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Abstract

In order to investigate the origin of large intensity the a-relaxation in skeletal muscles observed
in dielectric measurements with extracellular electrode methods, effects of the interfacial polarization
in the T-tubules on dielectric spectra were evaluated with the boundary-element method using
two-dimensional models in which the structure of the T-tubules were represented explicitly. Each
model consisted of a circular inclusion surrounded by a thin shell corresponding to the sarcolemma.
The T-tubules were represented by simplified two types of invagination of the shell: straight
invagination along the radial directions, and branched one. Each of the models was subjected to two
kinds of calculations relevant to experiments with the extracellular and the intracellular electrode
methods. Electrical interactions between the cells were omitted in the calculations. The both
calculations showed that the dielectric spectra of the models contained two relaxation terms. The
low-frequency relaxation term assigned to the a-relaxation depended on the structure of the T-tubules.
Values of the relaxation frequency of the a-relaxation obtained from the two types of calculations
agreed with each other. At the low-frequency limit, the permittivity obtained from the
extracellular-electrode-type calculations varied in proportion to the capacitance obtained from the
intracellular-electrode-type ones. These results were consistent with conventional lumped and
distributed circuit models for the T-tubules. This confirms that the interfacial polarization in the
T-tubules in a single muscle cell is not sufficient to explain the experimental results in which the
intensity of the a-relaxation in the extracellular-electrode-type experiments exceeded the intensity
expected from the results of the intracellular-electrode-type experiments. The high-frequency
relaxation term that was assigned to the 3-relaxation was also affected by the T-tubule structure in the

calculations relevant to the extracellular-electrode-type experiments.
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1. Introduction

Dielectric spectra of cells and tissues have been of interest in physiology, biophysics and
bioengineering because those serve as fundamentals not only for understanding their electrical
phenomena including effects of electromagnetic fields, but also for developing electromagnetic
techniques for analyzing cells, tissues and bodies [1-9]. According to Schwan's survey [1], the
dielectric spectra have three types of dielectric relaxation that appear in different frequency regions of
the applied ac electric fields: a-relaxation below a few kHz, B-relaxation between 1 kHz and 1 GHz,
and y-relaxation above 1 GHz. The y-relaxation is due to orientation of water molecules. The
B-relaxation is attributed to interfacial polarization caused by accumulation of charges at boundaries
between the membranes and the aqueous phases. For the a-relaxation, several possible polarization
mechanisms have been proposed, which are due to (1) displacement of counterions surrounding
charged membranes [1, 5], (2) interfacial polarization related to peculiar cell structures such as the
T-tubules in skeletal muscles [10, 11], gap junctions between cells [12, 13], and small holes in the cell
membrane [14], and (3) gating of ion permeation in excitable membranes [15, 16]. As an extended
view, Dissado reexamined the mechanism of the three relaxation terms based on fractal structures in
tissues [17]. At this stage, the mechanism of the a-relaxation has not been made clear because of
difficulties in measurements in the low frequency region chiefly due to interference from electrode
polarization [18, 19], and the structural complexities of cells and tissues.

The electrical properties of skeletal muscles have been investigated by the extracellular
electrode (EE) [1-10] and the intracellular electrode (IE) [2, 4, 11, 20, 21] methods. The EE method,
which is commonly used for dielectric spectroscopy, measures the whole cells between electrodes,
whereas, in the IE method, one of electrodes is placed inside of the cell to make measurements across
the cell membrane. In 1954, Schwan [22] reported the dielectric spectra of skeletal muscles measured
by the EE method between 20 Hz to 200 kHz, and showed that these included two relaxation terms
located near 100 Hz (a-relaxation) and above 100 kHz (B-relaxation). In his review paper in 1957 [1],
he analyzed the a-relaxation following O'Konski's theory [23] and, from analogy with the a-relaxation

found for lysed erythrocytes and polystyrene spheres, concluded that the a-relaxation was attributed to



the counterion polarization. The 3-relaxation was reasonably explained by the interfacial polarization
related to the membrane at the outer surface of the muscle cells (the sarcolemma). Subsequently in
1964, Fatt and Falk carried out the measurements by the EE [10] and by the IE [11] methods and
found two relaxation terms in both of the experiments. Based on these results, they proposed that these
relaxation terms were both caused by the interfacial polarization in which the effects of the tubular
system in the skeletal muscles were represented by circuits consisting of capacitors and resistors
connected in series. The simplest circuit is the lumped circuit model (LCM) for the T-tubules [20, 21].
This is a serial combination of a capacitor due to the whole T-tubule membrane and a resistor
representing the access resistance. A parallel combination of the LCM for the T-tubules and a capacitor
corresponding to the sarcolemma provides the apparent electrical properties of the cell membrane.
According to this model, the a- and the B-relaxation are attributable to the T-tubules and the
sarcolemma, respectively.

Arguments about the mechanism of the a-relaxation of the skeletal muscles arise from the
disagreement about its intensity between the results of the IE-type experiments and those of the
EE-type ones. According to the discussion by Foster and Schwan [5], the relaxation frequency of the
a-relaxation in the EE-type experiments agrees with that for the apparent capacitance of the cell
membrane derived from the [E-type experiments, on the other hand, the intensity of the a-relaxation is
much larger than that expected from the increase in the apparent capacitance of the cell membrane due
to the T-tubules. Because of the disagreement about the relaxation intensity, they argued that, in
addition to the interfacial polarization in the T-tubules, the counterion polarization mechanism is
required to explain the behavior of the a-relaxation. However, validity of this discussion should be
examined because it is based on conventional theoretical formulas in which the morphological effects
are considered implicitly. It is accepted to be reasonable to derive theoretical formulas for the
interfacial polarization in cell suspensions by solving Laplace's equation by taking account of the
morphology and electrical properties of cells [24-27]. In the conventional theoretical formulas for the
skeletal muscles, however, a cell was assumed to be covered with a smooth membrane whose

electrical properties were determined from the LCM for T-tubules to incorporate their contributions



[10, 28]. This approach is a kind of expedients caused by the complex cell morphology for which
Laplace's equation cannot be solved analytically. In recent theoretical studies of composites and cell
suspensions [29, 30], Laplace's equation was solved numerically to show the morphological effects
explicitly. This approach provided information that was not obtained with the conventional analytical
methods. The morphology of the skeletal muscles subjected to the EE-type experiments is
characterized by the network of the T-tubules in each of the cells and the anisotropic structure of the
tissue consisting of bundles of the elongated cells. To derive the conclusion of the mechanism of the
a-relaxation in the EE-type experiments, it is necessary to examine the validity of the conventional
analytical formulas from the comparison with the results of numerical calculations in which the
morphology of the skeletal muscles is represented explicitly.

As the first stage of investigations based on the numerical calculations for the skeletal muscles,
we examined whether the interfacial polarization in the T-tubules causes the same effects in the EE-
and the I[E-type experiments, using two-dimensional models in which the T-tubules were represented
by simplified local deformation of the cell membrane. The use of the two-dimensional models in the
calculations relevant to the EE-type experiments is the same approach as that adopted by Fatt [10], and
corresponds to experimental conditions in which the external electric fields are directed perpendicular
to the muscle fibers. Electrical interaction between the cells due to the bundle structure was omitted. In
addition to the comparison between the EE- and the IE-type calculations, validity of the conventional

equivalent electric circuit models for the T-tubules was examined.

2. Models and methods of calculations
2.1. Cell models

From the three-dimensional viewpoint, the muscle fiber and the T-tubules were modeled,
respectively, by a cylinder and trenches on the side of the cylinder, where the external electric fields
were directed perpendicular to the cylinder. Figures 1 and 2 show the two-dimensional view of the

models. The muscle fiber is represented as a circular inclusion 10 um in radius, a,, surrounded by a

thin shell 10 nm in thickness, T,. Although the value of a (8, = 10 um) is somewhat smaller than those
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used in previous theoretical simulations [28, 31], it is still realistic. The T, value (T; = 10 nm) was
chosen for a practical reason to simplify the calculations, and is larger than the thickness of the
hydrophobic region in cell membranes ranging from 4 to 5 nm [2-4]. The T-tubules are arranged
symmetrically. The number of the tubules, Nr, is two in models A2 and B2, four in models A4, B4 and
C4, and eight in model A8. Width of the tubules, Wr, is made uniform. As shown in Fig. 2, the tubules
are straight invaginations of depth Dy directed toward the center of the circle in A-type models (A2,
A4 and A8). In B-type models (B2 and B4), each tubule is divided into two branches of azimuth 6.
Effects of the tubule structure on the dielectric spectra were examined by changing Nt, Wr, Dr, and 6¢
systematically, as shown in Table 1. The values of Wt from 50 to 200 nm are of the same order as the
T-tubule diameter [32]. Model C4 relevant to a detubuleted muscle fiber [4, 21] consists of the straight
tubules (Nt =4, Wt = 50 nm, Dt = 8 um) that are disconnected from the surface membrane by a space

of 1 um. Model S without tubules was used for control calculations.

—— Fig. 1 =—
—— Fig. 2 =—

===Table 1 ===

We adopted the following values for relative permittivity £ and conductivity x of the inner
(subscript 1), outer (a), and shell (s) phases: g = & =80, K= kK, = 1 S/m, & =2, and x; = 0. Effects of
proteins and DNA on these electrical parameters [3-5] were omitted for simplicity. The values for &
and g, (& = & = 80), and that for & (& = 2) are compared to the permittivity of water and that of
insulating non-polar materials, respectively [33]. The values for x; and x; are the same order as the
conductivity of physiological saline solutions [34]. The tubular lumen was assumed to be filled with
the external medium, to simplify the problems.

The assumptions about the parameter values adopted to simplify the calculations may provide
some difficulties in comparing between the present theoretical study and previous experimental studies,

however, are allowed in the comparison between the two types of calculations, which mimic the EE-



and the [E-type experiments.

2.2. Calculation of dielectric spectra

Dielectric spectra relevant to the EE-type experiments were calculated with a method similar to
that used for three-dimensional models in our previous papers [35-38]. The procedure of the
calculation consists of three steps. First, the electric potential ¢gr induced at r(x, y) around the model
by an uniform external ac field Eggo(Egrox, Egroy) Was evaluated by solving Laplace's equation using
BEM with the Green function and the cubic shape functions for two-dimensional systems [39, 40].
Second, the complex polarization factors Bggy and Bgg, for the model in X and y directions were

evaluated by analyzing the resulting ¢gg using the relation

S

¢EE - W(XEEEOX BEEx + yEEEOyBEEy)’ W

where S denotes the area of the model approximated as S = na,”. Third, the complex permittivity for
the two-dimensional suspension of the model was calculated from the Wagner-type mixture equations
[26] that were derived assuming no interaction between the models. If the models are randomly

oriented, the complex permittivity of the suspension &g* is represented as
(eee™* — &™)/ (eee™ + &*) = P(Bgex + Begy)/4, )

where &* is the complex permittivity of the outer phase, and P is the area fraction of the models in the
two-dimensional suspension. The complex permittivity is defined as &* = ¢ + x/(iwey) with &, k,
imaginary unit i, angular frequency @ represented as @ = 2xf using frequency f of the external ac
electric field, and the permittivity of vacuum &. When P << 1, Eq. (2) is simplified, and, for
convenience, is represented using new quantity gggp* that is an increment in the complex permittivity

of the suspension due to the models in the randomly oriented suspensions normalized by P, in the



following way:

geep™ = (&ee™ — &*)/P = &eepx™ + &eepy ™, (3)
geepx™ = & Bepx/2, 4)
SEEDy* = Sa*BEEy/ 2, ®)

where geppy™* and ggppy™ correspond to the normalized increments in the complex permittivity by the
models oriented along X- and y-axis. The &gp* can be expressed as gggp* = &epp' — i&erp" +

KEEDL/(i w&)), where geep' is the real part of ggp*. The imaginary part of gggp™ includes two terms,
&eep'' and KEEDL/( &), where Kepp- is the de conductivity.

In the experiments with the IE method, the electrodes are placed inside and outside of the cell,
and are connected to a generator and to the ground, respectively. To simulate this situation, we placed
two concentric circles of radii ajzy and ajgg centered at (0, 0) representing the electrode in the cell and
the ground, respectively. The values of ajgy and ajgg were made to be 1 um and 20 um, respectively, so
that the shell phase of the models was placed between these circles. Under the boundary conditions
that the potential Vigy at the inner circle and that Vigg at the outer one are fixed to be 1 Vpp and 0 Vpp,
respectively, Laplace's equation was solved to obtain the normal components of the electric fields at
the surfaces of the circles with conventional BEM procedures [39, 40]. Using &* and the normal
components of the electric fields at the inner circle, value of ljgy, which is electric current per unit
length along z-axis through the internal electrode, was obtained. Finally, complex capacitance Cig* for
the model of unit length along z-axis was evaluated from Cig* = lig/[i & Vien — Virg)], and was
represented using capacitance Cjg and conductance G given by a relation Cig* = Cj + G /(i ).

The calculations for model S were carried out with analytical methods using the cylindrical
coordinate system [2, 41]. The Bggx and Bggy in the EE-type calculations for model S are represented

as



Beg, = BEEy = ZW ’ (6)

. >x<=gs*(lJrv)gi"‘+(1—V)<95”" ™
! (1-v)e, *+(1+V)e, *

v=(1-Tya, (3)

where &* and v are, respectively, the equivalent complex permittivity and the area fraction of inner
phase within shelled circle for model S. Fatt represented the impedance the two-dimensional
suspensions with circuit models [10]; one of these was a parallel combination of the outer medium and
a composite circuit that was a series combination of the outer medium and an equivalent element for

the cell. Using a similar circuit model, ggp* for model S given by Egs. (3)-(6) can be represented as

Gl 2 gk ©)
2 le, *+1/e *

Since Eq. (7) can be modified into 1/5* = T, /(as&) + i w&/ x, under the conditions & = &, & = &, & =
0, and T y/a; << 1 which are relevant to the present study, Eq. (9) can be represented by the following

approximate relation:

%
€D "~ _ : 1 _ Ka . (10)
2 lwe, /K, +T, /(Zasgs) lwe,

This relation shows that model S exhibits one relaxation term attributable to the B-relaxation due to

[iwsy/ Kk, + T /(2a56)] " in the right side of Eq. (10). In the case of the IE-type,

1 — 1 loge [aIEG /(as +Ts )] + loge[(as +TS)/ aS] + loge(as /aIEH) (11)
C.* 2nz, g, * g, * & * '

N



Similarly to the case of &gp*, this relation can be modified into the following approximate form

representing the 3-relaxation:

= +
%
Ci 2re, K aes

a S

1 1 |iwe, loge(alEG /alEH) T } (12)

2.3. Equivalent circuit models for T-tubules
As an alternative approach to evaluate the effects of the T-tubules, the calculations were carried

out using Egs. (3)-(8) for model S, where &* was replaced by the equivalent complex permittivity

8_5 * of the shell phase including the effects of the T-tubules represented by equivalent circuit models
shown in Fig. 3. The 8_5 * can be represented by 8_5* =&, + N YT/ (ia)21ta580 ) , where Y7 is the
admittance of each T-tubule per unit length along z-axis. The equivalent relative permittivity 8_5 and

conductivity K‘_S of the shell phase are defined as S_S* = 8_5 + K_S/ (iwe,) , and are represented by the

imaginary Y1" and the real Y¢' parts of Yt as follows:

PR PERSLSELL | (13)
2na e, @

— T

K, =——N.Y,". 14

* 2ma, (14

=== TFig. 3 ==

In the case of the limped-circuit model (LCM, Fig. 3(A)), where the capacitance C;-“™ of the

LCM R LCM
A

T-tubule membrane and the access resistance R, are connected in series, Yt becomes 1/Yr =

+ 1/(i@Cr*™). Hence,

Yr' = (@Cr MR M [+ (mt M) (15)
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Yo" = aCr" ™M/ [1 + (07" ™)), (16)
where 7" is the relaxation time for the T-tubule represented as
M = 1/(2nef 1LCM) = C,LMR, LM, (17)

The f"“™ in this relation is the relaxation frequency for the T-tubule. The C:*“™ corresponds to the
membrane of the T-tubule, and is considered to be proportional to the tubule membrane area. Using the
length of the each T-tubule in xy-plane, Lc, which is given by Ltc = Dt in A-type models and by Ltc =

Dy + 2(a, — D7) 6 in B-type ones, Cr"“™ is represented by
CTLCM = 2LTC‘9055/T e (1 8)

For the distributed-circuit model (DCM, Fig. 3(B)), we can derive formulas for Y following the
transmission line theory [2, 4, 41] as described briefly in Appendix A. In the derivation, we assumed
that the voltage and the current waves were perfectly reflected at the bottom of the tubules. In the case

of the A-type models with straight T-tubules, Yt is represented as

pem 1— exp(— 2y "MD, )

Yo=Yy 1+exp(—2;/DCMDT)

, (19)

where Y,°™ is the reciprocal of the characteristic impedance Z,"™, and "™ is the propagation

DCM

constant. The Y,"™ and y”“™ are dependent on the specific capacitance ¢t”™ of the T-tubule

membrane and the specific resistance r,°™™ of the lumen per unit length of the T-tubules as follows:

(}})CM)2 _ imTDCMrLDCM, (20)

(I/YODCM)Z — (ZODCM)2 — rLDCM/(i ax:TDCM). (2 1)
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with
crP™M=2g4&/T,, (22)

rP™M=1/(Wrk,) . (23)

In the case of the B-type models with branched tubules,

pem 3+ exp(— 2yPM D, )— exp(— 2y PM L )— 3 exp[— 2y PM (DT + L )]

Y=Y 3- eXp(‘ 2y°"MD;, )— eXP(_ 2P MLy )"' 3 expl— 2y "M (Dy + Ly )J

., (@

where Lrp is the length of the each branch given by Ltg = (as — Dt) &r. Equation (24) is reduced to Eq.

(19) under the condition Ltg = 0 relevant to the A-type models.

From Eqgs. (13)-(24), we can obtain the low-frequency limits of 5_5 and K‘_S for both the LCM

and DCM as

e =& [l+N, L, /(ma,)], (25)
—L

x, =0. (26)

3. Results and discussion
3.1. Comparison between the EE- and the IE-type calculations

Figure 5 shows results of the EE- and the IE-type calculations for models S, C4, and A4-0580
that is the A-type model characterized by the following parameter values: Ny = 4, Wy = 50 nm, and Dy
= 8 um. In both types of the calculations, the dielectric spectrum for model A4-0580 includes two
relaxation terms located around 100 kHz and 3 MHz. The high-frequency relaxation can be assigned
to the B-relaxation due to the sarcolemma, because it coincides mostly with the relaxation exhibited by
model S, in which the B-relaxation is expected from the approximate relations Egs. (10) and (12). The
low-frequency relaxation was affected by the structure of the T-tubules, as will be described in the

following parts of this paper. Hence, this is attributable to the interfacial polarization in the T-tubules,

12



and is assigned to the a-relaxation. These assignments are consistent with those adopted by Fatt and
Falk [10, 11]. Only the B-relaxation is found in the dielectric spectrum for model C4. This agrees with
the results of the IE-type experiments for detubulated muscle fibers in which the connections between
the sarcolemma and the T-tubules were disrupted [4, 21].

~—— Fig. 4 ===

The two-step relaxation similar to that found in the dielectric spectra for model A4-0580 shown
in Fig. 4 was provided by all the models examined in the present study, irrespective of the branching
structure of the T-tubules in the B-type models. For further analyses of the effects of the T-tubules on
the dielectric spectra, the a- and the 3-relaxation were characterized by assuming the Cole-Cole type

relaxation [42] as below:

L L M M H
* _ KgEp €gep ~ €EED Eeep ~ €EED H 27

Egep = | . Mem ( )mm5 +E&gp (27)

wg, 1+ (I a)rEEa) 1+ {loTgg,

L M M H
C. -C C, -C

IE IE IE IE H

CIE *= + C]E s (28)

1+(iory, )™ 1+ (i OT g, )m‘E"

where m is the Cole-Cole parameter, the subscripts a and B refer to the a- and the B-relaxation, and
the superscripts L, M, and H refer to the values at the low-frequency limit, between the a.- and the
-relaxation, and at the high-frequency limit, respectively. The relaxation times Zgga, Zeep, Tiq, and 7igg
are, respectively, related to the relaxation frequencies fegq, fegg, fieq, and figg by relations of the
following form: 7= 1/(2xnf,), where rand f, are the relaxation time and the relaxation frequency,
respectively.

To compare the behavior of the a-relaxation obtained from the EE-type calculations with that
obtained from the IE-type ones, fgg, is plotted against fig, in Fig. 5, and Eepp” 1S plotted against Cg Yin
Fig. 6. As seen from Fig. 5, the relation between fgg, and fig, can be represented as fgg, = fig,. Figure 6

shows that gzpp" varies in proportion to Cig L
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3.2. Comparisons between BEM and circuit model calculations

In addition to the numerical calculations with BEM, the calculations were carried out with the

analytical relations for model S, in which &* was replaced by its equivalent quantity 8_5 *, which is

given by a relation 6‘_5* = 8_5 + K_S/(ia)go) , and Egs. (13) and (14). The Y1' and Y1" in Egs. (13) and
(14) were derived from the LCM or the DCM for the T-tubules described in sec. 2.3.

According to the approximate relations, Egs. (10) and (12), for model S, &gp' and Cpg for this
model at frequencies much lower than the B-relaxation are represented as &ggp' = 485&/Ts and Cig =

2mey(as&/Ts), respectively. From these relations and Eq. (25) that is valid in both the LCM and the

—L
DCM, &egp- and Crg" are, respectively, represented by the relations gEEDL =4a.¢e, /T, and

—L
CIEL = 2ne, (as g, /T, ) Hence, the relation between gzgp” and Cre" is expected to be represented as

geep-/Cie" = 2/(n&). This relation is shown in Fig. 6 by a solid line, which agrees with the plots
obtained from the BEM calculations. This result suggests the validity of the circuit models in
explaining the behavior of the a-relaxation at the low-frequency limit.

Calculations of ggp* and Cig* with the DCM were carried out using Egs. (3)-(8), (13), and (14),
where Yt was evaluated from Eq. (19) in the case of the A-type models, and from Eq. (24) in the case
of the B-type ones. Frequency dependence of &:gp' and that of Cig for model A4-0580 obtained with
DCM following this procedure are shown in Fig. 4. It is seen from Fig. 4(A) that the DCM was
successful in explaining the behavior of ggp* for model A4-0580 evaluated with BEM at frequencies
around fgr,. However, the DCM provided a slight deviation from the results of the BEM calculations
at frequencies around fgg; this is attributable to the T-tubules perpendicular to the external electric
fields, as will be discussed in sec. 3.3. In the case of Cig* shown in Fig. 4(B), the DCM was successful
in the whole frequency region examined in the present study. Similar results were obtained in the case

of the B-type models with the branched T-tubules (data are not shown).
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In the calculations with the LCM, it is required to determine reasonable values of the access
resistance R\"M of the T-tubules. As a trial, R AFM was represented as follows under the assumption
that R,\"“™ is attributed to the whole T-tubule in the A-type models, and to the part of the T-tubule

between the mouth and the branch point in the B-type models:

RA"™M = Dy/(Wrks ). (29)

Using Egs. (18) and (29), Eq. (17) can be rewritten as:

£ M = TWri/(4nlrcDr &) o

Figure 7 shows the relations between fgg, and f-M In the case of the A-type models, there was a

linear relation between fgg, and fr"™ represented as fggy, = 2.3 f-M

. This suggests that fgg, is
essentially explained by the LCM with the morphological parameters of the T-tubule although R, is

overestimated. The relation frp, = 2.3 f1-M leads to a relation

RA" M = Dp/(Wrk; )/2.3 = 0.43D1/(Wrr ks ). e

In the case of the B-type models, most of the data points are located near the solid line representing the
relation fgg, = fTLCM. This suggests that the R ALCM for the branched T-tubules is attributable to the part
of the T-tubules between the mouth and the branch point. Since fg, = fgg, as shown in Fig. 5, the same
relations for the A- and the B-type models are expected to be valid in the results of the IE-type
calculations. The frequency dependence of &gzgp' and that of Cg for model A4-0580 obtained with the
LCM are also shown in Fig. 4.

3.3. Results of the EE-type calculations for models A2 and B2

15



In the models with four or eight T-tubules (models A4, A8, B4 and C4), the components of &gp*
along the x- and the y-axis are equal to each other, i.e., &gpx™*=&sepy™®. In addition to these models, we
examined the case of &zeps™ # &eppy™ using models with only two T-tubules along the X-axis (models
A2 and B2). In this case, &zpx™ contained both the a.- and the B-relaxation, whereas &ggpy™* did only
the B-relaxation. Table 2 shows the relaxation parameters specified in Eq. (27) for ggepc™® and &ggpy™® of
models A2-0595 (Nt =2, Wr =50 nm, and Dt = 9.5 um) and those of B2-238 (Nt =2, Wt =50 nm, Dy
=9.5 um, and &r = 3.87/16). For comparison, this table includes the parameter values for model S
without the T-tubules, and those for models A4-0595 and B4-238 that have four T-tubules of the same
morphology as in A2-0595 and B2-238, respectively. The relaxation parameters related to the
a-relaxation (gEEDL, erep frpg, and Mgk, ) suggest that the behavior of the a-relaxation in gggpx™ of
models A2-0595 and B2-238 is the same as that in &gepy™ and geepy™ (&eepx™=&pEpy™) 0f models
A4-0595 and B4-238. This indicates that the occurrence of the a-dispersion depends on the direction
of the T-tubules, and that its relaxation intensity has the maximum when the T-tubules are connected to
the surface at right angles to the external fields. In addition, values of the relaxation parameters for the
B-relaxation (gEEDM, ERED ferp, and Mggp) suggest that the T-tubules affect the B-relaxation, and that
the effects are also dependent on the direction. The effects of the field direction on the B-relaxation are
more complicated than those on the a-relaxation. For example, fggg, and Mggg along the y-axis are
smaller than those along the X-axis in the case of model A2-0595, whereas the opposite relations are
found in model B2-238. In model A2-0595, the T-tubules are straight and are placed along the x-axis.
On the other hand, the T-tubules in model B2-238 have long branches that are mostly directed along
the y-axis. These indicate that the portions of the T-tubules perpendicular to the external fields cause

the decreases in fggg and Megg.

3.4. Comparison with experimental results
Figure 5 has shown that the relation fgg, = fig, holds between the relaxation frequencies of the
a-relaxation fgg, and fig, obtained, respectively, from the EE- and the IE-type calculations. This result

is consistent with the observations that the a-relaxation is found at frequencies near 100 Hz in both
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types of the experiments [4, 5]. However, the values of fgg, and fig, obtained in the present study are
much larger than the observed values. In the EE-type experiments [1, 5], the relaxation frequencies of
the a- and the B-relaxation are about 100 Hz and 300 kHz, respectively. As seen from Fig. 4(A),
values of these relaxation frequencies obtained in the present study are estimated as follows: fgg, = 85
kHz in the case of model A4-0580, and fggs = 4.4 MHz in model S. The discrepancy between the
experimental and the theoretical values is attributable, in part, to the values of T, (T; = 10 nm) and &
(& =2) used in the present study. The membrane capacitance Cy, for the shell phase in the present
study is evaluated as Cy = g&/T; = 1.8 10 F/m?. This value is about 1/15 of the Cy-values accepted
for the cell membrane of the skeletal muscles [4, 5, 21]. This means that the values of &/T; in the real
cells are about 15 times as large as that in the present study. According to Egs. (10), (12), (20)-(22),
effects of &/T; on the dielectric spectra can be represented by a term that includes the frequency as
we/T,. This suggests that the increase in &/T, causes the same effects as the decrease in frequency.
Hence, the following values are expected in the calculations using the realistic values of &/Tj: fig, =
fepq = 85 kHz/15 = 5.7 kHz for model A4-0580, and fggg = 4.4 MHz/15 = 290 kHz for model S. The
corrected value of fggg (fepp = 290 kHz) is in good agreement with experimental results. On the other
hand, the corrected value of fgg, (fego, = 5.7 kHz) is still much larger than the experimental results.
Since fgg, is significantly affected by the T-tubule structure, as shown in the present study, the
unsuccessful estimation of fgg,, is attributable to the oversimplified structure of the T-tubules examined
in the present study.

Figure 6 has shown that ggpp” varies in proportion with Cig " with the proportional coefficient
independent of the cell structure. This result is consistent with the conventional assumption about the
relation between the results of the EE-type experiments and those of the IE-type ones, derived from
the circuit models for the T-tubules. This suggests that the deformation of the cell membrane due to the
T-tubule structure in a single skeletal muscle cell is not helpful in explaining the excess in the intensity
of the a-relaxation observed in the EE-type experiments over that expected from the IE-type ones.
Beside the counterion polarization proposed by Schwan [1, 5], modification of the interfacial

polarization due to electrical interactions between the muscle fibers is expected to be one of the
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candidates for the mechanism available to explain the disagreements between the observations and the

theoretical results in the present study, and is needed to be examined in future studies.

Symbols in the text

Structure and electrical properties of models

as radius of circular region in models

[ specific capacitance of T-tubule membrane in distributed-circuit model
(DCM)

Cum membrane capacity for the shell phase, Cy = g&/T;

CM capacitance of T-tubule membrane in limped-circuit model (LCM)

dr space between shell phase and T-tubule in model C4

Dr depth of T-tubule toward the circle center

f frequency of external field and applied voltage

f oM relaxation frequency for T-tubule in LCM

i imaginary unit

Ltc length of T-tubule in xy-plane, Ltc = D+ 2(a; — Dr) 6;
Lts length of each branch of T-tubule, Ltg = (as — D1)&r
r "M specific resistance of tubular lumen

R,M access resistance of T-tubule in LCM

S area of model

Ts thickness of shell phase

Wr width of T-tubule

Y M =1/ Z,0M

Yr admittance of T-tubule

Zy°M characteristic impedance of T-tubule in DCM

yPM propagation constant of T-tubule in DCM

& permittivity of vacuum
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&, &, and &

&*, &%, and &*

LCM
T

relative permittivity of outer, inner, and shell phases

complex permittivity of outer, inner, and shell phases

equivalent permittivity of shell phase

equivalent complex permittivity of shell phase

low-frequency limit of 8_S
conductivity of outer, inner, and shell phases

equivalent conductivity of shell phase

low-frequency limit of K_S
azimuth of branch of T-tubule in models B2 and B4

relaxation time for T-tubule in LCM

angular frequency; o= 2xf

Calculations relevant to extracellular electrode (EE) method

Beex and Bggy
Eeeo(Eeeox EEEOy)
ferq and fegg

Mggq and Mggg

P

r(x, y)

%
EEE

1 n
geep' and &gp

L M H
&Ep > &ep . and &gpp

k
EEED

complex polarization factors of model along x- and y-axis
external electric field

relaxation frequencies of - and B-relaxation

Cole-Cole parameters of a- and B-relaxation

area fraction of two-dimensional suspension of models

position around the model where ¢ is examined

area fraction of inner phase within shelled circle for model S
complex permittivity of two-dimensional suspension of models
real part of ggp* and imaginary part of gggp™ except for contribution of KEED"
&gp' at low-frequency limit, between a- and B-relaxation, and at
high-frequency limit

normalized increment in complex permittivity due to models in suspension
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geepx™ and gggpy™ &ep* due to oriented models along x- and y-axis

& equivalent complex permittivity of shelled circle for model S
KEED- dc conductivity in &pgp*

Tigo and 7ggg relaxation times of a- and B-relaxation

deE induced potential at r(X, y)

Calculations relevant to intracellular electrode (IE) method

ey and aieg radius of circles corresponding to internal electrode and ground
Cir and G capacitance and conductance for model of unit length along z-axis
Ci", CeMand Cp™ Cik at low-frequency limit, between a- and B-relaxation, and at

high-frequency limit

Cie* complex capacitance for model of unit length along z-axis

fiee and figg relaxation frequencies of a- and B-relaxation

liEn electric current per unit length along z-axis through internal electrode
Migq and Migg Cole-Cole parameters of a- and B-relaxation

Vign and Vigg external voltage at circles corresponding to internal electrode and ground

Appendix A. Admittance of T-tubules derived from the distributed circuit model
According to the transmission line theory, the propagation of the voltage and the current waves

in the T-tubules in the A-type models is represented by the following relations:

V(1) = Veexp(—=”M) + Vgexp(PM), (A1)

(1) = Yo" M [Vrexp(=M1) = Vaexp(PM], (A2)

where "™ and Y,"“M are represented by Egs. (20) and (21) in the text, respectively, and | is the

distance from the cell surface. In the calculations of Yr, we assumed that the waves are perfectly
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reflected at the bottom of the tubules, namely,

VT(DT) = O (A3)

Since the current that flows through each of the T-tubules causes the difference between I1(0) and
I7(Dr), the Yt for the T-tubules is given by the following relation using the difference in It and the

voltage difference across the T-tubule membrane at the cell surface ,V1(0):

Yt = [11(0) = I1(D1)] / V1(0). (A4)

From Egs. (A1)-(A4), we obtain Eq. (19).
In the case of the B-type, the voltage and the current waves from the cell surface to the branch
point (0 <|<Dr), Vr; and I}, and those in the branches (Dt <| < Dt +Lg), V1 and Ir,, are

represented as

V(1) = Veiexp(—7"M) + Viiexp(7PM), (AS)
Iri(1) = Yo*™ [Virexp(—" M) = Vaiexp(PMD), (A6)
V(1) = Viaexp(=P M) + Veaexp(PM), (A7)
(1) = Yo ™ [Vizexp(—7” M) = Vizexp(7PMD]. (A8)

The following conditions are required for the continuity of the voltage and the current at the branch

point (I = Dr):
VTI(DT) = VTz(DT) 5 (A9)
I11(D1) = 2112(D1) . (A10)

Similarly to Eq. (A3), at the bottom of the T-tubules,

21



VTQ(DT +|—TB) = 0 (Al 1)

The Yt for the B-type models is given as

Y1 = {[l11(0) = It1(D1)] + 2[I12(Dr) = l12(Dr +L1p)]} / V1:i(0)

= [I11(0) = 2I1o(Dr +L1s)] / V11(0). (A12)

Using Egs. (A5)-(A11), Eq. (A12) is modified into Eq. (24) in the text.
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Table 1
Vales of morphological parameters for the T-tubules to examine effects of tubular structure on

dielectric spectra

parameters N Wr/nm D1/um 6r/(1/16)

changed

Models A2, A4, A8 (straight T-tubules)

Ny 4,8 50 8 0
Ny 2,4 50 9.5" 0
Wr 4 50,100,200 8 0
Dr 4 50 4,6,8 0
Dr 8 50 4,6,8 0

Models B2, B4 (branched T-tubules)

N 2,4 50 2 3.8
Dr 4 50 1,2,3 3.8
Or 4 50 2 1,2,3,3.8

" used only in EE-type calculations
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Table 2
Effects of the direction k of the external electric field on the relaxation parameters for gggp* for
models A2-0595 and A4-0595 (D1 =9.5 um, Wr = 50 nm), and B2-238 and B4-238 (Dt =2 pm, Wy =

50 nm, & = 3.8n/16), parameter values for model S being shown for comparison

Model k —KgED" &iED &gp —&ED feEa feep Mego,  MEegg
S/m 10t 10° kHz  MHz
A4-0595 X,y 1.00 0.87 4.87 3.24 60 1.70 1.00 0.78
A2-0595 X 1.00 0.87 4.44 1.55 66 3.49 097 094
A2-0595 y 1.00 - 3.20 3.26 - 2.70 - 0.86
B4-238 X,y 1.00 1.10 4.53 3.98 58 1.68 1.00 0.79
B2-238 X 1.00 1.10 4.38 3.31 59 243 1.00 0.87
B2-238 y 1.00 - 3.20 2.19 - 3.88 - 0.94
S X,y 1.00 - 3.92 1.57 - 441 - 1.00
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Figure Captions

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Two-dimensional models for the cross section of a skeletal muscle fiber. Circles in bold lines
are shells corresponding to sarcolemma. Bold lines in the circles represent the invaginations of
the shell representing the T-tubules.

Models for the structure of the T-tubules.

Equivalent circuit models for the T-tubules. (A) Lumped circuit model (LCM): C1-“M, the
capacitance of the T-tubule membrane; R,\"“", the access resistance. (B) Distributed circuit
model (DCM): ¢:°“M, the capacitance of the T-tubule membrane; r ™, the resistance of the
T-tubule lumen per unit length.

Dielectric spectra for models S, C4, and A4-0580 (A-type in which Nt =4, Wt = 50 nm, and D¢
= 8 um) obtained from the calculations relevant to experiments with (A) extracellular electrode
(EE) method and (B) intracellular electrode (EE) method. Open (©) and filled (®) circles are
data points for models A4-0580 and C4, respectively, calculated with BEM. Three solid lines
refer to the curves obtained analytically for model S, and for model A4-0580 with the circuit
models, LCM and DCM, as indicated in the figure.

Relation between the relaxation frequencies of the a-relaxation obtained from the IE-type BEM
calculations, fig,, and those obtained from the EE-type ones, fgg,. The solid line represents the
relation fgpy / fige = 1.

Relation between the low-frequency limit Ci" obtained from the IE-type BEM calculations and
that ggpp- obtained from the EE-type ones. The solid line represents the relation gspp- /Cre- =
2/(n&).

The fgg, compared with the relaxation frequency f-M for the T-tubule obtained from the LCM.
The f:*M values were calculated assuming that the access resistance R AFM was attributed to
the whole tubule in A-type models, and to the tubule between the mouth and the branch point

in B-type models.
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