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Lupus nephritis (LN) is a major clinical manifestation of systemic lupus erythematosus (SLE). Although numerous abnormalities
of immune system have been proposed, cytokine overexpression plays an essential role in the pathogenesis of LN. In the initial
phase of the disease, the immune deposits and/or autoantibodies induce cytokine production in renal resident cells, leading to
further inflammatory cytokine/chemokine expression and leukocyte infiltration and activation. Then, infiltrate leukocytes, such
as macrophages (Mϕ) and dendritic cells (DCs), secrete a variety of cytokines and activate naı̈ve T cells, leading the cytokine profile
towards T helper (Th)1, Th2, and/or Th17. Recent studies revealed these inflammatory processes in experimental animal models
as well as human LN. The cytokine targeted intervention may have the therapeutic potentials for LN. This paper focuses on the
expression of cytokine and its functional role in the pathogenesis of LN.

1. Introduction

Lupus nephritis (LN) is a major clinical manifestation of sys-
temic lupus erythematosus (SLE); it occurs in up to 50% of
patients at onset of the disease and over 60% of patients dur-
ing the disease [1]. Clinical course ranges from asymptomatic
urinary occult blood to nephrotic syndrome or acute kidney
injury since kidney injuries in LN are so variable. Major
pathologic classification is based on glomerular disease. Tub-
ulointerstitial damage and vasculitis are also frequently en-
countered in LN. The patients of the WHO class IV (prolif-
erative glomerulonephropathy) at initial renal biopsies show
higher rate of end-stage renal failure (ESRF) compared with
those of the other classes. The mean 50% renal survival time
of class IV is 189 months in Japanese patients [2]. To
understand the pathogenesis of cytokines on LN, murine
models of SLE have been investigated such as MRL-Faslpr

mice and NZBXNZW mice. Both strains show glomerulo-
nephritis, splenomegaly, and lymphadenopathy. In MRL-
Faslpr mice, glomerulonephritis occurs at 3 months of age.
Fifty percent survival is 5-6 months of age, and the cause of
death is renal failure [3]. In NZBXNZW mice, LN becomes

apparent at 5-6 months of age, leading to renal failure and
death at 10–12 months of age [4]. Although numerous un-
derlying mechanisms are reported, cytokine plays a key role
in disease initiation and progression. This paper focuses on
the contribution of cytokine, cytokine receptors, and intra-
cellular signaling in LN.

2. The Role of Cytokines in the Disease
Initiation Phase

2.1. The Role of Renal Resident Cells. The deposit of immune
complexes (ICs) has been regarded as responsible for the in-
itiation of LN. Glomerular IC deposition is mostly found
in mesangium, subendothelial, and subepithelial lesions. Es-
pecially, mesangial and subendothelial deposits cause prolif-
erative patterns of LN. IC deposition activates complement
cascade, leading to mesangial cell activation and prolifera-
tion. Once activated, mesangial cells produce various types
of cytokines and chemokines, leading to amplification of
glomerular disease [5]. In addition to IC-mediated glomeru-
lar injury, auto-antibodies may also promote proliferation
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and activation in kidney resident cells. Yung et al. demon-
strated that anti-DNA antibody induced the secretion of
Interleukin (IL-) 1β, IL-6, and tumor necrosis factor (TNF-)
α in human cultured mesangial and tubular epithelial cell
[6]. These observations suggest that renal resident cells
activated by ICs and/or auto-antibodies secret the cytokines,
which may further amplify inflammatory processes. They
also demonstrated that anti-DNA antibody induced protein
kinase c activation, which is a signal pathway causing the
synthesis of cytokines in human mesangial cell [7].

2.2. The Contribution of Proinflammatory Cytokines to LN.
The role of TNF in LN is controversial. Several groups
showed the beneficial effects of TNF in NZBXNZW mice
[8–11], whereas some groups reported the adverse effects in
MRL-Faslpr mice [12–17]. The protective effect is specific to
NZBXNZW strain, and the mechanism is not clear [18]. As
for the human LN, Yokoyama et al. showed that serum levels
of TNF-α are correlated to glomerular ICAM-1 expression,
which is associated with endocapillary lesions in renal biopsy
specimen [19]. Aringer et al. summarized the reported 12
cases, who were treated with TNF blockers. In 9 out of 12
patients, TNF blocker therapy led to the improvement of
LN and the long-term renal responses [20]. Matsumura et
al. also reported that 6 out of 8 patients showed improved
urinary protein and SLE activity by the anti-TNF therapy
[21]. These data suggest that anti-TNF-α therapy may have
therapeutic potentials in human LN. However, some groups
reported that anti-TNF-α therapy in rheumatic disease
induce autoantibodies formation and lead to SLE including
LN [22, 23]. We should be aware that anti-TNF-α therapy
could induce SLE as well.

Results from experimental animal models show the path-
ogenesis of IL-6 in LN. Anti-IL-6 antibody administration
inhibits LN in NZBXNZW mice [24]. Blocking IL-6 receptor
ameliorates LN in MRL-Faslpr mice [25]. Moreover, IL-6
injection exacerbates LN in NZBXNZW mice [26]. Sup-
porting this notion, several studies demonstrated that IL-6
contributes to the production of anti-DNA antibody from
B cells [24, 27]. Wan et al. reported that IL-6 inhibits the
function of regulatory T cells in lupus model mice [28].
In human samples, IL-6 mRNA level in peripheral blood
mononuclear cells is higher in patients with active LN than
that in those with inactive LN [29]. As for the clinical
therapy, Illei et al. administrated the IL-6 receptor antagonist,
tocilizumab, to the SLE patients. They reported that arthritis
improved all 7 patients with arthritis at base line, but there
was no change of proteinuria during the study in all 5
patients with LN at the base line [30]. Further studies will
be needed to determine the effects of tocilizumab on LN.

IL-1 induces endothelial adhesion molecules [31] and
increases the production of IgG and anti-DNA antibody
from B cell [32] in MRL-Faslpr mice. Anti-dsDNA antibody
induces IL-1β production in mesangial cells, which lead to
the overexpression of extracellular matrix, hyaluronan [6].
In human LN, IL-1β was detected in the kidney of WHO
class IV [33]. These data suggest the local relevance of IL-1β
in LN. However, IL-1 receptor antagonist therapy does not

improve LN in MRL-Faslpr mice [34]. The pathogenesis and
therapeutic effects of IL-1β remain to be investigated.

2.3. The Role of Intracellular Signaling Pathways. Several pro-
tein kinase cascades mediate the intracellular cytokine signal
transduction, leading to various types of cell response, such
as cell migration, proliferation, and inflammatory response.
p38 mitogen-activated protein kinase (MAPK) is responsible
for the production and signal transduction of cytokines. We
found that pharmacologic inhibition of p38 MAPK signifi-
cantly reduced cytokine expression and improved the renal
injury in MRL-Faslpr mice [35]. In addition, the inhibition
of p38 MAPK also reduced the number of mature DCs within
injured kidney and decreased IL-12 and IL-23 expression on
DCs (Figure 1) [36]. Thus, intracellular pathway might be a
good therapeutic target in LN.

3. The Role of Cytokine in the Disease
Amplification/Progression Phase

3.1. The Role of Infiltrated Leukocytes. Once inflamed renal
resident cells produce cytokines and chemokines, leukocytes
migrate to glomerulus and interstitium. In human LN, most
infiltrating mononuclear leukocytes are T lymphocytes, with
lesser numbers of macrophages (Mϕ), B lymphocytes, and
natural killer cells [37]. Infiltrate Mϕ and dendritic cells
(DCs) secrete a variety of cytokines and activate naı̈ve T cells,
leading the cytokine profile towards Th1, Th2, and/or Th17.
Renal resident cells also secret multiple cytokines.

3.2. The Contribution of Th17 to LN. Recent studies suggest
that Th17 cells play a crucial role in the pathogenesis of LN.
Zhang et al. demonstrated that IL-17-producing CD3+ cells
from lupus prone mice induce nephritis when transferred to
nonautoimmune, lymphocyte-deficient Rag-1−/− mice [38].
Steinmetz et al. showed that CXCR3, which is expressed on
Th1 and Th17 cells, deficient lupus prone MRL-Faslpr mice
ameliorate LN accompanied by the reduction of interferon
(IFN)-γ and IL-17 producing T cells [39]. Furthermore, IL-
23 receptor−/− B6/lpr mice are protected from the develop-
ment of LN, followed by the decrease of IL-17-producing T
cells [40].

In human LN, IL-17 was detected in glomerular and in-
terstitial infiltrated T cells using laser microdissection. The
expression level of IL-17 was correlated with SLE Disease
Activity Index Scores [41]. Crispı́n et al. reported that
CD4−CD8− double-negative T cells produce IL-17 and infil-
trate the kidneys in LN patients [42]. Interestingly, double-
negative T cells have been reported as a major source of IL-17
in MRL-Faslpr mice as well [38].

3.3. The Contribution of Th1 Cytokines to LN. IL-12−/−

MRL-Faslpr mice are protected from LN followed by the re-
duced production of IFN-γ [43]. Deficiency of IFN-γ in
MRL-Faslpr mice ameliorates LN [44]. Moreover, IFN-γ re-
ceptor−/− MRL-Faslpr mice showed the decreased renal pa-
thology and extended survival [45]. These results suggest
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Figure 1: p38 MAPK plays an essential role in the lupus nephritis in MRL-Faslpr mice. (a) p38 MAPK inhibitor ameliorates kidney injury
in MRL-Faslpr mice. (b) The number of CD11c+ cells and CD11c+ CCR7+ mature phenotype was decreased by the inhibition of p38 MAPK
in the kidney. (c) The transcripts of TNF-α were reduced by the administration of p38 MAPK inhibitor. ((d) and (e)) p38 MAPK is central
for the production of IL-12 and IL-23 on DCs in MRL-Faslpr mice.

that IFN-γ plays an essential role in disease progression in
LN. In contrast, the role of type I IFN (IFN-α/β), which
is classically thought to induce Th1 type inflammation, is
equivocal. The administration of IFN-α accelerates the devel-
opment of lupus in lupus-prone mice [46, 47]. Moreover,
Type I IFN receptor (IFNAR)−/− NZBXNZW is protected
from LN [48]. As opposed to this study, Hron and peng
reported that IFNAR−/− MRL-Faslpr mice showed increased
lymphadenopathy, autoantibody production, and LN [49].

Of note, Schwarting et al. reported that the IFN-β therapy
reduces the activity of LN in MRL-Faslpr mice [50]. These
results indicate the different role of IFN-α and IFN-β in LN
though IFNAR is the common receptor for both IFNs [51].
Supporting this notion, Satchell et al. reported that IFN-
β had an effect on barrier properties, increasing electrical
resistance across monolayers of either glomerular endothelial
cells or podocytes and decreasing transmonolayer passage of
albumin [52].
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Figure 2: Cytokines contribute to the pathogenesis of lupus nephritis from the initiation phase to the amplification/progression phase.
Immune deposits and/or autoantibodies induce the secretion of cytokine in the renal resident cells, which promote the infiltration and
activation of leukocytes in the disease initiation phase. Activated leukocytes also produce cytokines, which leads to the further immune
response in the disease amplification/progression phase.

IL-18, which is a strong inducer of IFN-γ, is upregulated
in MRL-Faslpr mice. The tubular epithelial expression of IL-
18 is correlated with disease activity [53]. IL-18 expression
was also detected in mesangial cells in NZBXNZW mice
[54]. In addition, the therapy targeted to IL-18 protects mice
from LN [55]. Interestingly, docosahexaenoic acid in fish
oil decreased serum levels of IL-18 and attenuated lupus
nephritis in NZBXNZW mice [56].

In human LN, Masutani et al. detected that infiltrated
cells expressed IFN-γ in LN. They also demonstrated that
IFN-γ/IL-4 ratio in peripheral blood CD4+ cell was corre-
lated with pathological activity index [57]. Yokoyama et al.
revealed that serum level of IFN-γ is related to proliferative
and active lesions, and the level is decreased by methylpred-
nisolone pulse therapy [58]. Another group also showed the
expression of IFN-γ in human LN [59]. Chan et al. reported
the correlation between glomerular expression of the Th1
transcription factor (T-bet), IFN-γ, and IL-2 with serum C3,
C4 and anti-double-strand-DNA antibody level [60]. Tucci
et al. demonstrated the IL-18 expression within glomeruli in
patients with severe LN [61].

3.4. The Contribution of Th2 Cytokines to LN. Several groups
reported the Th2 contribution to LN. Charles et al. revealed
that autoreactive IgE and IL-4 are essential for lupus model
mice and SLE patients. They showed that activated basophils
secret IL-6 and IL-4, which promote Th2 response and B
cell activation, resulting in autoantibodies production [62,
63]. Other groups reported the relationship between Th2
dominance and membranous nephropathy in LN. IL-27
receptor−/− MRL-Faslpr mice showed membranous glomer-
ulonephritis with the predominance of Th2 systemic reaction
[64]. In lupus patients with WHO type V (membranous

nephropathy), IFN-γ/IL-4 expression ratio was lower in pe-
ripheral blood T cell, whereas IFN-γ/IL-4 expression ratio
was higher in those with WHO type IV (proliferative glom-
erulonephropathy) [65]. Furthermore, Th2 cytokine domi-
nance is also reported in the kidney tissue from the patients
with WHO type V [59].

3.5. The Contribution of IL-10 to LN. Originally, Th2 cells
and antigen-presenting cells have been reported as a source
of IL-10. However, recent reports show that Th1 cells and
Th17 cells in addition to Th2 cells produce IL-10 [66–69].
Ishida et al. reported that anti-IL-10 therapy delayed the
onset of lupus nephritis in NZBXNZW mice. Interestingly,
they showed that anti-IL-10 therapy increased the serum
levels of TNF-α, which contributed to the protection from
autoimmunity [70]. Ravirajan et al. also described that anti-
IL-10 therapy reduced proteinuria in human ds-DNA Ab-
induced lupus model mice [71]. Continuous overexpression
of low levels of IL-10 delayed the production of autoan-
tibodies and decreased the severity of LN [72]. This is
somehow contradictory to other studies. These differences
may be related to the mice strain, disease models, and/or
the amount of IL-10 expression. In SLE patients, anti-IL-10
therapy ameliorates skin and joint lesions in all 6 patients
[73]. However, the effect of anti-IL-10 therapy on LN is not
clear in this study.

4. Conclusion

Cytokine is upregulated by the immune deposits and/or
autoantibodies in disease initiation phase, leading to inflam-
matory cytokine/chemokine expression and leukocyte in-
filtration and activation. Activated leukocytes produce
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cytokines, which amplify the inflammatory response. Then,
sustained cytokine production by multiple triggers is asso-
ciated with progression of LN. Thus, cytokine is essential
from the initiation to progression phase of LN (Figure 2).
Some animal models provide the evidence of anticytokine
therapy. However, sufficient evidence is not yet available to
clarify the efficacy of anticytokine therapy for human LN.
A major challenge will identify novel targets for therapeutic
intervention for human LN.
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and Rheumatoid Arthritis,” in Heptinstall’s Pathology of the
Kidney, 2006.

[38] Z. Zhang, V. C. Kyttaris, and G. C. Tsokos, “The role of IL-
23/IL-17 axis in lupus nephritis,” Journal of Immunology, vol.
183, no. 5, pp. 3160–3169, 2009.

[39] O. M. Steinmetz, J. E. Turner, H. J. Paust et al., “CXCR3 medi-
ates renal Th1 and Th17 immune response in murine lupus
nephritis,” Journal of Immunology, vol. 183, no. 7, pp. 4693–
4704, 2009.

[40] V. C. Kyttaris, Z. Zhang, V. K. Kuchroo, M. Oukka, and G.
C. Tsokos, “Cutting edge: IL-23 receptor deficiency prevents
the development of lupus nephritis in C57BL/6-lpr/lpr mice,”
Journal of Immunology, vol. 184, no. 9, pp. 4605–4609, 2010.

[41] Y. Wang, S. Ito, Y. Chino et al., “Laser microdissection-based
analysis of cytokine balance in the kidneys of patients with
lupus nephritis,” Clinical and Experimental Immunology, vol.
159, no. 1, pp. 1–10, 2010.

[42] J. C. Crispı́n and G. C. Tsokos, “Human TCR-αβ+ CD4− CD8−

T cells can derive from CD8+ T cells and display an inflamma-
tory effector phenotype,” Journal of Immunology, vol. 183, no.
7, pp. 4675–4681, 2009.

[43] E. Kikawada, D. M. Lenda, and V. R. Kelley, “IL-12 deficiency
in MRL-Faslpr mice delays nephritis and intrarenal IFN-γ
expression, and diminishes systemic pathology,” Journal of
Immunology, vol. 170, no. 7, pp. 3915–3925, 2003.

[44] C. E. Carvalho-Pinto, M. I. Garcı́a, M. Mellado et al., “Auto-
crine production of IFN-γ by macrophages controls their
recruitment to kidney and the development of glomeru-
lonephritis in MRL/lpr mice,” Journal of Immunology, vol. 169,
no. 2, pp. 1058–1067, 2002.

[45] A. Schwarting, T. Wada, K. Kinoshita, G. Tesch, and V. R.
Kelley, “IFN-γ receptor signaling is essential for the initiation,

acceleration, and destruction of autoimmune kidney disease
in MRL-Fas(lpr) mice,” Journal of Immunology, vol. 161, no. 1,
pp. 494–503, 1998.

[46] M. Ramanujam, P. Kahn, W. Huang et al., “Interferon-α
treatment of Female (NZW× BXSB)F1 mice mimics some but
not all features associated with the Yaa mutation,” Arthritis and
Rheumatism, vol. 60, no. 4, pp. 1096–1101, 2009.

[47] Z. Liu, R. Bethunaickan, W. Huang et al., “Interferon-α
accelerates murine systemic lupus erythematosus in a T cell-
dependent manner,” Arthritis and Rheumatism, vol. 63, no. 1,
pp. 219–229, 2011.

[48] H. Agrawal, N. Jacob, E. Carreras et al., “Deficiency of type I
IFN receptor in lupus-prone New Zealand mixed 2328 mice
decreases dendritic cell numbers and activation and protects
from disease,” Journal of Immunology, vol. 183, no. 9, pp.
6021–6029, 2009.

[49] J. D. Hron and S. L. Peng, “Type I IFN protects against murine
lupus,” Journal of Immunology, vol. 173, no. 3, pp. 2134–2142,
2004.

[50] A. Schwarting, K. Paul, S. Tschirner et al., “Interferon-β: a
therapeutic for autoimmune lupus in MRL-Fas lpr mice,”
Journal of the American Society of Nephrology, vol. 16, no. 11,
pp. 3264–3272, 2005.

[51] A. N. Theofilopoulos, R. Baccala, B. Beutler, and D. H. Kono,
“Type I interferons (α/β) in immunity and autoimmunity,”
Annual Review of Immunology, vol. 23, pp. 307–336, 2005.

[52] S. C. Satchell, O. Buchatska, S. B. Khan et al., “Interferon-
β reduces proteinuria in experimental glomerulonephritis,”
Journal of the American Society of Nephrology, vol. 18, no. 11,
pp. 2875–2884, 2007.

[53] J. Faust, J. Menke, J. Kriegsmann et al., “Correlation of renal
tubular epithelial cell-derived interleukin-18 up-regulation
with disease activity in MRL-Faslpr mice with autoimmune
lupus nephritis,” Arthritis and Rheumatism, vol. 46, no. 11, pp.
3083–3095, 2002.

[54] H. A. Shui, S. M. Ka, W. M. Wu et al., “LPS-evoked IL-18
expression in mesangial cells plays a role in accelerating lupus
nephritis,” Rheumatology, vol. 46, no. 8, pp. 1277–1284, 2007.
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