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Abstract  

     In order to investigate the origin of large intensity the α-relaxation in skeletal muscles observed 

in dielectric measurements with extracellular electrode methods, effects of the interfacial polarization 

in the T-tubules on dielectric spectra were evaluated with the boundary-element method using 

two-dimensional models in which the structure of the T-tubules were represented explicitly. Each 

model consisted of a circular inclusion surrounded by a thin shell corresponding to the sarcolemma. 

The T-tubules were represented by simplified two types of invagination of the shell: straight 

invagination along the radial directions, and branched one. Each of the models was subjected to two 

kinds of calculations relevant to experiments with the extracellular and the intracellular electrode 

methods. Electrical interactions between the cells were omitted in the calculations. The both 

calculations showed that the dielectric spectra of the models contained two relaxation terms. The 

low-frequency relaxation term assigned to the α-relaxation depended on the structure of the T-tubules. 

Values of the relaxation frequency of the α-relaxation obtained from the two types of calculations 

agreed with each other. At the low-frequency limit, the permittivity obtained from the 

extracellular-electrode-type calculations varied in proportion to the capacitance obtained from the 

intracellular-electrode-type ones. These results were consistent with conventional lumped and 

distributed circuit models for the T-tubules. This confirms that the interfacial polarization in the 

T-tubules in a single muscle cell is not sufficient to explain the experimental results in which the 

intensity of the α-relaxation in the extracellular-electrode-type experiments exceeded the intensity 

expected from the results of the intracellular-electrode-type experiments. The high-frequency 

relaxation term that was assigned to the β-relaxation was also affected by the T-tubule structure in the 

calculations relevant to the extracellular-electrode-type experiments. 
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1. Introduction 

     Dielectric spectra of cells and tissues have been of interest in physiology, biophysics and 

bioengineering because those serve as fundamentals not only for understanding their electrical 

phenomena including effects of electromagnetic fields, but also for developing electromagnetic 

techniques for analyzing cells, tissues and bodies [1-9]. According to Schwan's survey [1], the 

dielectric spectra have three types of dielectric relaxation that appear in different frequency regions of 

the applied ac electric fields: α-relaxation below a few kHz, β-relaxation between 1 kHz and 1 GHz, 

and γ-relaxation above 1 GHz. The γ-relaxation is due to orientation of water molecules. The 

β-relaxation is attributed to interfacial polarization caused by accumulation of charges at boundaries 

between the membranes and the aqueous phases. For the α-relaxation, several possible polarization 

mechanisms have been proposed, which are due to (1) displacement of counterions surrounding 

charged membranes [1, 5], (2) interfacial polarization related to peculiar cell structures such as the 

T-tubules in skeletal muscles [10, 11], gap junctions between cells [12, 13], and small holes in the cell 

membrane [14], and (3) gating of ion permeation in excitable membranes [15, 16]. As an extended 

view, Dissado reexamined the mechanism of the three relaxation terms based on fractal structures in 

tissues [17]. At this stage, the mechanism of the α-relaxation has not been made clear because of 

difficulties in measurements in the low frequency region chiefly due to interference from electrode 

polarization [18, 19], and the structural complexities of cells and tissues. 

     The electrical properties of skeletal muscles have been investigated by the extracellular 

electrode (EE) [1-10] and the intracellular electrode (IE) [2, 4, 11, 20, 21] methods. The EE method, 

which is commonly used for dielectric spectroscopy, measures the whole cells between electrodes, 

whereas, in the IE method, one of electrodes is placed inside of the cell to make measurements across 

the cell membrane. In 1954, Schwan [22] reported the dielectric spectra of skeletal muscles measured 

by the EE method between 20 Hz to 200 kHz, and showed that these included two relaxation terms 

located near 100 Hz (α-relaxation) and above 100 kHz (β-relaxation). In his review paper in 1957 [1], 

he analyzed the α-relaxation following O'Konski's theory [23] and, from analogy with the α-relaxation 

found for lysed erythrocytes and polystyrene spheres, concluded that the α-relaxation was attributed to 
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the counterion polarization. The β-relaxation was reasonably explained by the interfacial polarization 

related to the membrane at the outer surface of the muscle cells (the sarcolemma). Subsequently in 

1964, Fatt and Falk carried out the measurements by the EE [10] and by the IE [11] methods and 

found two relaxation terms in both of the experiments. Based on these results, they proposed that these 

relaxation terms were both caused by the interfacial polarization in which the effects of the tubular 

system in the skeletal muscles were represented by circuits consisting of capacitors and resistors 

connected in series. The simplest circuit is the lumped circuit model (LCM) for the T-tubules [20, 21]. 

This is a serial combination of a capacitor due to the whole T-tubule membrane and a resistor 

representing the access resistance. A parallel combination of the LCM for the T-tubules and a capacitor 

corresponding to the sarcolemma provides the apparent electrical properties of the cell membrane. 

According to this model, the α- and the β-relaxation are attributable to the T-tubules and the 

sarcolemma, respectively.     

     Arguments about the mechanism of the α-relaxation of the skeletal muscles arise from the 

disagreement about its intensity between the results of the IE-type experiments and those of the 

EE-type ones. According to the discussion by Foster and Schwan [5], the relaxation frequency of the 

α-relaxation in the EE-type experiments agrees with that for the apparent capacitance of the cell 

membrane derived from the IE-type experiments, on the other hand, the intensity of the α-relaxation is 

much larger than that expected from the increase in the apparent capacitance of the cell membrane due 

to the T-tubules. Because of the disagreement about the relaxation intensity, they argued that, in 

addition to the interfacial polarization in the T-tubules, the counterion polarization mechanism is 

required to explain the behavior of the α-relaxation. However, validity of this discussion should be 

examined because it is based on conventional theoretical formulas in which the morphological effects 

are considered implicitly. It is accepted to be reasonable to derive theoretical formulas for the 

interfacial polarization in cell suspensions by solving Laplace's equation by taking account of the 

morphology and electrical properties of cells [24-27]. In the conventional theoretical formulas for the 

skeletal muscles, however, a cell was assumed to be covered with a smooth membrane whose 

electrical properties were determined from the LCM for T-tubules to incorporate their contributions 
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[10, 28]. This approach is a kind of expedients caused by the complex cell morphology for which 

Laplace's equation cannot be solved analytically. In recent theoretical studies of composites and cell 

suspensions [29, 30], Laplace's equation was solved numerically to show the morphological effects 

explicitly. This approach provided information that was not obtained with the conventional analytical 

methods. The morphology of the skeletal muscles subjected to the EE-type experiments is 

characterized by the network of the T-tubules in each of the cells and the anisotropic structure of the 

tissue consisting of bundles of the elongated cells. To derive the conclusion of the mechanism of the 

α-relaxation in the EE-type experiments, it is necessary to examine the validity of the conventional 

analytical formulas from the comparison with the results of numerical calculations in which the 

morphology of the skeletal muscles is represented explicitly.  

     As the first stage of investigations based on the numerical calculations for the skeletal muscles, 

we examined whether the interfacial polarization in the T-tubules causes the same effects in the EE- 

and the IE-type experiments, using two-dimensional models in which the T-tubules were represented 

by simplified local deformation of the cell membrane. The use of the two-dimensional models in the 

calculations relevant to the EE-type experiments is the same approach as that adopted by Fatt [10], and 

corresponds to experimental conditions in which the external electric fields are directed perpendicular 

to the muscle fibers. Electrical interaction between the cells due to the bundle structure was omitted. In 

addition to the comparison between the EE- and the IE-type calculations, validity of the conventional 

equivalent electric circuit models for the T-tubules was examined.  

 

 

2. Models and methods of calculations 

2.1. Cell models 

     From the three-dimensional viewpoint, the muscle fiber and the T-tubules were modeled, 

respectively, by a cylinder and trenches on the side of the cylinder, where the external electric fields 

were directed perpendicular to the cylinder. Figures 1 and 2 show the two-dimensional view of the 

models. The muscle fiber is represented as a circular inclusion 10 μm in radius, as, surrounded by a 

thin shell 10 nm in thickness, Ts. Although the value of as (as = 10 μm) is somewhat smaller than those 
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used in previous theoretical simulations [28, 31], it is still realistic. The Ts value (Ts = 10 nm) was 

chosen for a practical reason to simplify the calculations, and is larger than the thickness of the 

hydrophobic region in cell membranes ranging from 4 to 5 nm [2-4]. The T-tubules are arranged 

symmetrically. The number of the tubules, NT, is two in models A2 and B2, four in models A4, B4 and 

C4, and eight in model A8. Width of the tubules, WT, is made uniform. As shown in Fig. 2, the tubules 

are straight invaginations of depth DT directed toward the center of the circle in A-type models (A2, 

A4 and A8). In B-type models (B2 and B4), each tubule is divided into two branches of azimuth θT. 

Effects of the tubule structure on the dielectric spectra were examined by changing NT, WT, DT, and θT 

systematically, as shown in Table 1. The values of WT from 50 to 200 nm are of the same order as the 

T-tubule diameter [32]. Model C4 relevant to a detubuleted muscle fiber [4, 21] consists of the straight 

tubules (NT = 4, WT = 50 nm, DT = 8 μm) that are disconnected from the surface membrane by a space 

of 1 μm. Model S without tubules was used for control calculations. 

 

=== Fig. 1 === 

=== Fig. 2 === 

=== Table 1 === 

 

     We adopted the following values for relative permittivity ε and conductivity κ of the inner 

(subscript i), outer (a), and shell (s) phases: εi = εa = 80, κi = κa = 1 S/m, εs = 2, and κs = 0. Effects of 

proteins and DNA on these electrical parameters [3-5] were omitted for simplicity. The values for εi 

and εa (εi = εa = 80), and that for εs (εs = 2) are compared to the permittivity of water and that of 

insulating non-polar materials, respectively [33]. The values for κi and κa are the same order as the 

conductivity of physiological saline solutions [34]. The tubular lumen was assumed to be filled with 

the external medium, to simplify the problems.  

     The assumptions about the parameter values adopted to simplify the calculations may provide 

some difficulties in comparing between the present theoretical study and previous experimental studies, 

however, are allowed in the comparison between the two types of calculations, which mimic the EE- 
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and the IE-type experiments. 

 

2.2. Calculation of dielectric spectra  

     Dielectric spectra relevant to the EE-type experiments were calculated with a method similar to 

that used for three-dimensional models in our previous papers [35-38]. The procedure of the 

calculation consists of three steps. First, the electric potential φEE induced at r(x, y) around the model 

by an uniform external ac field EEE0(EEE0x, EEE0y) was evaluated by solving Laplace's equation using 

BEM with the Green function and the cubic shape functions for two-dimensional systems [39, 40]. 

Second, the complex polarization factors BEEx and BBEEy for the model in x and y directions were 

evaluated by analyzing the resulting φ EE using the relation 

 

( )( EEyEE0yEExEE0x22EE π2
ByEBxE

yx
S

+
+

=φ ), (1) 

 

where S denotes the area of the model approximated as S = πas
2. Third, the complex permittivity for 

the two-dimensional suspension of the model was calculated from the Wagner-type mixture equations 

[26] that were derived assuming no interaction between the models. If the models are randomly 

oriented, the complex permittivity of the suspension εEE* is represented as 

  

 (εEE* − εa*)/(εEE* + εa*) = P(BEEx + BEEy)/4,      (2) 

 

where εa* is the complex permittivity of the outer phase, and P is the area fraction of the models in the 

two-dimensional suspension. The complex permittivity is defined as ε* = ε + κ/(iωε0) with ε, κ, 

imaginary unit i, angular frequency ω represented as ω = 2πf using frequency f of the external ac 

electric field, and the permittivity of vacuum ε0. When P << 1, Eq. (2) is simplified, and, for 

convenience, is represented using new quantity εEED* that is an increment in the complex permittivity 

of the suspension due to the models in the randomly oriented suspensions normalized by P, in the 
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following way:  

 

εEED* ≡ (εEE* − εa*)/P = εEEDx* + εEEDy*, (3) 

εEEDx* = εa*ΒEEx/2,  (4) 

εEEDy* = εa*ΒEEy/2,  (5) 

 

where εEEDx* and εEEDy* correspond to the normalized increments in the complex permittivity by the 

models oriented along x- and y-axis. The εEED* can be expressed as εEED* = εEED' − iεEED" + 

κEED
L/(iωε0), where εEED' is the real part of εEED*. The imaginary part of εEED* includes two terms, 

εEED" and κEED
L/(ωε0), where κEED

L is the dc conductivity.  

     In the experiments with the IE method, the electrodes are placed inside and outside of the cell, 

and are connected to a generator and to the ground, respectively. To simulate this situation, we placed 

two concentric circles of radii aIEH and aIEG centered at (0, 0) representing the electrode in the cell and 

the ground, respectively. The values of aIEH and aIEG were made to be 1 μm and 20 μm, respectively, so 

that the shell phase of the models was placed between these circles. Under the boundary conditions 

that the potential VIEH at the inner circle and that VIEG at the outer one are fixed to be 1 VPP and 0 VPP, 

respectively, Laplace's equation was solved to obtain the normal components of the electric fields at 

the surfaces of the circles with conventional BEM procedures [39, 40]. Using εi* and the normal 

components of the electric fields at the inner circle, value of IIEH, which is electric current per unit 

length along z-axis through the internal electrode, was obtained. Finally, complex capacitance CIE* for 

the model of unit length along z-axis was evaluated from CIE* = IIEH/[iω(VIEH − VIEG)], and was 

represented using capacitance CIE and conductance GIE given by a relation CIE* = CIE + GIE /(iω). 

     The calculations for model S were carried out with analytical methods using the cylindrical 

coordinate system [2, 41]. The ΒEEx and ΒEEy in the EE-type calculations for model S are represented 

as  
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**
**

2
aq

aq
EEyEEx εε

εε
+

−
== BB , (6) 

( ) ( )
( ) ( ) *1*1

*1*1**
si

si
sq εε

εεεε
vv
vv

++−
−++

= , (7) 

v = (1 − Ts/as)2,   (8) 

 

where εq* and v are, respectively, the equivalent complex permittivity and the area fraction of inner 

phase within shelled circle for model S. Fatt represented the impedance the two-dimensional 

suspensions with circuit models [10]; one of these was a parallel combination of the outer medium and 

a composite circuit that was a series combination of the outer medium and an equivalent element for 

the cell. Using a similar circuit model, εEED* for model S given by Eqs. (3)-(6) can be represented as 

 

*
*/1*/1

2
2

*
a

qa

EED ε
εε

ε
−

+
= . (9) 

 

Since Eq. (7) can be modified into 1/εq* = Ts /(asεs) + iωε0/κa under the conditions εi = εa, κi = κa, κs = 

0, and T s/a s << 1 which are relevant to the present study, Eq. (9) can be represented by the following 

approximate relation: 

 

( ) 0

a

sssa0

EED

2//
1

2
*

ωε
κ

εκωε
ε

iaTi
−

+
= . (10) 

 

This relation shows that model S exhibits one relaxation term attributable to the β-relaxation due to 

[iωε0/κa + Ts /(2asεs)]−1 in the right side of Eq. (10). In the case of the IE-type,  

 

( )[ ] ( )[ ] ( )
⎭
⎬
⎫

⎩
⎨
⎧

+
+

+
+

=
*
/log

*
/log

*
/log

2
1

*
1

i

IEHse

s

ssse

a

ssIEGe

0IE εεεπε
aaaTaTaa

C
. (11) 
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Similarly to the case of εEED*, this relation can be modified into the following approximate form 

representing the β-relaxation: 

 

( )
⎥
⎦

⎤
⎢
⎣

⎡
+=

ss

s

a

IEHIEGe0

0IE

/log
2

1
*

1
εκ

ωε
πε a

Taai
C

. (12) 

 

2.3. Equivalent circuit models for T-tubules  

     As an alternative approach to evaluate the effects of the T-tubules, the calculations were carried 

out using Eqs. (3)-(8) for model S, where εs* was replaced by the equivalent complex permittivity 

*sε  of the shell phase including the effects of the T-tubules represented by equivalent circuit models 

shown in Fig. 3. The *sε  can be represented by ( )0ssTTss π2/* εωεε aiTYN+= , where YT is the 

admittance of each T-tubule per unit length along z-axis. The equivalent relative permittivity sε  and 

conductivity sκ of the shell phase are defined as )/(* 0sss ωεκεε i+= , and are represented by the 

imaginary YT" and the real YT' parts of YT as follows:  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

ωεε
εε "

π2
1 TT

0ss

s
ss

YN
a
T

, (13) 

'
π2 TT

s

s
s YN

a
T

=κ . (14) 

 

=== Fig. 3 === 

 

     In the case of the limped-circuit model (LCM, Fig. 3(A)), where the capacitance CT
LCM of the 

T-tubule membrane and the access resistance RA
LCM are connected in series, YT becomes 1/YT = RA

LCM 

+ 1/(iωCT
LCM). Hence,  

YT' = (ωCT
LCM)2RA

LCM / [1 + (ωτT
LCM)2],  (15)   
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YT" = ωCT
LCM / [1 + (ωτT

LCM)2],  (16) 

 

where τT
LCM is the relaxation time for the T-tubule represented as  

 

τT
LCM = 1/(2πf T

LCM) = CT
LCMRA

LCM.  (17) 

 

The f T
LCM in this relation is the relaxation frequency for the T-tubule. The CT

LCM corresponds to the 

membrane of the T-tubule, and is considered to be proportional to the tubule membrane area. Using the 

length of the each T-tubule in xy-plane, LTC, which is given by LTC = DT in A-type models and by LTC = 

DT + 2(as − DT)θT in B-type ones, CT
LCM is represented by  

 

CT
LCM = 2LTCε0εs/T s.  (18) 

 

     For the distributed-circuit model (DCM, Fig. 3(B)), we can derive formulas for YT following the 

transmission line theory [2, 4, 41] as described briefly in Appendix A. In the derivation, we assumed 

that the voltage and the current waves were perfectly reflected at the bottom of the tubules. In the case 

of the A-type models with straight T-tubules, YT is represented as 

 

( )
( )T

DCM
T

DCM
DCM

0T 2exp1
2exp1

D
DYY

γ
γ

−+
−−

=  , (19)  

 

where Y0
DCM is the reciprocal of the characteristic impedance Z0

DCM, and γ DCM is the propagation 

constant. The Y0
DCM and γ DCM are dependent on the specific capacitance cT

DCM of the T-tubule 

membrane and the specific resistance rL
DCM of the lumen per unit length of the T-tubules as follows: 

 

(γDCM)2 = iωcT
DCMrL

DCM, (20) 

(1/Y0
DCM)2 = (Z0

DCM)2 = rL
DCM/(iωcT

DCM).   (21) 
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with 

cT
DCM = 2ε0εs/T s, (22)  

rL
DCM = 1/(WTκa) . (23) 

 

In the case of the B-type models with branched tubules,  

 

( ) ( ) ( )[ ]
( ) ( ) ( )[ ]TBT

DCM
TB

DCM
T

DCM
TBT

DCM
TB

DCM
T

DCM
DCM

0T 2exp32exp2exp3
2exp32exp2exp3

LDLD
LDLDYY

+−+−−−−
+−−−−−+

=
γγγ
γγγ ,  (24) 

 

where LTB is the length of the each branch given by LTB = (as − DT)θT. Equation (24) is reduced to Eq. 

(19) under the condition LTB = 0 relevant to the A-type models.   

     From Eqs. (13)-(24), we can obtain the low-frequency limits of sε  and sκ  for both the LCM 

and DCM as 

( )[ sTCTs

L

s π/1 aLN+= εε ], (25) 

0
L

s =κ . (26) 

 

3. Results and discussion  

3.1. Comparison between the EE- and the IE-type calculations 

     Figure 5 shows results of the EE- and the IE-type calculations for models S, C4, and A4-0580 

that is the A-type model characterized by the following parameter values: NT = 4, WT = 50 nm, and DT 

= 8 μm. In both types of the calculations, the dielectric spectrum for model A4-0580 includes two 

relaxation terms located around 100 kHz and 3 MHz. The high-frequency relaxation can be assigned 

to the β-relaxation due to the sarcolemma, because it coincides mostly with the relaxation exhibited by 

model S, in which the β-relaxation is expected from the approximate relations Eqs. (10) and (12). The 

low-frequency relaxation was affected by the structure of the T-tubules, as will be described in the 

following parts of this paper. Hence, this is attributable to the interfacial polarization in the T-tubules, 
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and is assigned to the α-relaxation. These assignments are consistent with those adopted by Fatt and 

Falk [10, 11]. Only the β-relaxation is found in the dielectric spectrum for model C4. This agrees with 

the results of the IE-type experiments for detubulated muscle fibers in which the connections between 

the sarcolemma and the T-tubules were disrupted [4, 21]. 

=== Fig. 4 === 

 

     The two-step relaxation similar to that found in the dielectric spectra for model A4-0580 shown 

in Fig. 4 was provided by all the models examined in the present study, irrespective of the branching 

structure of the T-tubules in the B-type models. For further analyses of the effects of the T-tubules on 

the dielectric spectra, the α- and the β-relaxation were characterized by assuming the Cole-Cole type 

relaxation [42] as below: 

 

( ) ( )
H

EED
EEβ

H
EED

M
EED

EEα

M
EED

L
EED

0

L
EED

EED EEβEEα 11
* ε

ωτ
εε

ωτ
εε

ωε
κε +

+
−

+
+

−
+= mm iii

, (27) 

( ) ( )
H

IE
IEβ

H
IE

M
IE

IEα

M
IE

L
IE

IE IEβIEα 11
* C

i
CC

i
CCC mm +

+
−

+
+

−
=

ωτωτ
, (28) 

 

where m is the Cole-Cole parameter, the subscripts α and β refer to the α- and the β-relaxation, and 

the superscripts L, M, and H refer to the values at the low-frequency limit, between the α- and the 

β-relaxation, and at the high-frequency limit, respectively. The relaxation times τEEα, τEEβ, τIEα, and τIEβ 

are, respectively, related to the relaxation frequencies fEEα, fEEβ, fIEα, and fIEβ by relations of the 

following form: τ = 1/(2πf0), where τ and f0 are the relaxation time and the relaxation frequency, 

respectively.  

     To compare the behavior of the α-relaxation obtained from the EE-type calculations with that 

obtained from the IE-type ones, fEEα is plotted against fIEα in Fig. 5, and εEED
L is plotted against CIE

 L in 

Fig. 6. As seen from Fig. 5, the relation between fEEα and fIEα can be represented as fEEα = fIEα. Figure 6 

shows that εEED
L varies in proportion to CIE

 L.  
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=== Fig. 5 === 

=== Fig. 6 === 

 

3.2. Comparisons between BEM and circuit model calculations 

     In addition to the numerical calculations with BEM, the calculations were carried out with the 

analytical relations for model S, in which εs* was replaced by its equivalent quantity *sε , which is 

given by a relation )/(* 0sss ωεκεε i+= , and Eqs. (13) and (14). The YT' and YT" in Eqs. (13) and 

(14) were derived from the LCM or the DCM for the T-tubules described in sec. 2.3. 

     According to the approximate relations, Eqs. (10) and (12), for model S, εEED' and CIE for this 

model at frequencies much lower than the β-relaxation are represented as εEED' = 4asεs/Ts and CIE = 

2πε0(asεs/Ts), respectively. From these relations and Eq. (25) that is valid in both the LCM and the 

DCM, εEED
L and CIE

L are, respectively, represented by the relations s
L

ss
L

EED /4 Ta εε =  and 

( )s
L

ss0
L

IE /π2 TaC εε= . Hence, the relation between εEED
L and CIE

L is expected to be represented as 

εEED
L/CIE

L = 2/(πε0). This relation is shown in Fig. 6 by a solid line, which agrees with the plots 

obtained from the BEM calculations. This result suggests the validity of the circuit models in 

explaining the behavior of the α-relaxation at the low-frequency limit.      

     Calculations of εEED* and CIE* with the DCM were carried out using Eqs. (3)-(8), (13), and (14), 

where YT was evaluated from Eq. (19) in the case of the A-type models, and from Eq. (24) in the case 

of the B-type ones. Frequency dependence of εEED' and that of CIE for model A4-0580 obtained with 

DCM following this procedure are shown in Fig. 4. It is seen from Fig. 4(A) that the DCM was 

successful in explaining the behavior of εEED* for model A4-0580 evaluated with BEM at frequencies 

around fEEα. However, the DCM provided a slight deviation from the results of the BEM calculations 

at frequencies around fEEβ; this is attributable to the T-tubules perpendicular to the external electric 

fields, as will be discussed in sec. 3.3. In the case of CIE* shown in Fig. 4(B), the DCM was successful 

in the whole frequency region examined in the present study. Similar results were obtained in the case 

of the B-type models with the branched T-tubules (data are not shown).  
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     In the calculations with the LCM, it is required to determine reasonable values of the access 

resistance RA
LCM of the T-tubules. As a trial, RA

LCM was represented as follows under the assumption 

that RA
LCM is attributed to the whole T-tubule in the A-type models, and to the part of the T-tubule 

between the mouth and the branch point in the B-type models:   

 

RA
LCM = DT/(WTκa ). (29) 

 

Using Eqs. (18) and (29), Eq. (17) can be rewritten as:        

 

fT
LCM = TsWTκa/(4πLTCDTεsε0).             (30) 

 

Figure 7 shows the relations between fEEα and fT
LCM. In the case of the A-type models, there was a 

linear relation between fEEα and fT
LCM represented as fEEα = 2.3 fT

LCM. This suggests that fEEα is 

essentially explained by the LCM with the morphological parameters of the T-tubule although RA is 

overestimated. The relation fEEα = 2.3 fT
LCM leads to a relation  

 

RA
LCM = DT/(WTκa )/2.3 = 0.43DT/(WTκa ).  (31) 

 

In the case of the B-type models, most of the data points are located near the solid line representing the 

relation fEEα = fT
LCM. This suggests that the RA

LCM for the branched T-tubules is attributable to the part 

of the T-tubules between the mouth and the branch point. Since fIEα = fEEα as shown in Fig. 5, the same 

relations for the A- and the B-type models are expected to be valid in the results of the IE-type 

calculations. The frequency dependence of εEED' and that of CIE for model A4-0580 obtained with the 

LCM are also shown in Fig. 4.  

=== Fig. 7 === 

 

3.3. Results of the EE-type calculations for models A2 and B2 
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     In the models with four or eight T-tubules (models A4, A8, B4 and C4), the components of εEED* 

along the x- and the y-axis are equal to each other, i.e., εEEDx*=εEEDy*. In addition to these models, we 

examined the case of εEEDx* ≠ εEEDy* using models with only two T-tubules along the x-axis (models 

A2 and B2). In this case, εEEDx* contained both the α- and the β-relaxation, whereas εEEDy* did only 

the β-relaxation. Table 2 shows the relaxation parameters specified in Eq. (27) for εEEDx* and εEEDy* of 

models A2-0595 (NT = 2, WT = 50 nm, and DT = 9.5 μm) and those of B2-238 (NT = 2, WT = 50 nm, DT 

= 9.5 μm, and θT = 3.8π/16). For comparison, this table includes the parameter values for model S 

without the T-tubules, and those for models A4-0595 and B4-238 that have four T-tubules of the same 

morphology as in A2-0595 and B2-238, respectively. The relaxation parameters related to the 

α-relaxation (εEED
L, ε EED

M, fEEα, and mEEα) suggest that the behavior of the α-relaxation in εEEDx* of 

models A2-0595 and B2-238 is the same as that in εEEDx* and εEEDy* (εEEDx*=εEEDy*) of models 

A4-0595 and B4-238. This indicates that the occurrence of the α-dispersion depends on the direction 

of the T-tubules, and that its relaxation intensity has the maximum when the T-tubules are connected to 

the surface at right angles to the external fields. In addition, values of the relaxation parameters for the 

β-relaxation (εEED
M, ε EED

H, fEEβ, and mEEβ) suggest that the T-tubules affect the β-relaxation, and that 

the effects are also dependent on the direction. The effects of the field direction on the β-relaxation are 

more complicated than those on the α-relaxation. For example, fEEβ, and mEEβ along the y-axis are 

smaller than those along the x-axis in the case of model A2-0595, whereas the opposite relations are 

found in model B2-238. In model A2-0595, the T-tubules are straight and are placed along the x-axis. 

On the other hand, the T-tubules in model B2-238 have long branches that are mostly directed along 

the y-axis. These indicate that the portions of the T-tubules perpendicular to the external fields cause 

the decreases in fEEβ and mEEβ.  

 

3.4. Comparison with experimental results 

     Figure 5 has shown that the relation fEEα = fIEα holds between the relaxation frequencies of the 

α-relaxation fEEα and fIEα obtained, respectively, from the EE- and the IE-type calculations. This result 

is consistent with the observations that the α-relaxation is found at frequencies near 100 Hz in both 
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types of the experiments [4, 5]. However, the values of fEEα and fIEα obtained in the present study are 

much larger than the observed values. In the EE-type experiments [1, 5], the relaxation frequencies of 

the α- and the β-relaxation are about 100 Hz and 300 kHz, respectively. As seen from Fig. 4(A), 

values of these relaxation frequencies obtained in the present study are estimated as follows: fEEα = 85 

kHz in the case of model A4-0580, and fEEβ = 4.4 MHz in model S. The discrepancy between the 

experimental and the theoretical values is attributable, in part, to the values of Ts (Ts = 10 nm) and εs 

(εs = 2) used in the present study. The membrane capacitance CM for the shell phase in the present 

study is evaluated as CM = ε0εs/Ts = 1.8·10−3 F/m2. This value is about 1/15 of the CM-values accepted 

for the cell membrane of the skeletal muscles [4, 5, 21]. This means that the values of εs/Ts in the real 

cells are about 15 times as large as that in the present study. According to Eqs. (10), (12), (20)-(22), 

effects of εs/Ts on the dielectric spectra can be represented by a term that includes the frequency as 

ωεs/Ts. This suggests that the increase in εs/Ts causes the same effects as the decrease in frequency. 

Hence, the following values are expected in the calculations using the realistic values of εs/Ts: fIEα = 

fEEα = 85 kHz/15 = 5.7 kHz for model A4-0580, and fEEβ = 4.4 MHz/15 = 290 kHz for model S. The 

corrected value of fEEβ (fEEβ = 290 kHz) is in good agreement with experimental results. On the other 

hand, the corrected value of fEEα (fEEα = 5.7 kHz) is still much larger than the experimental results. 

Since fEEα is significantly affected by the T-tubule structure, as shown in the present study, the 

unsuccessful estimation of fEEα is attributable to the oversimplified structure of the T-tubules examined 

in the present study.   

     Figure 6 has shown that εEED
L varies in proportion with CIE

 L with the proportional coefficient 

independent of the cell structure. This result is consistent with the conventional assumption about the 

relation between the results of the EE-type experiments and those of the IE-type ones, derived from 

the circuit models for the T-tubules. This suggests that the deformation of the cell membrane due to the 

T-tubule structure in a single skeletal muscle cell is not helpful in explaining the excess in the intensity 

of the α-relaxation observed in the EE-type experiments over that expected from the IE-type ones. 

Beside the counterion polarization proposed by Schwan [1, 5], modification of the interfacial 

polarization due to electrical interactions between the muscle fibers is expected to be one of the 
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candidates for the mechanism available to explain the disagreements between the observations and the 

theoretical results in the present study, and is needed to be examined in future studies. 

 

Symbols in the text   

Structure and electrical properties of models  

as  radius of circular region in models 

cT
DCM   specific capacitance of T-tubule membrane in distributed-circuit model 

(DCM) 

CM  membrane capacity for the shell phase, CM = ε0εs/Ts  

CT
LCM  capacitance of T-tubule membrane in limped-circuit model (LCM) 

dT space between shell phase and T-tubule in model C4  

DT depth of T-tubule toward the circle center  

f frequency of external field and applied voltage   

f T
LCM relaxation frequency for T-tubule in LCM 

i imaginary unit  

LTC length of T-tubule in xy-plane, LTC = DT + 2(as − DT)θT

LTB  length of each branch of T-tubule, LTB = (as − DT)θT  

rL
DCM  specific resistance of tubular lumen 

RA
LCM  access resistance of T-tubule in LCM 

S area of model 

Ts  thickness of shell phase  

WT width of T-tubule 

Y0
DCM  = 1/ Z0

DCM

YT admittance of T-tubule 

Z0
DCM characteristic impedance of T-tubule in DCM 

γ DCM  propagation constant of T-tubule in DCM 

ε0   permittivity of vacuum  
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εa, εi, and εs  relative permittivity of outer, inner, and shell phases  

εa*, εi*, and εs*  complex permittivity of outer, inner, and shell phases  

sε  equivalent permittivity of shell phase 

*sε  equivalent complex permittivity of shell phase 

L
sε  low-frequency limit of sε  

κa, κi, and κs  conductivity of outer, inner, and shell phases  

sκ  equivalent conductivity of shell phase 

L
sκ  low-frequency limit of sκ  

θT azimuth of branch of T-tubule in models B2 and B4  

τT
LCM relaxation time for T-tubule in LCM 

ω  angular frequency; ω = 2πf  

 

Calculations relevant to extracellular electrode (EE) method 

BEEx and BBEEy complex polarization factors of model along x- and y-axis  

EEE0(EEE0x, EEE0y) external electric field 

fEEα and fEEβ relaxation frequencies of α- and β-relaxation  

mEEα and mEEβ Cole-Cole parameters of α- and β-relaxation  

P  area fraction of two-dimensional suspension of models 

r(x, y) position around the model where φEE is examined 

v area fraction of inner phase within shelled circle for model S   

εEE*  complex permittivity of two-dimensional suspension of models 

εEED' and εEED"   real part of εEED* and imaginary part of εEED* except for contribution of κEED
L  

εEED
L, εEED

M and εEED
H   εEED' at low-frequency limit, between α- and β-relaxation, and at 

high-frequency limit  

εEED*  normalized increment in complex permittivity due to models in suspension 
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εEEDx* and εEEDy* εEED* due to oriented models along x- and y-axis   

εq*  equivalent complex permittivity of shelled circle for model S   

κEED
L   dc conductivity in εEED*  

τEEα and τEEβ relaxation times of α- and β-relaxation  

φEE  induced potential at r(x, y)  

 

Calculations relevant to intracellular electrode (IE) method 

aIEH and aIEG  radius of circles corresponding to internal electrode and ground  

CIE and GIE  capacitance and conductance for model of unit length along z-axis 

CIE
 L, CIE

 M and CIE
 H   CIE at low-frequency limit, between α- and β-relaxation, and at 

high-frequency limit  

CIE*  complex capacitance for model of unit length along z-axis 

fIEα and fIEβ relaxation frequencies of α- and β-relaxation  

IIEH  electric current per unit length along z-axis through internal electrode 

mIEα and mIEβ Cole-Cole parameters of α- and β-relaxation  

VIEH and VIEG  external voltage at circles corresponding to internal electrode and ground 

 

 

Appendix A. Admittance of T-tubules derived from the distributed circuit model  

     According to the transmission line theory, the propagation of the voltage and the current waves 

in the T-tubules in the A-type models is represented by the following relations:  

 

VT(l) = VFexp(−γDCMl) + VBexp(γ l), (A1) B

DCM

IT(l) = Y0
DCM[VFexp(−γDCMl) − VBexp(γ l)], (A2) B

DCM

 

where γDCM and Y0
DCM are represented by Eqs. (20) and (21) in the text, respectively, and l is the 

distance from the cell surface. In the calculations of YT, we assumed that the waves are perfectly 
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reflected at the bottom of the tubules, namely,  

 

VT(DT) = 0. (A3)  

 

Since the current that flows through each of the T-tubules causes the difference between IT(0) and 

IT(DT), the YT for the T-tubules is given by the following relation using the difference in IT and the 

voltage difference across the T-tubule membrane at the cell surface ,VT(0): 

 

YT = [IT(0) − IT(DT)] / VT(0). (A4) 

 

From Eqs. (A1)-(A4), we obtain Eq. (19). 

     In the case of the B-type, the voltage and the current waves from the cell surface to the branch 

point (0 ≤ l ≤ DT), VT1 and IT1, and those in the branches (DT ≤ l ≤ DT +LTB), VT2 and IT2, are 

represented as  

 

VT1(l) = VF1exp(−γDCMl) + VB1exp(γDCMl), (A5) 

IT1(l) = Y0
DCM [VF1exp(−γDCMl) − VB1exp(γDCMl)], (A6) 

VT2(l) = VF2exp(−γDCMl) + VB2exp(γDCMl), (A7) 

IT2(l) = Y0
DCM [VF2exp(−γDCMl) − VB2exp(γDCMl)]. (A8) 

 

The following conditions are required for the continuity of the voltage and the current at the branch 

point (l = DT): 

 

VT1(DT) = VT2(DT) , (A9) 

IT1(DT) = 2IT2(DT) . (A10) 

 

Similarly to Eq. (A3), at the bottom of the T-tubules,  
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VT2(DT +LTB) = 0. (A11) 

 

The YT for the B-type models is given as 

 

YT = {[IT1(0) − IT1(DT)] + 2[IT2(DT) − IT2(DT +LTB)]} / VT1(0) 

= [IT1(0) − 2IT2(DT +LTB)] / VT1(0). (A12) 

 

Using Eqs. (A5)-(A11), Eq. (A12) is modified into Eq. (24) in the text. 
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Table 1  

Vales of morphological parameters for the T-tubules to examine effects of tubular structure on 

dielectric spectra    

------------------------------------------------------------------------------------------ 

parameters NT WT/nm DT/μm θT/(π/16)   

changed  

------------------------------------------------------------------------------------------ 

Models A2, A4, A8 (straight T-tubules) 

NT  4, 8 50 8 0  

NT 2, 4 50 9.5*) 0 

WT 4 50, 100, 200 8 0  

DT 4 50 4, 6, 8 0 

DT 8 50 4, 6, 8 0  

 

Models B2, B4 (branched T-tubules) 

NT  2, 4 50 2 3.8   

DT 4 50 1, 2, 3 3.8   

θT 4 50 2 1, 2, 3, 3.8  

------------------------------------------------------------------------------------------ 

*) used only in EE-type calculations 
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Table 2  

Effects of the direction k of the external electric field on the relaxation parameters for εEEDk* for 

models A2-0595 and A4-0595 (DT = 9.5 μm, WT = 50 nm), and B2-238 and B4-238 (DT = 2 μm, WT = 

50 nm, θT = 3.8π/16), parameter values for model S being shown for comparison   

------------------------------------------------------------------------------------------------------------------------- 

Model k −κEED
L  εEED

L εEED
M −εEED

H fEEα  fEEβ  mEEα mEEβ

  −−−− −−− −−−  −−− −−−  
   S/m 104 103   kHz  MHz 
------------------------------------------------------------------------------------------------------------------------- 

A4-0595 x, y 1.00 0.87 4.87 3.24 60 1.70 1.00 0.78 

A2-0595 x 1.00 0.87 4.44 1.55 66 3.49 0.97 0.94 

A2-0595 y 1.00 - 3.20 3.26 - 2.70 - 0.86 

 

B4-238 x, y 1.00 1.10 4.53 3.98 58 1.68 1.00 0.79 

B2-238 x 1.00 1.10 4.38 3.31 59 2.43 1.00 0.87 

B2-238 y 1.00 - 3.20 2.19 - 3.88 - 0.94 

 

S  x, y 1.00 - 3.92 1.57 - 4.41 - 1.00 

------------------------------------------------------------------------------------------------------------------------- 
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Figure Captions 

Fig. 1. Two-dimensional models for the cross section of a skeletal muscle fiber. Circles in bold lines 

are shells corresponding to sarcolemma. Bold lines in the circles represent the invaginations of 

the shell representing the T-tubules. 

Fig. 2. Models for the structure of the T-tubules. 

Fig. 3. Equivalent circuit models for the T-tubules. (A) Lumped circuit model (LCM): CT
LCM, the 

capacitance of the T-tubule membrane; RA
LCM, the access resistance. (B) Distributed circuit 

model (DCM): cT
DCM, the capacitance of the T-tubule membrane; rL

DCM, the resistance of the 

T-tubule lumen per unit length. 

Fig. 4. Dielectric spectra for models S, C4, and A4-0580 (A-type in which NT = 4, WT = 50 nm, and DT 

= 8 μm) obtained from the calculations relevant to experiments with (A) extracellular electrode 

(EE) method and (B) intracellular electrode (EE) method. Open (○) and filled (●) circles are 

data points for models A4-0580 and C4, respectively, calculated with BEM. Three solid lines 

refer to the curves obtained analytically for model S, and for model A4-0580 with the circuit 

models, LCM and DCM, as indicated in the figure.  

Fig. 5. Relation between the relaxation frequencies of the α-relaxation obtained from the IE-type BEM 

calculations, fIEα, and those obtained from the EE-type ones, fEEα. The solid line represents the 

relation fEEα / fIEα = 1.     

Fig. 6. Relation between the low-frequency limit CIE
L obtained from the IE-type BEM calculations and 

that εEED
L obtained from the EE-type ones. The solid line represents the relation εEED

L /CIE
L = 

2/(πε0). 

Fig. 7. The fEEα compared with the relaxation frequency fT
LCM for the T-tubule obtained from the LCM. 

The fT
LCM values were calculated assuming that the access resistance RA

LCM was attributed to 

the whole tubule in A-type models, and to the tubule between the mouth and the branch point 

in B-type models.     
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