenever (x, ¢) € P, When (x,¢) ¢ P, x €
P u P Ifx € Py then (¢, x) € L since ¢ € Po. If x € P, then x € P
and ¢ € P’ for (6,6 € X. Hence (¢, ») € L. When (x,¢) € P,x € P, U .
Py If x € P, then evidently (x, ¢) € L. If x € /P, then either x, y € P& for
some § or ¥ € Ps, ¢ € Px for & = & In the first case (v, ©) € Py & L, C L.
In the second case (&, &) € X, hence (x, ¢) € L,

Wt (C, P) #+ 0 may be proved dually. But let the gist be repeated. Decompose
P to the sum of three non-overlapping subsets :

P’ {x | (e, x) € P for all ¢ € CY—C,

P = (x| (c, x) € P for no"c € C},

Py = P—(P/ v F.

Let M; be any linear extension of the subposet 7y of 7 for 7=1, 3. For every

i

element x € 7% put

Co/={c€ C|(c, x) € Py}
By letting x, y € /» be equivalent when C,'=Cy’, 7, is devided into classes {F:” | &
€ X’} which is a chain by the relation of set-inclusion. Hence X7 is a chain with the
linear order

X = {E 8] C =2 G}
on it. Let Mt be any linear extension of the subposet P:” of 7. Then My=Yxr M
is a linear extension of 7 and M= M; that of P which is an element of 1(C,P).

(2. 4) ZLet A and B two chains in a poset P such that (4, @) ¢ P ((a,8) ¢ P)
for a € A and & € B. Then
(4, P) N A(B, P =0 (W4, P) N LB, L) =+ 0).

Proof. Put ‘
Py = {x| (x,a) E Pfornoa € A}, -
Py = {x|(x,0) € Pforall a € 4}—4,

Po= P-(Pr U Py

Pl = {x] (5 x) € Pforall 6 € BY—B,
Pl = {x| (s, x) € Pfor no 4 € B},
Py = P—(P v Py



On the Dimension of Partially Ordered Sels. 31
Py = P; n Py,
As is easily seen Foy = Lo = Ly = Py = 0. Hence
Pii U Pig U Py = Py, Poyg =P, Py= 0y,
P11=P1/, P12=P2,- szUP23UP33=P3’.

Let L;; be a linear extension of the subposet £7;; of # where Ly, L1z and Lgy may
be chosen arbitrarily, but let Zeo; and Zjy» be that which are constructed in the same
“manner as in the proof of (2. 3) Zs; and A% were constructed respectively. Then it is
easily seen that

Ly+Lyy+Lis € 2Ly, Loy € 8 (L), Ly € L(F)

Ly € SCPY), Ly € R(LY), Lig+ Lo+ Ly €2 (),
where € (P) means the system of all linear extensions of the poset in the brackets.
Hence

Lyt Lig+ Lyt Lost Lyy € (A, P) 0 0B, P).

Two chains 4 and B in a poset P are said to be non-comparable provided both
(bya) & P and (a, 8) & P for a € A and b € B. As a corollary of (2. 4) we have

(2. 5) If two chains A and B are non-comparable, then S(A, P) (\ Wi(B, P) =+
0 and L(B, P) N\ (4, P) == 0.

»

§3 Dimension of posets.

Let {#, | s € S} be a sytem of posets which are defined on a set Z and £, the
partial order associated with Z,. Then N, £, is a partial order on . Hence 7
associated with N, P, is a poset which is denoted by A, 2.

Let #={Z, | s € S} be a system of linear extensions of a poset 2. ¥ is said a
realizer of P provided P= N\, L,. It is evident that &1 7s @ realizer of P if and
only if x ¢ y in P implies the existence of s, s € S such that (x, y) € L, and
(y, ) € L,s. By this remrk and (2. 1) every poset has its realizer.

Among the realizers R,={Z, | s € §,} (z- € 7)) of a poset £~ a realizer .= {L,
['s € Sz} such that #(S=) << #(S.) for all # € 7 is said to be minimal where 7(S]
denotes the number of elements of a set .S. The number of elements of a minimal
realizer $i={Z; | s € S} of a poset £ is said the dimension of P and denoted by
D [ P). Of course D(P)=nlS).

One sees easily that D(ZP) is finite provided #(2) is finite and D(P) < #(P]
provided =[] is a transfinite cardinal. But we assert that

(3. 1) For every poset P, D(P) < »n(P).

Proof. The system R={L(x, P) |x € P} of left linear extensions of 2 with
respect to each element x € 2 is a realizer of 2. Because x ¢ y in 2 implies (x, y)
€ L(x, £) and (3, ) € L(y, £). Hence DLPY < ulP).

Let © be the system of all poset defined on a set 2. Then (3. 1) says that »(P]
is an upper bound of D(P) for 2 € &. A question arise here as to what is the least
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upper bound of D[] over & which will be answered in the last section. For a fixed
P € @ the estimation above obtained may be replaced by a more pricise one.

(8. 2) Let €={C, | 2 € T} be a system of non-overlapping chains in a poset P.
Then D(P) < w(P—Ug Cl+»(T1.

Proof. Choose a L(x, P) € 8(x, P) for each element x € P’ = P—y C; and
a L(C;, P) € 8(C;, P) for each # € 7. Then the system

={Llx, P) | x € P}y UL(Cy, P) |t € T}

is a realizer of 2. In fact for x ¢ y in 7 there are three cases.
(1D x,9 € P, Then (x, ) € L(x, P) and (y, x) € L(y, ).
(2) x € P,y € Cy. Then (x, ») € L(x, P) and (y, x) € L(C;, P).
B) € Cs,y € Cir(z %+ ¢). Then (x, p) € L(Cy, P) and (y, x) € L(Cy/, P):
Hence DLP) < n (P/I+2(7T].

As a corollary of (3. 2) it follows that

(3. 38) Let €=1{C, | 2 € TY be a system of non-overiapping chains in P such
that UpCy=P. Then D(P) < n(T). .

Example 1. Let P be the poset represented by the dugmm of Fig. 1. Elements of
7 are exhausted by three non-overlapping chains. Hence by (3. 3)
DP) < 3. Leth= {L;-} be a realizer of 2. Then since &’ ¢ 3,
o P a ca and c $ & in P there exist Ly, Lo, Ly, Ls € R such
that (8, @) € Ly, (a, 8) € L, (&', ¢) € L, and_(ﬁ’, o) € Ly
One sees easily that Ly &= Ly, Ly %= L4, Ly &= Ly and that Ly=Ly,
Ls=L; do not hold simaltaneouly. Therefore either (1) Z; + Zs,
Le = Ly, Ly == Lyor (2) Ly == Ly, Ly &= Ly Ly &= L; occurs.
Hence D[] = 3. Therefore D(PJ=

Lxample 2. Let P be the poset of all integers with the 9

2n+2 n+4
inclusion relation : 27 > 27—1 and 22 > 22+1 (=0, 4
1, £2,.....). In order to exhaust the element of ~ enume- \\ \_
rable number of non-overlapping chains are necessary, but
D(PI=2. In fact P is realized by two linear extensions Z; WA w1 iz
and Z, defined by specifying that Fig. 2

22 < 2043, 2n—1 < 2n, 22n+1 < 22 in L,
2+ < 2n—1, 22—1 < 22, 22+1 < 22 in ZL,.

$4. Dimension of the sum of posets.

. 1) Let P=2s P, be the sum of non-overlapping posets P, associated with
each element s of a poset S, that is the set \Us P; associated with the partial order
P=Us P, v {(&, ) | x € Py, y € Py, (555 S}
and ¢ be an element of S such that D(Pgs) 2 DULP;] for all s € S. Then
DLP)=Max (DUFP,], D(S)).
Proof. Let R={N,|¢ € 7T} be a minimal realizer of S and R, = {Mz(s)ll‘(s)ET }
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that of 7. Since 2(7,] = »(ZT',] for all s € S there exists a single-valued mapping
So of By onto R,. Let {f; | s €S} be the system of such mappings where f; may be
chosen arbitrarily for s == o, but for ¢ let it be the identical mapping. For each #(o)
€ 74 and for each # € T let

Lf )= ZNtfs (ﬂ[t (a))

be the sum of the system {fs (M) s € S} with the base ANV;. Then Ll is a

cnain on P= s P, and moreover a linear extension of 2. Because since Sfi (M) =
Micsy for some #2(s) € T, Ligy=w:M,(sy that is
Liwgy=UsMicsy Ui, ) | & € Mgy, y € Micsny, (s, ) € S}.
Considering P. C M) and Micsr=2Ls as a set for all s € S we have 2 < L.
I. The case where D(P,) == D(S). Since #(7T,) =2 #»(T) there exists a single-
valued mapping ¢ of 7, onto 7. Put Z3%5=L,¢s. Then

N¥={Lig | 2(0) € T}

is a realizer of £, In order to show this let x ¢ y in 2. There are two cases. (1)
x,y € Ps. Then since x# ¢ p in Ps there exist #(s), #/(s) € T's such that (x, y) €
M:cs> and (p, ) € Mi/¢sy. Let Micoy=/fs (Miisy) and M, resy=fs(Mirgy), then (x, )
€ filM:») and (y, 2) € fi(M.r¢sy). Hence (x. ») € Liy and (y, #) € Lissy
for all # € 7. In particular (%, y) € Ly and (y, &) € Lyrsy. (2) x € Ps, y €
Psi(s & 57). Since s ¢ 57 in .S there exists, # € 7 such that (s, &) € N, and (&, &)
€ N Let t=¢((0)) and '=¢ (' (6)). Considering & € P,=fi (Mi)=
Ss(Mirey) (as aset) and y €L, = for(Miey)=for (Mir¢sy) (as a set) (x, y) € Liwy=
L4 = Ly 4y and similarly (y, a) € L,rsy. Cosequently $* is a realizer of 7.
Hence D(P) < #(Ty)=D(P,]). Since DLP) = D(P;), D(PI=D(P,).

II. The case where D(F;]) < D(S]. Since #[7s) < n [T there exist a single-
valued mapping ¢ of 7" onto 7'4. Put £i¢sy=L;, then

R¥*={L, |z €T}

is a realizer of Z. The proof is similar as before. Hence D(PJ=.D(S).

As the special case where the basic poset S is unordered we have the following
corollary considering that the dimension of an unordered poset is 2.

(4. 2) Let P=321s Ps be the sum of posets Ps where S is wunordered and o an
element of S such that D (Py) 22 D(Ps) for all s € S. Then D(P) = DI(FP,]
provided Fg is not a chain and D(PI=2 provided Py is a chain.

8§5. Dimension of subsets.

If some elements are removed from a poset preserving the order between remainig
elements, then the dimension diminishes in general. The amount of this diminution
will be estimated for several particular cases in this section.

B. 1) Let a be an element of a poset P. ThenD (PISD(PI+1 where P’ is the
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subposet of P on the set P—a.

Proof. Let /={N, | s € S} be a minimal realizer of 7" and put

Pi={x ]| (a, ) € P, Pi=1x| (x,2) € P}, Po=P"—(P; U ).

Choose an element NV, of R and let Lo*, Lo, Mo and Mo* be subchains of Vs on
the sets Py U Po, @ U P, P U @ and P, U P; respectively. Then

L&) =L+ La € B(a, P) and M(a)=Ma+M* € Ma, P). ,
Put Vyi={x | (er,x) € N, for some x; € P} and Niyg=N,—Nsy (Vs =L as aset). Then

L,=N, v (g, U {(g, ) | x C Nsi} U {(x, @) [ x € N}
is a linear order on Z and the corresponding chain Z, is a linear extension of . And
the sytem

N=1L, |s € S—6} U Z(a) U M)

is a realizer of 2. In order to show this let x ¢ y in 2.  There are two essential
cases. (1) x=a, y € P—a. Then (a, ) € L (@) and (3, 2) € M (). (@) x, y €
P—a. Then since x ¢ y in P/ there exist s, s’ € S such that (x, y) € IV,, (y, ) €
N,s,. Hence if s = 0, s = o, then (y, ) € L,, (x, ) € Lss. If either s or &,
say s/, is coincident with o, then (x, ) € L, and (3, x) € L (@) or M (@) accord-
ingasx, y € Pru Poorx, y € P U P, Hence # is a realizer of 2. Consequently
D(P) < DLPY+1. v

B. 2 If C is a chain in a poset P, then DUP) < DUPI+2 where P’ is the
subposet of P on the set P—C,

Proof. Let $¥"=4{N, | s € S} be a minimal realizer of /. For each ¢ € C put

De={u € P’ | (¢, n) € P}

and for each s € S

Ves={x € P’ |) u, x) € N, for some #z € Us} or Vey=0
according as Uec = 0 or Us=0 and Wey=Ny—Veos (V;=2F" as a set). Then U, =2
Uerand Ve, = Vory for (¢, ¢) € C and

Li=N, U CuU {(e,@) |2 € Vos, c €ECYU {(x, ) |x €E Wey, ¢ € C}
is a liﬁear order on . This is almost evident if we notice that the system {V e, | ¢
€ C} is; a chain with the relation of set-inclusion which is isomorphic to the chain
C. To verify the conditions 271, P2 and 74 is easy. In order to verify 23 let (s, y)
€ L and (y, x) € L. There are the following 8 cases.
M) «x, 9,32 € P~C. Then since (3, x) € N, (2, x) € L.
() x, 9,3 € C. Then sincei(s, x) € C, (3, x) € L.
3 y,2€ P—~C,x € C. Theny € Wy,. When Uy =+ 0,(y, z) € N, for all « €
Us ; hence (3, #) for all w € U, i. e, 2 € Wy, When U,=0 evidently z €
W,s=F—C. Hence in either case (z, x) € L.
M) %, 2z2€ P—C,y € C. Then x € Vy,. Hence Uy == 0 and (%, x) € N, for
some # € Uy. On the other hand (z, ) € N, for all # € Uy. Consequently (z, x)
€ N, C L.
(5) xy € P—C,z2 € C. Then (5, 2) € N, and (%, y) € N, for some z € U,
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(=F 0). Therefore (#, x) € N, for some # € U., i. e.,, x € V., which implies (2, &)
€ L, .

®) x,9y€ C,z2€ P-C. ThenU, S Uy. If Uy %= 0, then Uy =%+ 0 and (2, )
€ N, for all # € Uy, a fortiori for all # € Uy, i. e, 2 € Wys., If Uy, = 0, ‘then
evidently z € I ,;. Hence in either case (g, x) € L,.

(M 3,2 € C, & € P—~C. Then (#, x) € N, for some # € Uy (= 0) and Uy &
U.. Hence (z, x) € NN, for some # € U, which implies (2, ) € Lj,.

B x,2€ C,y € P~C. Then (u, ) ¢ N, for some 2 € U, and (3, ) € N,
for all # € U,. Assuming that (x, 2) € C we have (. w) € N, for all « € U, =
U, which is contradictory. Hence (z. x) € C < L,.

The chain Z; on the set 7 with the linear order L, is a linear extension of the
poset . TLet (y, x) € P. Then there are three cases. (1) x, y € FP—C. Then
(y,x) € PP Ny © Ls. (2) x € P-C,y € C. Then x € Vy; which implies
(y,2) € L;. (3) x € C,y € P—C. Then (y, ) € P for all « € Ux provided U
#+ 0. Hence y € Wys. When U,=0 evidently y € IW,; Hence in either case (p, )
€ L.

Now let Z(C) € 2(C, P) and M(C) € Wi(C, P). Then the system
R={L; | s € S} v Z(O) v M(C)
is a realizer of 7. Hence D[ P) < DLPI+2.

(5. 3) If A and B are non-comparable chains in a poset P, then D(p) =< DUP’]
+2 where P’ is the subposet of P on the set P—(A4 U B).

Proof. Let R’ =1{N," | s+ € S} be a minial realizer of P’. Construct first a linear
extension AV, of subposet £ on the set P—2B from NV,” in the same mavner as in
the proof of (5. 2) L, was constructed from A, and then a linear extention Z; of £
from NV, in like manner. Further let Zy € (4, P) n MM(B, P) and L, € (A4,
£) n L(B, P), then the system

R={Ls; | s € SY U Z; U L,
is a realizer of 7. Hence D(P) < DIP)+2.

Let us confine ourselves to the finite posets. By the notation & > ¢ we mean that
4 covers @. The same notation will be used to denote the chain composed of such two
elements which is said to be elementary. An elementary chain & > @ in a poset P is
said to be of #ank 0 when there exists no pair of non-comparable elements x and y
such that 4 > x and y > @. When such pair exists one and only one it is said to be
of rank 1.  When two and only two pairs of such elements exist it is said of rank 2

and so forth.

(5. 4 If an elementary chain b > a in a finite poset P is of rank 0 or 1, then
DUPY < DUP+1 where P’ is the subposet of P on the set P—(a U b).

Proof. Let R'={Ny, Ns, N,} be a minimal realizer of 7’. When the chain
b > ais of rank 0 choose arbitrarily an element, say V., of #i’. When it is of rank 1 let

S
>

x9 and yo be the single pair of non-comparable elements such that & xo and yo > a
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in 7. Then there exists an element of R’ in which y, > x,. Let it be also AV, without

loss of generality.  Decompose £—(a U 4) to the sum of following non-overlapping
subsets :

Py = {x|a > xin P},
P,={x|xPa 6> xin P},
Py ={x|x$a x¢bin P},
Py={x|x>a x¢bin P},
Ps = {x|x > bin P}.

Let M; (=1, 2, 4, 5), My and My’ be the subchains of N, on the sets 2; (7 =1,
2,4,0), /LU P, v Psand Ps U Py U Ps respectivély. Then
L=M;+a+ M+ b+ Ms
is a left linear extension of /£ with respect to the chain 4 > @ and
M= My+a+ My+ b+ My
is a right linear extension of Fwith respect to 4 > @. For each 7 (< » —1) construct
a linear extension Z; of 2 from /V; in the same manner as in the proof of (5. 2) Z;
was constructed from /V,. Then the system
R=1{Ly, Loy..., Ly, L, M}
is a realizer of 2. In order to verify this let x ¢ y in 2. Ifx € ¢ U sand y €
P—(a U &), then (x, ) € L and (3, x) € M. If x,y € P—(a U &), then there
exist V; and AV; such that (x, ) € N; and (y, ) € IV;. Hence when 7 = 7 and j
*+ n (x,9) € L; and (3, ) € L;. When 7=7 or j=# it sufficies to consider the
following cases :
1) x,9y € PLu P U P Then either (x, y) € L, (3, ) € L; or (x, y) € Ly,
(y, #) € L according as /=7 or j=n.
(2 «x,y € Py U Py U Ps. Then either (x, ) € L;, (3, x) € M or (y, ) € L;
and (x, y) € M according as j=7z or 7=7.
@B x € P,y € Py Then considering 4 > @ being of rank 1 (when 4 > « is of
rank 0 this case does not occur) (xg, x) € P and (y, yo) € -P. Since (yo, x9) € Na,
(y, #) € N,. This means that j=7. Hence (x, ) € L; and (p, ) € £, Hence i
is a realizer of 2 and D(P) < D(P’) +1. ‘
(5. 5) Let a be a minimal element and b a inaximal one of a finite poset P. If
apbinP
DIPY < DIP I+
where P’ is the subposet of P on the set P—(a U b).
Proof. Decompose P—(a U 4) to the sum of the following subsets :
Py ={x|x¢$a b >xin P},
P, {x|x¢a b6¢ xin Pl
Py={x x> a x> bin P}
Let M; (=1, 2, 3) be a linear extension of the subposet /; of £, then
L=M+b+My+a+M; € B(a, P) 0 Wb, P).
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Let R'={Ny, Ns..., IV} be a minimal realizer of 2 and put
Li=a+N;+6 (7=1, 2,...,7).
Obviouly Z; € M(a, P) N L8(3, P). And the system
Rh={Ly Loy..., Ln, L}
is a realizer of 2. Hence D(P) < DIPI+1.
Example 3. Let P; (=3, 4, 5) and P;* (/= 2, 3, 4) be the posets represented
by the diagrams in Fig. 3. Then

1 DirI=5

2 DPHF)=4 (PiF=Ps—e").

3 DlPI=4 (Py=Ps—(d v €D).

@ D=3 (PF=P—(e U H)=PF—e).

B DPI=3 (Py=Ps—(" U e U & U dD=PF—( U ).

6) D(P*)=2 P*=PF—( v D). ‘
As to (1), (3) and (B) refer to [1). (6) will be easily verifyed by showing two
linear extensions which realize 7%, Hence D(P*) < D(F*)+1=3. On the other
hand D(2¥) = D(P=3. Thus (4) is proved. Similarly D)< DLP*)+1=4 and
DUP#) 2 D(P=4. Hence (2) is proved.

$6. Reducible posets with respect to dimension.

Let 2 be a poset, 4 a subset of Z and 2’ the subposet of /# on the set £—4. If
DUPI=D(P"]), then the set 4 is said to be removale in P with respect to dimension
or briefly d-removable in P. When £ has at least a d-removable element /Z° is said to
be reducible with respect to dimension or briefly d-reducible. The following propo-
sition is an immediate result of (4. 1). :

(6. 1) Let a poset P be decomposable to a sum s Ps and ¢ an element of S
d-removable. If D(Ps) < D(S), then P—P% is d-removable where P*¥={x,|s € S}
is a set whose element x, ts an element selected arbitrarily from the set Pi.

The following two propositions are the special cases of (6. 1).

(6. 2)%) If a poset has the greatest (least) element, then it is d-removable.

(6. BY¥®) If there exists no element other than maximal or minimal elemenis in
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a poset and if every maximdl element is comparable with every minimal one, then
all element except fwo maximal (minimal) elements are d-removable.

Further we shall give several examples. of d-reducible poset.

(6. 4) Let a chain C in a poset P and two elements a, b € P—C satisfy

1° 2 For every ¢ € C, (8, ¢) € P and (¢, a) € P.

2° 1 For ¢ € C and for x € P—C, (x, ¢) € P implies (x, 6) € P and (¢; x)
€ P implies (a, x) € P.

Then the set C is d-removable in P except at most one of its element.

Proof. Let ¢, be an element of C and R'={4; | s € S} a minimal realizer of the
subposet £ of £ on the set P—(C—c,). Then

L.=M, U C U{(x, )| (x, ¢) €E M,, c € CYyv {(c, ) | (¢y, x) € M, c € C}
is a linar order on the set # and the corresponding chain Z, on 2 is a linear extensi-
on of the poset £. Moreover the sytem '

R={L: | s € S
is a realizer. These to verify is not so hard. Hence DEPEI=DEP’ 7.

(6. B) Besides the conditions 1° and 2° in the last proposition let C, a and b
satisfy . . ‘

3% 2 For x € P—C either (1) (x, @) € P implies (x, 6) € P or (1) (4, x) €
P impiies (a, x) € P.

Then the set C is d-reducible as a whole. _ ,

Proof.  We shall prove the proposition under the condition 3°, (i). On account of
(6. 4) it may be supposed without loss of generality that C is the set of single element
¢. Let R'={M, | s+ € S} be a minimal realizer of the subposet #’ on P—c. Then

Li=M, Uiz O | (x, &) € M |
is a liner order on the set /2 and the corresponding chain L, is a linear extension of
the poset . Moreover the system R={Z; | s € S} is a realizer of the poset 2. In
order to verify this letx ¢ y in 7. When x, y € P—csince x $ y in P/, (x, y) € M,
C L,, (g, x) € M,, C L,/ for some s and /. When x=¢, y € P—f’by the condition
2° and 3°, (i) @ ¢ y in P’ ; hence for some s, s (y, @) € M, and (a, y) € M,
For these s and s :
(y, o) € L, and‘(f, ) € L.

Consequently % is a realizer of 7. Therefore. D(PJ=D[P’].

(6. 6) Under the same conditions as in the proposition (6. b) either a U C or
C U & s d-removable.

By (6. 5) this may be reduced to the proposition that

(6. 7) Let 6> a be an elementary chain in a poset P and satisfy either (i) for
x € P—p, (x, @) € P implies (x, ) € P or (i) for x € P—a, (b, x) € P impl-
ies (@, x) € P, Then either b or a is d-removable according as (i) or (ii) occurs.

Proof. Let ' =414, | s € S} be a minimal realizer of the subposet £’ on the set

%) (6. 2) is also a special case of (6. 11).
% %) (6. 3) follows also from (6. 10).
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P’=P—p and L; the chain on 2 associated the linear order
L.=M, v (4, ) U {(&, &) | (x, @) € M.,}.

Then the system $1={Z, | s+ € S} is a realizer of 2. Hence D(PI)=D(F’], i. e, & is
d-removable in 7.

In like manner it may be proved that

(6. 8) Let a chain C in a poset and an element a € P—C satisfy

1° 2 For every ¢ € C, (¢, a) € P ((a, ) € P).

2° 1 For x € P—C, (a, x) ¢ P ((x, @) & P) implies x ¢ ¢ in P for all ¢ €

Then C is d-removable except at most one of its elements. LFurther let C and a
satisfy

3° 1 For x € P—a, (x, a) € P ((a, x) € P) implies x € ¢. Then C is d-remo-
vable as @ whole.

(6. 9) Let P be a poset and Py, Py, Py subsets of the set P satisfying

1°: For x, y (x == y) € Py, x ¢ y in P.

2° 1 For x; € P, (=1, 2, 3), (x;, x;) € P ifi > j.

3% 1 For x € P—Ps, (x, 22) € P for some xo € Py implies (x, x3) € P for some
xy € P and (x5 &) € Ps for some xo € Py implies (a1, x) € P for some x; € Py.
Then Py is d-removable except at most an element p provided the subposet P’ on
the set P—(Po—p) is not a chain.

Proof. Let W=1{M, | s € S} be a realizer of P/, Ly a chain on Z and Z.,* the
dual of Zs. Then ‘ v

Li'=M, 0 L;u{(x, ) | (=, p)EM;, y € PYu{(x, p) | x € P, (p,9) € M}
and v

L*=M, v L* 0 {(x, 3D | (0, pYE M, yE Py {(x, y) | xE€E Lo, (p, y) € M)}
are linear orders on /2 and corresponding chains Z,* and Z,® are linear extensions of
the poset 2.  Since #(S) = 2 there exist a system $i={Z, | § € S} satisfying

1° : Ly=L, or else L,=L,* '

2° : There exists s, s € S such that Z,=L,' and L,=71,%

R is a realizer of 2. Hence D(P)=D[(P").

In like manmer it may be proved that

(6. 10) Let Py (Py) be a set of maximal (minimal) elements in a poset P and Py
(P a subset of P satisfying

1° ¢ For xy € Py and xo € P, (x5, x1) € P.

2° 1 For x € P—Py, (P—P), (xs, x) € P for some xo € Po ((x, x1) € P for
some xy € Py) implies (x1, ) € P for some x1 € Py ((x, x;) € P for some x, €
Py).

Then the set Py (Py) is d-removable except at most an element p provided the
subposet P’ on P—(Po—p) (P—(LPi—p)) is not a chain.

(6. 11) If an element a is comparable with every element of a poset, then a 7s
d-removable. ’
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Proof. Let R/'={M, | s € S} be a minimal realizer of the subposet 7’ on F—a
and put _
P/={x| (a, ) € PY, P/ ={x| (x, @) € P}.
Then )
L,=M, v(a, &) U {(a, x) |x € MY U {(x, @) | x € M}
is a linear order on /> where
M/ ={x| (x", x) € M, for some &’ € P}, My"=M,—M,’ .
The corresponding chain Z, on 2 is a linear extension of the poset Z and the system
R={L, | s € S} is a realizer of 2.

(6. 12) Let a be an element of a poset P and P/, P’ mean the same as above.
If for every element x such that x § a in P there exist p € Pd suck that x ¢ p
in P and ¢ € Pi” such that x ¢ q in P. Then a is d-removable.

Proof. Let R'={M; | s € S} be minimal realizer of the poset £’ on the set F—a,
then the system R ={Z, | s € S} constructed in the same way as in the proof of (6.
11) is a realizer of 2. In order to verify this let «* ¢ y in 2. When x, y € P—a
the existence of s, ' € .S such that (x, ) € L, and (y, x) € L,/ is obvious. When
x=a, y € P—a there exist, by hypothesis, p € P.’ and ¢ € P,” such that p ¢ y and
¢ $ y in P’. Hence there exist s, s’ € S such that (5, y) € M, and (3, ¢) € M,
For these s and s" (@, ) € L, and (y, @) € L,-.

Lxample 4.  The poset £ in Fig. 4 will be reduced to the poset 5 by removing
the removable elements applying the designated theorems one after another. Hence
D(PI=D(Ps)=3. The poset Ps is no longer d-reducible.
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§7. The greatest O[] over the system of posets on a set P, -

It has already been known that for every cardinal number 7 there exists a poset,
defined on a set of power 27, whose dimension is z (Dushnik and Miller(1)). In other
words in order to define a poset of dimension # a set of power 272 is sufficient. The
question that in order to define a poset of dimension 7 set of what power is necessary
is equivalent to the question what is the greatest 2(2) over the system of posets defin-
ed on a set . To answer to the question is the subject of this section. We shall
begin with two lemmas on finite posets.

(7. 1) Let P be a poset such that n( ) < T. Then there exists in P.an eleme-
ntary chain of rank O or of rank 1.

Proof. Let us prove the contraposition : if every elementary chain in 2 is at least
of rank 2, then »(#£J) = 8. Put

Az (B)={a | b6 > ain P, a *+ o; (G=1, 2, 3,..., A%,

Broge @=11062 ain P, b *+ b; (G=1, 2, 3,..., DO}.

Let 4y 2 a;y be an elementary chain in 2. Since it is at least of rank 2 there exist
three elements either (1) as € 4(ar), 63 € By (ay), b4 € Bys(ar) such that @, P b
(=3, D or (2) & € By (@), a5 € Ay (by), as € Ay5 (41) such that &, ¢ a; (=3,
4). Assume, without loss of generality, that (1) occurs. Since the chains 4; > @ and
b; 2 (=3, 4) are not of rank 0 there also exist three elements 4 € By (as) and
a; € Ay (3;) (7=38, 4). Evidently 4y == &, (7=1, 3, 4) and a; =+ a (=3, 4).
Hence #(P) = 8 provided a; == ay4. Let az=a4 for every a; € A; (45) and for every
as € Ay (bo), i. e., Ay (&3)=A4:(b4) be a set of singie element. If there exists an elem-
ent ¢ such that by > ¢ > s, then evidently #(P) 22 8. If by 2 a; or if by $ a5 then
since the chain 44 > a5 is of rank 2 thete exists at least an element &5 € Bsq(as).
Since &5 == 4; (7=1, 2), »(P) = 8.

(7. 2) Let P be a finite poset of length dUPI=2 in which every maximal eleme-
nt is comparabdle with every minimal element and no elementary chain is of rank 0.
Then there exists a pair of two non-comparable elementary chains.

Proof. TLet B be the set of all maximal elements in 7 and M that of minimal
elements. Since Z(FJ=2 and every elementary chain is not of rank 0, there must exist
five elements @y & M, by € B, as € Ay (b1), by € By (a2), &3 € By (a1) such that &4
> ay and b3 § ay in P. b3y € B, b3 ¢ ap and J(PI=2 imply a; ¢ M. Now if &, ¢ a,
then the chains &; > a4 and 42 2 as are non-comparable in 2. Let 4, and a3 be comp-
arable. Then s > aq on account of @y & M and JLPJ=2. Since the chain &3 > a is
not of rank 0, 4y (45) == 0. If for some a3 € A4y (&) and for 7=1or 71=2 a3 ¢ &,
in 2, then two chains &; 2 a; and 4; & a» are non-comparable. Let every element of
Ay (85) is comparable with every 4; (7=1, 2). Then since 4; ¢ a2 in P every 4 €
Ay (43) can not be coincident with @,;. The chain &3 2> a@; not being of rank 0 there
exists an element &4 € Brgs (ay) such that &4 ¢ a3 for some a3 € Ay (43). 64 § as
implies @3 ¢ M, and hence 4; > a; (7=1, 2) on account of J(PJ=2. Since the
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chain 44 > @y is not of rank 0, 4; (44 =+ 0. If for some as € Ay (ba) and for a
value of 7 (=1, 2, 3) a4 $ 4;, then two chains &4 > a4 and &; > @3 are non-compar-
able. Let every element of 4; (44) be comparable with every 4; (7=1,2,3) for every
pair of b4 € Byas (@) and a3 € A; (&3) such that b4 ¢ a;.  Apply the same reason-
ing as above and continue the same procedure. Since &z € Bie,...cz-n (@) and #[(F)
is finite this procedure must cease after a finite number of times and we must come
upon a pair of non-comparable chains. v

On inspecting the process of the proof one sees easily that in a poset Z of length
d(PJ=1 no chains of which is of rank 0 there exists a pair of non-comparable chains.

Now let us prove a theorem which is the main purpose of this paper.

(7. 8) If for a poset P n(PJ = 4, then DLP) < (n(P)/2) where (n(P)/2)
means the integral part of n(Pl[2 when n(P) is finite and n(P) itself when it is
transfinite.

Proof. When n(P) is transfinite it is evident by (8. 1). When (2] is an integer
we shall prove it by the mathematical induction. In the first place we shall prove that
if »(P) < 5, then D(PJ X 2. When #(P)=2 it is trivial.  When (L) == 8 we
may confine ourselves, without loss of generality, to the posets which are not decompo-
sable to a sum of subposets with an unordered set as the base since they are d-reducible
by (6. 1). Classifying all posets under consideration by the combination of number

of maximal elements and that of minimal ones, we have the following tables.

#[ P1=3 I, II, n[P)=4 1, II, IIL, IV,
No. of max. el 1 1 No+ of max. el 1 1 1 2
. No. of min. e. | 1 2 No. of min. el. 1 2 3 2
2 P)=5 I, 1I, III; IV, V, VI,
No. of max. el 1 1 1 1 2 2
No. of min. el 1 2 3 4 2 3

On interchanging the number of maximal elements and that of minimal ones we obtain
other classes than those which are listed in the tables, but on account of duality those
may be left out of consideration so far as the dimension is concerned. Every poset
which belongs to the other classes than IVy4, V5 and VI; has the greatest element which
is d-removable by (6. 2). Hence it may be left out of consideration. Every poset 2
which belongs to the class IV possesses two non-overlapping chains and all elements
of 7 are exhausted by the elements of these chains. Hence by (3. 3) D[(2P) < 2.
Every poset 7 which belongs to the class Vs must have at least a chain of three elem-
ents. The remaining two elements are either comparable or non-comparable. In the
former case since £ is composed of two non-overlapping chains D(PJ < 2 by (3. 3).

In the latter case since one of the remaining two elements must be a maximal element
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and another a minimal one DLLPJ < 2 by (5. 5). Every partial order which belongs

to the class VI; is isomorph to. one of four posets represented by the diagrams in Fig. 5.

KA

Fig. 5

The first three are reducible to the case where #»(#J=4 by (6. 10).  The last one is
of dimension 2 since it is a subposet of the poset of the example 2. Thus our propo-
sition is established for z(2J)=4, 5. When »(2)=6, 7 there exists, by(7.1), an elementary
chain of rank 0 or 1. Let it 4 > @ and £’ the subposet on the set P—(a U 4).
Since #(P’)=4 or b, D(P’)J=2. Hence by (5. 4) ‘
DIPY < DIPI+H1X3=(n(LP]/2].
Thus the proposition is established for #(#) < 7. Now let »(£J) = 8 and assume that
the proposition is true for »(PJ—% where % = 1. If P is d-reducible, there exists an
element @ such that D(P )= D[P’] where P’ is the subposet on F—a. Hence by the
assumption of induction
DUP)= DL I (P2 < (n(P)/2].
Let 2 be d-irreducible. If there exists a pair @, 4 of non-comparable minimal and
maximal elements, then by (5. 5) and the assumption of induction
DIPI DIPIH1E (#(P/2)+1=(2(L)/2) ‘
where 2 is the subposet on P—(a U 54). Let every maximal element is comparable
with every minimal element. If Z(2”) = 3 there exists a chain C composed of four
elements. Then by (5. 2) and the assumption of induction .
_ DIPIS DLPI+2=(n(P7)/2)+2=[n(L)/2)
where £’ is the subposet on P—C. Let 4(P) < 2. Since under the condition that
every maximal element is comparable with every minimal one Z(Z2J=1 implies the d-
reducibility of 2 by (6. 3), it suffices to verify the inequality for Z(FJ) =2. If there
exist an elementary chain 4 3> & of rank 0, then by (5. 4) and the assumption
DL DIPI+1 S (nlP7)/2)+1=(2(L)/2]
where £’ is the subposet on the set Z—(a U 2). If every elementary chain is not of
rank 0, then by (7. 2) there exist a pair of non-comparable elementary chains. Let it
be 4 and B, and £’ the subposet on A—(4 U B). By (5. 3) and the assumption of
induction
DPI DIPI+2 (nl(P)/2)+2=(2(P/2].
Thus our proposition is established completely.
The theorem of Dushnik and Miller at the beginging of this section will be
generalized as follows.
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(7. 4) For every cardinal number n 2. 2 there exist a poset on a set of power
n, whose dimension is (7/2).

Proof. When 7 is transfinite or an even integer it is evident by the theorem of
Dushnik and Miller. When 7 is an odd integer there exists a poset 7, defined on a
set of power (z—1), whose dimension is (2—1)/2 since »—1 is even. TLet « be a
maximal element of 2’ and &® an element ¢ 77, Then

P=P u (&% o) U {(&% x) | (a, x)E P}
is a partial order on =27 U &* and the corresponding poset 7 is a required poset.
since &* is d-removable in 2 by (6. 7).

It is a immediate result of (7. 3) and (7. 4) that
(1. 5) Let © de the system of all posets defined on a set P.  Then the greatest of
DP) for P e © is (n(P/2) provided n(P) = 4.

One sees easily that without the restriction #(P) = 4 it is (n(PJ/2]+1.

As the converse of Dushnik-Miller’s theorem, with slight restriction, we have the
following proposition which is equivalent to (7. 3). »

(7. 6) If D(PI = 8, then 2D(P) < #(P). In other words, in order to define
a poset of dimension n a set of power 2n is necessary.

Proof of the equivalence. D(P) 2 3 implies »(P) = 6. . Hence D [(FP) <
(n(P/2], i. e, 2D(P) < #(P). Conversely let (2] = 4 and assume that D(P) >
(»(PJ/2). Then since D[P) = 3 we have 2D(P) < #[(2) by (7. 6) which contr-

adicts the assumption.
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