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Abstract 

 

Nuclear transfer ES (ntES) cells are established from cloned blastocysts generated by somatic 

cell nuclear transfer and are expected to be an important resource for regenerative medicine. 

However, cloned mammals, generated by similar methods, show various abnormalities, which 

suggest disordered gene regulation. Random X-chromosome inactivation (XCI) has been 

observed to take place in cloned female mouse embryos, but XCI does not necessarily occur 

according to Xce strength, a genetic element that determines the likelihood of each 

X-chromosome to be inactivated. This observation suggests incomplete reprogramming of 

epigenetic marks related to XCI. Here, we investigated XCI in ntES cell lines, which were 

established using differentiated embryoid bodies that originated from a female mouse ES cell 

line. We examined Xist RNA localization, histone modifications in the Xist locus, and XCI choice. 

We did not find substantial differences between the ntES lines and their parental ES line. This 

suggests that the Xist locus and the epigenetic marks involved in XCI are reprogrammed by 

nuclear transfer and subsequent ntES cell establishment. In contrast to skewed XCI in cloned 

mice, our observations indicate that normal XCI choice takes place in ntES cells, which 

supports the goal of safe therapeutic cloning for clinical use. 
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Introduction 

 

Sex chromosome dosage compensation in mammals is achieved by inactivating either of 

the two female X-chromosomes in early embryogenesis. In this process, termed 

X-chromosome inactivation (XCI), the choice of which X-chromosome to keep active is 

random in embryos and in ES cells (random XCI) (Lyon, 1961; for review Heard and Disteche, 

2006), while the paternal X is always inactivated in extraembryonic tissues (imprinted XCI) 

(Takagi and Sasaki, 1975). XCI is triggered upon differentiation by upregulation of X-linked 

non-coding Xist (X-inactive specific transcript) (Wutz and Jaenisch, 2000), whereas the X to 

remain active is protected by prolonged expression of Tsix, a transcript that is antisense to Xist 

and which represses Xist (Lee and Lu, 1999). Although it is random, the choice of which 

X-chromosome to inactivate (or to retain active) is biased by the X-linked genetic element 

named Xce (X controlling element). Hence, in hybrid embryos, XCI choice is not equal and the 

ratio of cells having either X rendered inactive is skewed according to the strain specific 

strength of Xce (Cattanach and Williams, 1972; Chadwick et al., 2006). For example, the XCI 

choice ratio in differentiated Mus musculus musculus (mus) 129 and Mus musculus castaneus 

(cast) hybrid cells is 85% and 15% respectively (Stavropoulos et al., 2001). Because XCI can 

be recapitulated in vitro by culturing female ES cells under differentiating conditions (Kay et al., 

1993), we took advantage of using a well-defined female ES cell line carrying 129 and cast Xs 

(Lee and Lu, 1999). 
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In cloned female mouse embryos, generated by somatic cell nuclear transfer (Wakayama et 

al., 1998), one of the two Xs is randomly selected and inactivated irrespective of their previous 

active-X (Xa) or inactive-X (Xi) status, while, in the placenta, the former Xi is always inactivated 

again (Eggan et al., 2000). This finding indicates that, in cloned mice, the epigenetic marks 

mediating XCI in a somatic nucleus are erased in the embryonic lineage, but are maintained in 
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the placenta. However, in fibroblasts derived from cloned female embryos that had been 

generated from mus x cast F1 mouse nuclei, the ratio of Xist RNA expression from each allele 

demonstrated more variation than that in fibroblasts derived from conventional mus x cast 

embryos (Eggan et al., 2000). Similarly, the ratio of XCI choice differed between individual 

cloned embryos that had been reconstructed with predetermined XiHPRT-/XaGFP nuclei (Eggan 

et al., 2000). These observations suggest incomplete or aberrant reprogramming of epigenetic 

marks related to XCI, because complete reprogramming would result in female clones that 

show identical XCI choice ratios, according to Xce strength. An aberrant pattern of XCI was 

also reported in bovine clones (Xue et al., 2002). Also, in individual adult cloned mice, XCI was 

skewed to various degrees (Senda et al., 2004) and XCI heterogeneity within cloned embryos 

(Nolen et al., 2005) has been reported. These observations strongly suggest insufficient XCI 

reprogramming in cloned embryos. 
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In order to estimate the reprogramming of XCI in cloned mice we examined two 

representative histone tail modifications, histone H3 dimethyl-lysine 4 (H3K4m2) and histone 

H3 trimethyl-lysine 27 (H3K27m3), in the Xist/Tsix locus of ntES (nuclear transfer ES) cell lines. 

NtES cells are established from cloned blastocysts, generated by somatic cell nuclear transfer, 

and they are considered to mimic the embryonic lineage of cells in cloned animals upon 

differentiation (Wakayama et al., 2001; Yang et al., 2007). The H3K4m2 and H3K27m3 

modifications in the Xist/Tsix locus are closely related to the regulation of XCI (Sun et al., 2006; 

Navarro et al., 2006), therefore, these modifications would be affected if XCI reprogramming is 

incomplete in ntES cells. We also examined Xist RNA localization and XCI choice in ntES cell 

lines. All the results suggested that the Xist locus and the epigenetic marks involved in XCI 

were properly reprogrammed in ntES cells. Our results argue for a difference in XCI 

reprogramming between ntES cells and cloned embryos, which is likely to be due to the 

prolonged time available for reprogramming that ntES cells have during their derivation. 
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Materials and Methods 

 

Cell culture and establishment of ntES clones 

The female mouse ES cell line, EL16.7, having heterogeneous Xs from strains 129 and cast 

was cultured, and embryoid bodies (EB) were prepared as described previously (Lee and Lu, 

1999; Shibata and Lee, 2004). Briefly, ES cells were trypsinized and we removed feeder cells 

by incubating them for 1h on gelatinized culture dishes. Non-adherent ES cells were then split 

among bacterial dishes. After 4 days of suspension culture in ES media without leukemia 

inhibitory factor (LIF), ES cells developed to form balloon-like EB structures. EB were then 

replated on gelatinized dishes and grown in adherent culture for further differentiation. Five 

ntES cell lines were independently established from day 20 EB, consisting of completely 

differentiated cells, as previously described (Wakayama et al., 2006). To investigate the 

possibility that we accidentally obtained ntES cells from a contaminating feeder nucleus or we 

mistakenly derived ES cells from a parthenogenetically grown embryo in which we failed to 

remove the nucleus, we assayed the polymorphism of BspM I restriction enzyme sites 

(Shibata and Lee, 2004) between cast and mus (feeders and recipient oocytes do not have 

cast sequence, data not shown). 
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Immunocytochemistry and fluorescence in situ hybridization (Immuno-FISH)  

EB differentiated for 3 to 4 days were trypsinized and prepared for immuno-FISH using 

cytospin equipment. Immuno-FISH was carried out as described (Plath et al., 2003). 

Anti-H3K27m3 antibody was purchased from Upstate (#07-449). 

 

Chromatin immunoprecipitation (ChIP) and real-time PCR 

ChIP and real-time PCR protocols have been described previously (Morshead et al., 2003; 
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Shibata et al., submitted). Taqman probes and PCR primers have been described elsewhere 

(Shibata et al., submitted), or are shown in Table 1. Allele-specific analyses of ChIP products 

were performed as described previously (Shibata and Lee, 2004) by replacing cDNA template 

for immunoprecipitated chromatin sample. The PCR primers, polymorphic restriction enzymes 

and Southern blot probes used are documented as follows: 5’-Tsix and Xist-GB2 (Stavropoulos 

et al., 2001), Xist-GB3 (Shibata and Lee, 2004), Xist-P, Tsix-OUT (Table 1). All probe and 

primer sequences match with both cast and 129 sequences. The Mus musculus castaneus 

sequence of the Xist promoter is available in DDBJ/Genbank (Accession #AB241552). 

Quantitative assays were repeated three times with independently prepared samples. 

Allele-specific Southern blot assays were repeated twice. 
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Allele-specific RT-PCR 

Allele-specific RT-PCR for Xist, Tsix, and Mecp2 was performed as previously described 

(Stavropoulos et al., 2001). Assays were repeated three times with independently prepared 

samples. 
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Results 

 

Derivation and morphology of ntES cell lines and XCI initiation  

We cultured the female mouse ES cell line EL16.7 for 20 days without LIF and feeders, and 

made them differentiate to form EB. At this time point we could not find any ES-like colonies, 

nor rapidly growing cells in the culture, indicating the absence of undifferentiated cells 

(discussed later). We then established five independent ntES lines from the differentiated cells 

by nuclear transfer. All of the ntES lines showed well-packed colony morphology that is 

indistinguishable from the undifferentiated parental ES cell line(Fig. 1A). Upon differentiation in 

vitro, by withdrawing LIF and feeders, ntES lines grew by spreading over the dishes and 

formed EB in a similar manner to the parental ES cell line (Fig. 1B). At an early stage of 

differentiation, around day 3 to 4, Xist RNA started to accumulate in the nuclei of a portion of 

cells of both the ntES lines and the parental ES line, and the Xist signal colocalized with 

H3K27m3 (Fig. 1C), as was reported in normal female embryos and in ES cells (Silva et al., 

2003; Plath et al., 2003). In a few ntES cells we found two Xist signals per nucleus (data not 

shown), but they were rare and thus suggested cells with abnormal karyotype rather than 

deregulated XCI (Nolen et al., 2005). Collectively, these findings indicate that ntES cells are 

very similar to conventional fertilization-derived ES cells in morphology, differentiation, and in 

XCI initiation. 
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Histone tail modifications in the Xist/Tsix locus in ntES lines 

We examined the undifferentiated ntES and parental ES lines for two representative histone 

tail modifications, H3K27m3 and H3K4m2 in the Xist/Tsix locus by ChIP. The position of PCR 

amplicons for ChIP analyses are shown in Fig. 2A. The total amount of each modification was 

examined by quantitative PCR, and the ratio of the modification between 129 and cast alleles 
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was determined by Southern blot analysis, following digestion of PCR product at polymorphic 

restriction enzyme sites. Although the 129/cast ratio of H3K27m3 modification showed 

substantial variation among the ntES lines (see allele-specific Southern blot in Fig. 2B), the 

total amount of H3K27m3 modification in ntES and in the parental ES lines was remarkably low 

across the Xist/Tsix locus, which contrasted with the higher level of modification in female 

mouse embryonic fibroblasts (MEF) (graphs in Fig. 2B). Due to the minimal level of H3K27m3 

modification in ntES and in ES cells, we speculate that the variation in H3K27m3 modification 

ratio does not signify a functional meaning because the absolute amount of modification in 

each allele is nearly zero when compared to that in female MEF. For H3K4m2 modification, 

both the total amount and the allelic ratio in ntES lines demonstrated only small differences 

compared to those of the parental ES line (Fig. 2C). These findings strongly suggest that the 

epigenetic marks and the chromatin structure of the Xist/Tsix locus are correctly 

reprogrammed in ntES cells. 
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Transcriptional activity of X-linked genes and XCI choice in ntES lines 

We subsequently used allele-specific RT-PCR to investigate whether X-linked Mecp2 and 

Tsix gene expression was properly reestablished in ntES cells. Mecp2 expression from 129 

and cast alleles was equal in all the ntES lines in the undifferentiated state, indicating that 

former Xi was completely reactivated during ntES cell derivation (Fig. 3A). Similarly, the ratios 

of Tsix expression from both alleles in all the ntES lines was very similar compared to that 

observed in the parental ES cell line. A slight skewing to the cast allele was observed, as has 

been previously reported (Stavropoulos et al., 2001) (Fig. 3B). Thus, this suggests that 

differentiated former Xa has also been reprogrammed to undifferentiated X. These 

observations were consistent with our ChIP results showing reprogramming of the chromatin 

structure at the Xist/Tsix locus. Finally, we tested whether the ntES lines exhibited the identical 
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XCI choice preference as the parental line, according to Xce strength. The ntES cells were 

cultured under differentiating conditions for 11 days, and Xist expression was analyzed. 

Because all the ntES lines should have been derived from single nuclei of differentiated EB, 

which carry an Xi of either 129 or cast origin, resultant XCI choice ratios in ntES lines would 

display a bipartite tendency if XCI reprogramming is affected by the previous active/inactive 

condition of each X allele. Incomplete or aberrant XCI reprogramming is likely to result in 

unusual skewing of XCI choice in ntES cells. However, this was not the case. The ratio of Xist 

expression from 129 and cast alleles was the same among all the ntES and the parental ES 

lines (Fig. 3C), indicating that the XCI choice was also restored in ntES lines. Therefore, these 

results demonstrate that reprogramming of XCI is properly achieved in ntES cells during their 

derivation. 
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Discussion 

 

All the observations in this report indicate that there are only small differences in XCI 

properties between ntES cells and conventional fertilization-derived ES cells. These results 

are inconsistent with previous reports showing irregular XCI choice in cloned mice and 

embryos (Eggan et al., 2000; Senda et al., 2004; Nolen et al., 2005). One possibility is that we 

have actually established ntES cells from nuclei of undifferentiated cells which were still 

present within the day 20 EB culture used for nuclear donation. However, we think this is 

unlikely because EB have been shown to reach the egg-cylinder embryo stage by day 8 of 

differentiation. After 11 days cystic structures resembling 10-day yolk sacs are apparent, and 

after 3 weeks most developmental processes, as well as growth, have ceased (Doetschman et 

al., 1985). Incidentally, more than 95% of cells in day 10.5 mouse embryos show strong Xist 

RNA signal, which is indicative of Xi (Sugimoto and Abe, 2007). Therefore, culture of EB for 20 

days should be enough to complete XCI processes and differentiation. One may still argue that 

ES-like undifferentiated cells are maintained by surrounding cells for prolonged periods, 

however, we did not find any rapidly growing cells in the day 20 EB culture, and vigorous 

self-renewal is one of the fundamental features of undifferentiated ES cells (Niwa, 2007). We 

do not exclude the possibility of the presence of cells resembling adult stem cells, represented 

by hematopoietic stem cells and neural stem cells, in the EB culture. Nevertheless, such adult 

stem cells are inefficient nuclear donors for generating cloned mice, as well as cloned 

blastocysts, when compared to other types of adult cell (Inoue et al., 2006; Mizutani et al., 

2006; Inoue et al., 2007). These reports not only indicate that adult stem cells are 

epigenetically distinct from pluripotent ES cells with reprogrammed epigenome, but also that 

there is less chance that ntES cells would be derived from nuclei of adult stem cells. 

Collectively, it is reasonable to consider that most, if not necessarily all, of the five ntES lines 
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described in this report originated from well-differentiated cells. 

We suggest ntES cells reestablish their epigenome to a greater degree than cells in cloned 

embryos because of the prolonged incubation time during which reprogramming can occur. In 

cloning, the transferred nucleus must complete its reprogramming within a few days, during 

the earliest embryonic development. By contrast, ntES cells are allowed to reprogram for more 

than 10 days during their derivation (Wakayama et al., 2006). In addition, cloned embryos 

might include cells with insufficient reprogramming, while such cells would grow slower than 

reestablished ES cells and be easily eliminated from the ntES cell culture. In fact, ntES cells 

were reported to be transcriptionally and functionally indistinguishable from fertilization-derived 

ES cells (Brambrink et al., 2006; Wakayama et al., 2006), whereas many genes showed 

abnormal expression in cloned mice (Humpherys et al., 2002; Kohda et al., 2005). Epigenetic 

reprogramming of X-chromosomes in female somatic nuclei transplanted into oocytes has 

been described by Bao et al (Bao et al., 2005). The transplanted nuclei immediately become 

subject to reprogramming, where biallelic Xist expression from both former Xi and Xa is 

observed from the 8-cell stage, but some epigenetic marks seem to persist, according to the 

localization of H3K27m3 and Eed. All the epigenetic marks are erased in the epiblast, but cells 

in the extra-embryonic lineage continue to develop with aberrant epigenetic marks, which is 

likely to cause placental dysfunction. Actually, placental overgrowth is common in cloned mice 

(Wakayama et al., 1999). The placental disorder may cause unusual XCI skewing in the 

embryo, even if reprogramming in the epiblast is complete.  
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In conclusion, we could not find significant aberration of XCI in female ntES cells, according 

to H3K27m3 and H3K4m2 modifications in the Xist/Tsix locus, reestablishment of X-linked 

Mecp2 and Tsix gene expression, Xist RNA localization and H3K27m3 distribution during the 

initiation of XCI, and XCI choice preference upon differentiation. Generally, X-chromosome 

aneuploidy in humans, known as Turner syndrome (45,X) and Klinefelter syndrome (47,XXY), 
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results in less severe phenotypes compared to autosomal aneuploidy disorders because 

X-chromosome dosage is compensated. Hence, it is speculated that XCI dysfunction would 

cause serious cellular and developmental aberrations. In fact a paternally derived 

Xist-deficient allele (Mararahrens et al., 1997) and a maternally derived Tsix-deficient allele 

(Lee, 2000; Sado et al., 2001) in female mice result in embryonic lethality due to the presence 

of two transcriptionally active Xs and the inactivation of both Xs in their extraembryonic tissues, 

respectively. A recent paper reporting the production of primate ntES cells (Byrne et al., 2007) 

increases the likelihood of being able to generate human ntES cells. However, the present rate 

of successful primate ntES cell establishment is low, but the refinement of culture conditions 

and the development of cloning techniques, such as trichostatin A treatment (Kishigami et al., 

2006), may increase the rate sufficiently to enable clinical application in humans. Our 

observations, presented here, that normal XCI takes place in female ntES cells, supports the 

goal of safe therapeutic cloning for clinical use. 
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Figure legends 

 

Fig. 1. Morphology and immuno-FISH in a representative ntES cell line and the parental 

female ES cell line. (A) Morphology of undifferentiated colonies and (B) EB differentiated for 11 

days. (C) Immuno-FISH for H3K27m3 (green) and Xist RNA (red) in day 3 EB. Right panels 

are images of ntES cells and left panels are those of parental ES cells. 
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Fig. 2. Quantitative and allele-specific ChIP. (A) Position of PCR amplicons. Upper open 

rectangles represent Xist exons and lower grey rectangles represent Tsix exons. (B) ChIP for 

H3K27m3. Graphs illustrate total amount of the modification and images below show 

representative allele-specific Southern blot results. Numbers under the lanes indicate the ratio 

(%) of the modification at the 129 allele per total. Error bars demonstrate SD. ND: not done. 

(C) ChIP for H3K4m2. 

 

Fig. 3. X-linked gene expression in ntES lines. (A) Allele-specific RT-PCR for Mecp2 from cells 

in undifferentiated condition. The graph illustrates percentage of Mecp2 mRNA expression 

from 129 allele per total and the image below shows a representative Southern blot result. 

Error bars demonstrate SD. (B) Allele-specific RT-PCR for Tsix from cells in undifferentiated 

condition. (C) Allele-specific RT-PCR for Xist in EB differentiated for 11 days. 
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Table 1. Primers and probes used in this study. 
 

 

*The refence is shown as the nucleotide position in the indicated Genbank sequence. N/A, not applicable 

Amplicon Application PCR primers Reference* Probe sequence Reference* Polymorphic restriction enzyme 

Xist-GB3 

 

 

Taqman PCR cta tac gtg gcg gtg caa ac 

aga ggc caa ggt gta agt aga cta g 

L04961.1@2021-2040

L04961.1@2105-2081 

ccactgaacaatacaaaggaatggaacgggctgagtttta L04961.1@2080-2041 N/A 

Tsix-OUT 

 

 

Allele-specific 

Southern blot 

cag gca taa gct act tac cat gtc 

gaa atg gtc ttc caa tgt gca gag 

AJ421479.1 @103610-103633 

AJ421479.1 @104198-104175 

gagactggatgcctgatctacctatagttgtggctccaac AJ421479.1 @103834-103873 Hha I 

ttt gca tag aca ggt gtg tga cct Xist-P 

 

 

Allele-specific 

Southern blot aag ccg ttg cac gcc ttt aac tga 

AJ421479.1 @106008-106031 

AJ421479.1 @106301-106278 

aatctttgtggccactcctcttctggtctctccgccttca AJ421479.1 @106228-106267 Tsp 509I 
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