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Abstract 

The coherent scattering distribution is useful for characterization of materials in the 

medical field, and obtaining this information from a given position in the object is a 

useful new diagnostic approach. We propose a simpler geometric approach, which 

requires only a single-direction X-ray beam with no collimator in front of the detector. 

This method iteratively estimates coherent scattering profiles from given positions 

along the beam path, based on the projections positioned at different object-to-detector 

distances. We confirmed the proposed calculation algorithm by numerical simulation 

and performed a simple experiment including attenuation correction. The accuracy of 

matching with the original profiles was dependent on the number of iterations, the 

distance between the first and second detectors, the distance between two objects, and 

the shape of the scattering profile. Whereas multiple scattering was the main problem in 

the experiment, the calculated scattering profiles matched well with the original profile. 

This technique indicates the feasibility of developing a coherent-scatter imaging system. 
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1 Introduction 

 

Coherent scatter is based on the interference of scattered X-rays from different electrons 

in the object material. This interference caused by the differences in interatomic or 

intermolecular distances exhibits characteristic scattering patterns, which are commonly 

used for the study of the material structure in crystallographic analysis. Amorphous 

materials, such as biological tissue, show relatively broad scattering patterns that 

dependent on the average intermolecular spacing, but can still reveal the characteristics 

of the material. 

In the medical field, coherent scatter has attracted a great deal of attention mainly 

because of its capability for characterization of materials. Many investigators have 

attempted to obtain useful information by using this technique. 

 Breast tissue is one of the most promising targets for the coherent-scatter technique. 

Many authors have demonstrated differences between normal and diseased breast 

tissues [1-6], and various classification models have been developed for differential 

diagnosis between benign and malignant lesions [7-10]. Furthermore, in the case of 

fibroglandular breast tissue and carcinoma as imaging targets, the low-angle scatter 

model has a higher signal-to-noise ratio than does the primary model, which is the 
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conventional imaging method, with selection of optimum momentum transfer 

arguments [11]. 

 Another potential target of interest in medical use is bone. Coherent scatter can be used 

for distinguishing between the fat and mineral components of bone, which is useful for 

diagnosis of diseases involving bone demineralization [12-15]. Whereas current clinical 

methods for examination of bone mineral density are susceptible to errors due to 

variable fat content and density, the coherent scatter technique can distinguish between 

bone constituents, including collagen and water components, with greater precision 

[16]. 

 Urinary stone analysis [17-19] and discrimination between normal and cancerous liver 

tissue [14] have also been studied as possible medical applications of coherent 

scattering. 

The availability of coherent scatter in the medical field has been reported as described 

above. Visualizing this information on two-dimensional (2D) or three-dimensional (3D) 

images would be more useful for clinical use, and several imaging approaches to this 

have been attempted. 

Tomographic imaging by use of the angular distribution of coherent scattering as the 

projection data set was proposed by Harding et al. [20, 21]. They used a conventional 
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polychromatic X-ray source and applied the geometry of first-generation computed 

tomography (CT), i.e., pencil-beam scanning geometry. Subsequently, similar 

approaches were used for adapting coherent-scatter CT for medical applications [16, 18, 

19, 22-24]. Schlomka et al. [25] advanced the coherent-scatter CT techniques by 

applying fan-beam geometry for acquisition of coherent-scatter CT projection data to 

reduce the exposure time, with algebraic reconstruction. Stevendaal et al. [26] 

subsequently introduced 3D filtered back-projection to reduce the computation time. 

Although these fan-beam geometry techniques can reduce the exposure time, the patient 

exposure dose is increased by placement of a collimator in front of the detector, because 

this collimator reduces the azimuthal angular scatter of photons. 

The performance of coherent scatter imaging is largely dependent on the angular 

resolution. The factors that mainly affect the angular resolution are the energy spectral 

width and the beam divergence (focal spot size and beam width) [27]. Therefore, 

monoenergetic or quasi-monoenergetic X-rays with balanced filters [27] and highly 

parallel X-ray beams are suitable for coherent-scatter imaging. In general, it is difficult 

to rotate these X-ray sources because of the need to maintain an accurate setting of the 

monochromatic system and a sufficient distance between the source and the object for 

beam parallelism. Rotating the patient is also impossible in clinical use. 
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Here, we propose a method for estimating coherent-scattering profiles from given 

positions along the beam path by use of two projections acquired at different 

object-to-detector distances. This method requires only a single-direction X-ray beam 

and no collimation in front of the detector, whereas 2D plane pencil-beam scanning is 

required for 3D acquisition. We describe the details of this method, and we present 

numerical simulations and a phantom experiment with attenuation correction as the 

basic one-dimensional (1D) geometry by use of a synchrotron radiation source. 

 

2 Materials and methods 

 

In conventional X-ray imaging based on X-ray attenuation, the single-direction 

transmission beam through the patient cannot provide positional information along the 

beam path. Therefore, many different directions of beams are required for the 

acquisition of positional information. 

However, in coherent-scatter imaging, the scattering distributions projected to the 

detector can be caused to vary by changing the distance between the object and the 

detector, because the scattering proceeds at various angles. Thus, we thought it possible 

to estimate the scattering position along the beam path by connecting two 
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same-intensity scatters from two projections acquired at different object-to-detector 

distances (Fig. 1). Actually, it is difficult to solve this problem analytically because the 

projection data result from the convergence of scatterings that have many different 

intensities and angles. Thus, we attempted to estimate the scattering profiles from given 

positions by successive approximations. 

 

2.1 Projection process of coherent scattering 

 

The approach presented is based on angular dispersive coherent scattering with a 

synchrotron monochromatic beam. 

The differential coherent-scattering cross-section of polarized X-rays is  

   xFr 2222
0

coh cossin1
dΩ

dσ
 ,  (1) 

where 2
0r  is the classical electron radius,   is the scattering angle,   is the 

azimuthal angle, and  xF 2  is the molecular form factor that is dependent on the 

momentum transfer    2sin1 x , where   is the X-ray wavelength (Fig. 2). 

According to Kleuker et al. [23], the variations of scattering intensity dependent on the 

azimuthal angle are negligible for small scattering angles. The results of our preliminary 

experiment at 25 keV indicated that the differences in the scattering intensity profile 
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between  0  and  90  were less than 1% on average at  15 . Therefore, 

we did not consider the dependence of the azimuthal angle of the scattering intensity. 

Most biological tissues are amorphous or polycrystalline, and such tissues produce 

azimuthally symmetric scattering patterns [24]. The scattering profiles that we expect 

would thus be 1D profiles that are dependent only on the scattering angle. 

Low-angle scattering is dominated by single coherent scattering rather than single 

Compton scattering and multiple scattering [21]. Therefore, we consider only single 

coherent scattering below for simplicity. 

The acquisition of projection data for coherent scattering follows from the work of 

Harding et al. [21]. The geometry for this study is shown schematically in Fig. 3a. 

Actually, scattering is projected onto the detector as a 2D distribution such as that in Fig. 

2, but we treat these projection data as an azimuthally averaged 1D scattering profile 

here. We acquire the projection data by positioning the detector at two different 

distances from the original point, 1L  and 2L . In the calculation, we partition the 

scattering angle into a given interval  , set the scattering (calculation) point nl  at 

given intervals of l , and define the closest point in the object to the detector 0l  as 

the original point. The number of photons nmN  scattered into a fixed angle   

derived from position nl  in the object toward angle m  is given by 
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    
 


d

dΩ

dσ
, cohA

0 
 m

m
nnnm ll

M

N
NN , (2)  

where 0N  is the number of incident X-ray photons, AN  is Avogadro’s number,   is 

density, M  is molecular weight, and  nl  and   ,nl  are the self-attenuation 

factors before and after the scattering point, respectively (Fig. 3b). 

By measurement of the transmission beam and the object thickness, we can determine 

the attenuation coefficient along the beam path. However, in the proposed method, it is 

impossible to determine the attenuation coefficients for all positions, as in CT; thus, we 

assume that the attenuation coefficient along the beam path is constant. The attenuation 

coefficient calculated by a transmission measurement through the object is  , the total 

thickness of the object is W , and the distance from the scattering point to the origin is 

nlln  . Thus, the attenuation factors are 

    nn lWl   exp  (3) 

and 

    




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








 2
coscos

exp,



m

n

m

n
n

ll
l . (4) 

In the proposed method, the scattering angle is built into the calculation as  , which 

has a range, and therefore the distance of the scattering path is used as the average. 

We also partition the detector into given intervals D , and then the total number of 

X-ray photons iY  scattered into the detector elements iD  is given by 
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



J

j
jiji PNY

1

, (5) 

where   nmj NnmjN  , jiP  is the probability for the number of X-ray photons 

jN  incident into the detector element iD . jiP  is represented by two factors, i.e., the 

geometry factor jiG  and the distance attenuation factor jiH : 

jijiji HGP  . (6) 

The geometry factor is defined as the ratio between the distance at the detector plane 

projected by the scattering angle   and the distance of the detector element D , as 

expressed below: 

     LlLl

D
G

nmnm

i
ji 




 tantan
. (7) 

Of course, the case in which the detector plane projected by the scattering angle m  

does not overlap with the detector element jiG  must be zero. The number of scattered 

photons reaching the detector element decreases with the distance of this element to the 

scattering point, in accordance with the inverse-square law [26]. Therefore, the distance 

attenuation factor is given by 

       
12

2

2
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
, (8) 

where the distance of the scattering path is used as the average in common with the 

attenuation factor in equation (4). 
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2.2 Iterative estimation 

 

The maximum-likelihood expectation maximization algorithm (ML-EM) was first 

applied to image reconstruction in emission tomography by Shepp and Vardi [28]. This 

algorithm is an iterative method, where a given image is first assumed, and the 

differences between the projection data calculated from this image and the actual 

measurements are then iteratively minimized. 

We apply this algorithm in our method, and we begin the calculation with the initial 

estimated values k
jN . The next estimate is given by 


 






 
I

i
J

j
ji
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jii
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P
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11

1 , (9) 

where iy  represents the measured projection data. The projection data acquired at 

different positions along the beam path are built into the algorithm, and the iterative 

calculation is performed. 

 

2.3 Numerical simulations 

 

2.3.1 Point object model 
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To confirm the proposed algorithm, we simulated a numerical model consisting of two 

materials: water and fat. In this simulation, we assumed that these two materials had no 

thickness and that the X-ray photons were not attenuated. Therefore, we did not use the 

self and distance attenuation correction in equations (3), (4), and (8). The coherent 

scattering form factors for simulation data were taken from the study by Peplow and 

Verghese [29].  

We also performed a simulation with two other materials: polycarbonate (PC) and 

polyethylene (PE). These materials are amorphous, similar to water and fat, and 

therefore scattering does not depend on the azimuthal angle. The scattering profiles of 

these materials were taken from the study by Kosanetzky et al. [30]. 

Many medical applications using coherent scatter have treated mainly two types of 

components as the target, i.e., bone and fat components [13-15], water and fat 

components, or healthy and malignant components [1, 2, 4-6, 10, 31, 32]. Therefore, we 

treated two material pairs in the present study. 

To evaluate the match between the input profile and the calculated profile, we used the 

Pearson correlation coefficient, which was calculated with the CORREL function in 

Microsoft Excel in the numerical simulations and in the experiment. 
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2.3.2 Volume object model 

 

A real object as the target for this application has thickness. We constructed a simple 

volume object consisting of PC and PE by setting the scattering point with small gaps 

along the beam path. The scattering points were set at 0 mm to 10 mm from the original 

point for PC and 10 mm to 20 mm from the original point for PE at intervals of 2 mm. 

Similar to the point-object model, this model also did not simulate the self and distance 

attenuation. 

 

2.4 Experiment 

 

We performed an experiment on the 10-mm thick PC and PE plates in the same way as 

described in section 2.3.2 to evaluate the capability of our method, including the 

attenuation correction. 

The experiment was performed at beamline BL-15B1 of the Photon Factory in the 

High Energy Accelerator Research Organization (KEK-PF), Japan. Polychromatic 

X-rays from the synchrotron radiation source were monochromatized at 25 keV by a 

Si(111) double-crystal monochromator. The monochromatic X-rays were collimated by 
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slit systems 1 × 1 mm in cross-sectional area. The detector was a 20 cm × 25 cm 

imaging plate (BAS-SR 2025; Fuji Photo Film Co. Ltd, Tokyo, Japan), and the scatter 

images obtained were scanned with a BAS-2500 Bio-Imaging Analyzer (Fuji Photo 

Film Co. Ltd, Tokyo, Japan). 

The pixel values are the values after logarithmic conversion; thus, we converted pixel 

values into relative values proportional to the exposure dose. Images were analyzed 

with use of the “Radial Profile Plot” with the “Radial Profile Extended” plug-in of 

ImageJ (available from http://rsb.info.nih.gov/ij/). The “Radial Profile Plot” plug-in 

produces a profile plot of normalized integrated intensities around concentric circles as 

a function of distance from a given point. This area of the circle that is integrated can be 

defined arbitrarily by choosing the starting angle and the integration angle by the 

“Radial Profile Extended” plug-in. To decrease the statistical noise, we used a 

fan-shaped area (azimuthal angle of 5°). The 2D scatter images were converted to 1D 

projection data in this process. In addition, we replaced the measured projection data by 

0 at less than 1° to avoid the effects of the primary beam [6]. 

We used a digital dosimeter (Solidose 308; RTI Electronics, Mölndal, Sweden) with a 

solid-state detector (R100; RTI Electronics, Mölndal, Sweden) for the transmission 

measurement. The incident dose and the dose transmitted through the object were 
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measured, and the attenuation coefficient was calculated. 

 

3 Results and discussion 

 

3.1 Numerical simulations 

 

3.1.1 Point object model 

 

Figure 4 shows the projection data simulated at 1L  = 120 mm and 2L  = 240 mm, with 

water set at the original point ( 0l ) and fat set at 20 mm from the original point ( 1l ). A 

shift in the peak position and broadening of the scattering profile were observed in the 

projection at 2L  = 240 mm in comparison to that at 1L  = 120 mm. These projection 

data were input into iy  in equation (9), and the iterative calculation was performed as 

the range of the scattering angle   was 0.5° and the length of the detector element 

D  was 1 mm. 

The results of the calculation with different numbers of iterations are shown in Fig. 5. 

The calculated scattering profile of 0l  (water) with 5 iterations had an error peak near 

the fat peak, and it differed substantially from the input water profile. This error of the 
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profile was improved by increasing the number of iterations. The calculated profile of 

1l  (fat) also differed from the input profile when the number of iterations was low. 

The correlation coefficients for the calculated and input profiles are shown in Fig. 6. 

The correlation coefficients of both materials were markedly increased by increasing the 

number of iterations to around 200, and then gradually converged. Therefore, the 

number of iterations required for convergence does not depend significantly on the type 

of material. However, the correlation coefficient of fat was higher than that of water up 

to around 200 iterations. We inferred that the sharpness of the peak in the fat profile 

matched with the input profile at low numbers of iterations. Therefore, use of a low 

number of iterations before convergence would affect the calculation accuracy for each 

material. 

The rate of change of the correlation coefficient fell below 0.2% with 400 to 500 

iterations. We defined this rate of change as the convergence point, and we calculated 

the scattering profiles to convergence in all following calculations. 

Accurate matching of the calculated profile also depends on the relationship of the 

distance between the first and second detectors. We fixed the first detector at 1L  = 120 

mm, and we varied the distance of the second detector 2L  from 130 to 270 mm at 

intervals of 10 mm and then calculated the correlation coefficients of the profiles. The 
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results indicated that a short distance between the first and second detectors led to 

inaccurate matching of the profiles, as shown in Fig. 7. This inaccuracy was due to the 

relatively small differences in the peak positions in the two projection data sets. 

However, too large an object-to-detector distance caused a reduction of scattered 

photons and ultimately an increase in the patient dose. The correlation coefficients of 

both materials were almost maximal at 2L  = 240 mm and remained at the same level 

thereafter. Therefore, we applied 2L  = 240 mm as the optimum condition. 

To measure the positional resolution, we calculated profiles at 1L  = 120 mm and 2L  = 

240 mm while varying the distance between two object points from 2 mm to 20 mm in 

intervals of 2 mm (Fig. 8a). The results showed that the larger the distance between two 

objects, the larger the correlation coefficient, and the water profile was less accurate 

than the fat profile up to 14 mm. The results of the same simulation with the PC and PE 

pair are shown in Fig. 8b, where the range of the scattering angle   was 0.2° and the 

distance of the detector element D  was 0.4 mm, because the main peak of the PE 

profile cannot be resolved at   = 0.5 and D  = 1 mm. For resolving the position of 

materials, the distances of 14 mm in the water and fat pair, and 6 mm in the PC and PE 

pair, were needed in the case that the level of material existence is 0.95 of the 

correlation coefficient. 



18 

The differences in the angle of each main peak between PC and PE (Fig. 8c) were 

smaller than the relationship between water and fat. Nevertheless, the correlation 

coefficients for PC and PE were larger than those for water and fat, especially when the 

distance between the two objects was short. This more accurate matching of the PC and 

PE pair was probably due to the sharpness of the peak in the input profile of PE. The 

sharpness of the peak was confirmed by the fact that the full width at half maximum 

(FWHM) of the main peak in the input PE profile was 0.25° and that of the fat profile 

was 2.1°. Therefore, it is expected that more crystalline materials, such as bones and 

urinary stones, would have a higher positional resolution due to the ease of localization 

of the scattering position. 

 

3.1.2 Volume object model 

 

We set five calculation points at the same interval in the computationally constructed 

volume object, followed by iterative calculation (Fig. 9). We defined the closest point to 

the detector in PC as the original point, and we set position A as 2 mm distant from the 

original point to the source side, with positions B, C, D, and E at intervals of 4 mm, as 

shown in Fig. 9f. The intensities of the calculated and input profiles are normalized to 
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the peak intensity of position E and the input PE profile, respectively. 

The profile of position C at which both materials were in contact showed a shape that 

would be a mixture of each peak (Fig. 9c). The correlation coefficients of position C to 

the PC and PE profiles were 0.78 and 0.82, respectively (Fig. 9g). 

The profiles of position A and position B were well matched with the input PC profile. 

Notably, position A, which was farthest from PE, had the highest correlation coefficient 

of 0.95. In addition, the profiles of position D and position E showed the same tendency. 

The correlation coefficient between the input PE profile and the profile of position E 

was 0.96. 

The main peak heights of position C or position D, which were close to the other 

material side, were slightly low compared with the input profile. Moreover, the close 

point to the other material side showed an error peak that seemed to be an effect of this 

other material. However, we would be able to distinguish this error peak due to the shift 

of the peak angle. 

 

3.2 Experiment 

 

The experimental results calculated with the same points and parameters as in the 
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simulation (section 3.1.2) are shown in Fig. 10. Calculated profiles were compared with 

the scatter patterns reported by Kosanetzky et al. [30] as the pure original data for PC 

and PE. The intensities of the calculated and original profiles were normalized to the 

peak intensity of position E and the original PE profile, respectively.  

Although the profile shapes of each point were almost the same as those in the 

simulation results shown in Fig. 9, the main peak area of position A was 32% lower than 

that of the original PC profile, and mismatches of the profiles on the high-angle side at 

position A and the low-angle side at position E were observed. These errors in the 

experiment would be due to the effects of attenuation and multiple scattering because 

the simulations do not include these effects. 

The self-attenuation correction which used the attenuation coefficient 0.35 cm-1 at 25 

keV was obtained from the transmission dose through PC and PE because a 2D 

attenuation map could not be obtained with our method (section 2.1). However, we 

corrected the self-attenuation by considering the distance passed through by the 

scattering photons in the object at each angle, and hence the difference in scattering 

intensity was only 0.16% (at position A and a scattering angle of 6°), compared with the 

case in which the respective attenuation coefficients (0.41 cm-1 for PC and 0.30 cm-1 for 

PE at 25 keV in our experiment) were used. Thus, it is unlikely that self-attenuation was 
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the main cause of the mismatches of the profiles in the experiment. 

By analyzing the ratio between the projection estimated by calculation and the actually 

measured projection, we observed a relatively large difference at the second detector. 

Our method does not involve detection of the scattering at a specific angle by the 

collimator in front of the detector, but estimates the scattering according to the relative 

difference in the scattering distributions at two projections. Therefore, our method 

cannot distinguish multiple scattering from the beam path, and it recognizes this as 

incorrect angle scattering from the wrong position. In addition, these scatterings from 

out of the beam path are not corrected for by the distance attenuation correction in 

equation (8); thus, differences in projections would appear especially at the second 

detector, which is set at a relatively long distance from the object. Thus, the mismatches 

of the profiles in the experiment would be caused by the calculation error due to the 

mismatch of the projection data between the first and the second detector affected by 

multiple scattering. Thran et al. [33] attempted a multiple scatter correction in 

coherent-scatter CT. If we eliminate multiple scattering, detection of the photons with 

the same energy as incident X-ray by using the energy selective detector is better 

because multiple scattering results in loss of energy. 
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4 Conclusions 

 

We evaluated our method by numerical simulations, changing the calculation 

parameters and conditions, and demonstrated its usefulness in an experiment by using a 

simple phantom. It was possible to acquire the scattering profiles at given positions 

along the beam path with only a single-direction X-ray beam in studying two pairs of 

materials. This technique confirms the feasibility of developing a coherent-scatter 

imaging system. 
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Fig. 1 Basic concept of estimating coherent scattering profiles from given positions 

along the beam path. 

 

Fig. 2 Scheme of the scattering projected to the 2D plane. 

 

Fig. 3 a) Geometric scheme for acquiring projection data. nl  is the scattering 

(calculation) point, and the point in the object closest to the detector is the origin 0l . 

The projection data are acquired at two different positions. 1L  and 2L  are the 

distances from the origin to the first and second detectors, respectively. The distance of 

the detector element D  and the range of the scattering angle   are the calculation 

parameters, which are adjusted to allow representation of the original shape of the 

material’s profile. b) The beam path within the object for the calculation of 

self-attenuation. 
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Fig. 4 Projection data calculated at the first detector, 1L  = 120 mm, and the second 

detector, 2L  = 240 mm, in numerical simulations. These projections are based on the 

scattering profiles from the 20-mm gap of two point objects: water and fat. The length 

of the detector element D  is 1 mm in this case. 

 

Fig. 5 Calculated scattering profiles of a) water and b) fat position after 5, 50, 100, and 

500 iterations, compared with each input profile. The intensities are normalized to the 

peak intensity of the input profile for fat. 

 

Fig. 6 Correlation coefficients for the calculated and input profiles of water and fat as a 

function of the number of iterations. 

 

Fig. 7 Correlation coefficients for the calculated and input profiles of water and fat as a 

function of the distance 2L . The position of the first detector is fixed at 1L  = 120 mm. 

 

Fig. 8 Correlation coefficients for the calculated and input profiles as a function of the 

distance between a) water and fat, b) PC and PE. c) The input profiles of PC and PE. 
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Fig. 9 a–e) Calculated scattering profiles (numerical simulation) at each position, 

compared with the input profiles of PC and PE. The intensities of the calculated and 

input profiles are normalized to the peak intensity of position E and the PE profile, 

respectively. f) The scheme of the object and calculation points. g) The correlation 

coefficients for the calculated and input PC or PE profiles with the calculation points. 

 

Fig. 10 a–e) Calculated scattering profiles (experiment) at each position compared with 

the original profiles of PC and PE. The intensities of the calculated and original profiles 

are normalized to the peak intensity of position E and the PE profile, respectively. 
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