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Abstract 
Purpose: Although an apparent diffusion coefficient (ADC) value is often 
used for differential diagnosis of tumours, it varies with scanning 
parameters. The present study was performed to investigate the influence of 
imaging parameters, i.e., b value, repetition time (TR) and echo time (TE), 
on ADC value. 
 
Methods: The phantoms were scanned using diffusion weighted imaging 
(DWI) with changing b values (b = 0 – 3000 s/mm2), TR and TE to 
determine the influence on ADC. Moreover, ADC of the brain in normal 
volunteers was determined with varying b values (b = 0 – 1000 s/mm2).  
 

Results: Diffusion decay curves were obtained by biexponential fitting in 
all phantoms. The points where fast and slow components of the 
biexponential decay crossed were called turning points. The b values of 
turning points that crossed from the biexponential curve were different in 
each phantom. The b values of turning points depended on ADC of fast 
diffusion component. When ADC is calculated using two b values of front 
and back for the turning point, the ADC value may be different. Therefore, 
it was necessary to perform calculations by b value until the turning point 
to obtain the ADC value of the fast component. In addition, b ≥ 100 was 
recommended to avoid the influence of perfusion by blood. Furthermore, 
the choice of long TR and short TE was effective for accurate measurement 
of ADC. 
 
Conclusion: It is important to determine the turning point for measuring 
ADC. 
 
 
Key words: turning points, apparent diffusion coefficient, biexponential 
decay 
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1. Introduction 
Diffusion weighted images (DWI) obtained on magnetic resonance imaging 
(MRI) are useful for diagnosis of acute cerebral stroke. DWI is often used 
for examination of the human body because an echo planar imaging 
sequence with parallel imaging yields excellent image quality (1 – 13). 
Body DWI may allow rough differential diagnosis of tumours and is useful 
in examinations to find tumours. The apparent diffusion coefficient (ADC) 
is used frequently in differential diagnosis. It has been reported that DWI 
has the potential to differentiate between benign and malignant tumours (14 
– 22). On the other hand, some investigators have reported that because 
ADC values of benign tumours and malignant tumours overlap, they are 
therefore not useful to differentiate between bulk benign and malignant 
tumours (23). In these cases, it is problematic that the ADC value varies 
with the scanning parameters. This leads to serious problems when ADC is 
used to distinguish a tumour. In addition, use of ADC value with an error 
may lead to wrong conclusions. Therefore, we reviewed how ADC value 
varies with scanning parameters, how to obtain ADC with high precision 
and points to which attention should be paid. 
The purpose of this study was to identify the scanning parameters to obtain 
ADC value measurement with a high degree of precision. 
 
 
2. Materials and methods 
2-1. Phantom study 
2-1-1. Influence of b value 
The phantoms were scanned with various b values (b = 0 – 3000 s/mm2) to 
determine the influence of the b value of the motion probing gradient 
(MPG) on signal intensity of DWI. Five types of phantom (agarose 1 g, 3 g, 
4 g and 5 g in 100 mL of hot water and 100 mL of liquid detergent in 
bottles) were fixed in a water tank. 
T1 and T2 values of each phantom are shown in Table 1. 
Scanning parameters were TR/TE with 8000/100 ms with spin-echo type 
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single-shot echo planar imaging (EPI), matrix size, 128 × 128; field of view, 
20 × 20 cm; number of signals averaged, 20; slice thickness, 6 mm. All 
studies were performed with a 1.5 T superconductive unit (Magnetom 
Symphony; Siemens, Erlangen, Germany) using an 8-ch head coil with 
sensitivity revision. The signal intensity value of each phantom image was 
measured with manually defined regions of interest 1 cm in diameter. ADC 
was calculated from the signal intensities of two points of the b value with 
the following equation: 

  ADC = ln (S1/S2) / (b2 – b1) (1) 
where S is the signal intensity and b is the b value. 
ADC was calculated from the DWI signal on b = 0 and another point (b = 0 
– 3000 s/mm2). 
 
2-1-2. Influences of TR and TE 
The phantom was scanned with various TR (TR = 1000 – 8000 ms) and TE 
of 100 ms of EPI sequence to review the influence of TR. ADC was 
calculated from the signals of DWI on b = 0 and 1000 s/mm2. 
In addition, the phantom was scanned with various TE (TE = 50 – 400 ms) 
and TR of 8000 ms of EPI sequence to review the influence of TE. ADC 
was calculated from the signals of DWI on b = 0 and 1000 s/mm2. 
 
2-2. Human brain study 
The institutional review board approved the study design and review of 
volunteer records and images. The brains of three human subjects who 
provided informed consent were scanned on DWI with various MPG (b = 0 
– 1000 s/mm2) to review the accuracy of ADC value in the living body. 
Scanning parameters were TR/TE of 8000/100 ms, slice thickness of 6 mm, 
field of view of 22 cm and a matrix of 128 × 256 with EPI. Each ADC was 
calculated with b values of two adjacent points, with manually defined 
regions of interest in the white matter and grey matter (Figure 1). 
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3. Results 
The logarithms of DWI signal intensities with b = 0 – 3000 s/mm2 are 
plotted in Figure 2. In all phantoms, the signal intensity deteriorated as b 
value increased, indicated by two straight lines on the logarithmic scale. 
That is, diffusion decay curves were obtained from the biexponential in all 
phantoms. The points where fast and slow components of the biexponential 
decay crossed were called turning points (Figure 3). 
The positions of the turning points were different in each phantom in 
Figure 2. Figure 4 shows the relations between the ADC value of the fast 
component (the first straight line part) and the b value of the turning point. 
With increases in ADC, the b value of the turning point tended to fall. 
Therefore, the b value of the turning point for the biexponential was 
dependent on ADC. 
The ADC values calculated from two points between b = 0 and the turning 
point were almost the same, but the ADC values calculated from two points 
with b = 0 and large b values greater than the turning points were decreased, 
as shown in Figure 5.  
Figure 6 shows the ADC value when TR changed from 1000 to 8000 ms in 
the scanning parameter of DWI. The ADC value was different in a gel 
consisting of dissolved agarose solution from TR = 1000 to 3000 ms. 
Figure 7 shows the ADC value when TE changed from 50 to 400 ms in the 
scanning parameter of DWI. In this case, there was no significant 
difference in solution. In a gel consisting of 3 – 5 g of agarose in solution, 
no difference was seen at TE = 50, 100 ms, but a drop in ADC was seen 
with increases in TE. 
The calculated ADC values for different b values in DWI in the human 
brain are shown in Figure 8. The ADC values decreased at b = 0 and 100 
s/mm2. In addition, the ADC values decreased with increases in b value. 
The ADC values calculated for b = 0 and high b value and for b = 100 
s/mm2 and high b value in the human brain are shown in Figure 9. 
Calculated ADC value was stable for b = 100 s/mm2 and high b value. 
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4. Discussion 
In all phantoms, the signal intensity deteriorated with increases in b value 
as shown in Figure 2. The decay curves were best fit with the biexponential 
function. In general, biexponential decay occurs due to intra- and 
extracellular diffusion (24, 25). Other investigators reported that the fast 
and slow diffusion components responsible for the biexponential decay are 
attributable to water and lipid protons using dairy cream (26, 27). In this 
study, the biexponential decay was seen in the agarose phantom. Although 
interesting, the origin of the biexponential is still unclear. 
The positions of turning points where fast and slow components crossed 
were different in each phantom. With a rise in ADC of the fast component, 
the b value of the turning point tended to deteriorate as shown in Figure 4. 
The b value of turning point of the biexponential was dependent on ADC. 
If ADC is calculated by two points, the b value of the front and back for the 
turning point, the ADC value is different for fast and slow components 
because ADC is calculated from the slope of the straight line between two 
points (see Figure 3). In fact, this can be seen clearly in Figure 4. 
Calculations should be performed using b values up to the turning point to 
obtain the ADC value of the fast component. 
In addition, as a scanning parameter of DWI, shortened TR leads to 
dependence on the ADC value for some materials as shown in Figure 6. 
Table 1 shows T1 and T2 values of the phantom. The material with long T1 
value influenced the ADC value. That is, for a material with long T1 value, 
errors are produced in the ADC value by setting a short TR. However, there 
were no changes for a long TR. Similarly, ADC deteriorated with increases 
in TE for a material with short T2 value. However, there were no changes 
for short TE. Therefore, the scanning parameter of DWI with long TR and 
short TE can reduce measurement error. 
The signal intensity of DWI deteriorated at b = 0 in scanning of the human 
brain as shown in Figure 8. This was thought to be under the influence of 
perfusion. It has been reported previously that the diffusion signal is 



7 
 

influenced by perfusion with small b value, which was confirmed by this 
result. 
Therefore, a stable ADC value is obtained using a small b value of about 
100 s/mm2 and a large b value before the turning point (see Figure 9). 
 
 
5. Conclusions 
Recently, DWI and ADC have become important tools in surveying and 
discrimination of tumours. Many studies are now performed using ADC 
value to distinguish tumours. On the other hand, the ADC value varies with 
scanning parameters of DWI. Use of an ADC value with an error may lead 
to wrong conclusions. 
Therefore, the present study was performed to investigate the scanning 
parameters to obtain high precision in ADC measurement. It is necessary to 
use b values smaller than the turning point so that signal intensity of DWI 
decays by biexponential fitting for b value. Therefore, it is important to 
determine the turning point for measurement of ADC. 
A value of b ≥ 100 s/mm2 is recommended to avoid the influence of 
perfusion by blood. In addition, the choice of long TR and short TE was 
effective for highly precise measurement of ADC for considered T1 and T2 
values of objects. It is possible to measure ADC with a high degree of 
precision by taking the above points into consideration. 
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Figure legends 
 
Figure 1: Regions of interest of white matter and grey matter in the human 
brain used to calculate ADC. 
 
Figure 2: Logarithmic signal intensity with b = 0 – 3000 s/mm2 in the 
phantoms. 
 
Figure 3: The signal intensity of DWI deteriorated as b value increased. 
This rate of decrease is indicated by two straight lines (fast and slow 
components) on the logarithmic scale. The points where fast and slow 
components of the biexponential decay crossed were called turning points. 
 
Figure 4: Relation of ADC value of first component and b value of turning 
point of the biexponential. The b value of the turning point decreased with 
increases in ADC. 
 
Figure 5: ADC values were calculated for different b values. ADC was 
stable using a b value before the turning point, but ADC deteriorated when 
the b value was after the turning point. 
 
Figure 6: Dependence of the ADC value on different TR in EPI-DWI 
sequence. ADC value varied with TR by material. 
 
Figure 7: Dependence of the ADC value on different TE in EPI-DWI 
sequence. ADC value varied with TE by material. 
 
Figure 8: ADC values calculated with different b values in the white matter 
and gray matter of the human brain. The b value calculated from b = 0, 100 
became comparatively small. 
 
Figure 9: ADC values calculated with different b values in the white matter 
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and grey matter of the human brain. ADC value was stable when having 
turned b value of small part into 100 s/mm2. 
 
Table 1: T1 and T2 values of the phantom materials used this experiment. 
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T1(msec) T2(msec)

agarose 1g 2431 172

agarose 3g 2796 88

agarose 4g 2917 70

agarose 5g 3039 60

detergent 2115 170








