Involvement of NGF in the Rat Model of Persistent Muscle Pain Associated With Taut Band

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-03
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	http://hdl.handle.net/2297/28500

1	Immunolocalization of Ghrelin in the Stomach of Sprague-Dawley
2	Rat
3	
4	Jun Li ¹ , Shuang-Qin Yi ^{2*} , Heng-Xiao Wang ¹ , Nozomi Yi ^{1, 2} , Yuki Ogawa ¹ , Noriyuki
5	Ozaki ² and Masahiro Itoh ¹
6	
7	¹ Department of Anatomy, Tokyo Medical University, Tokyo, Japan
8	² Department of Functional Anatomy, Kanazawa University, Kanazawa, Japan
9	
10	
11	Running title: Ghrelin in the rat stomach
12	
13	Corresponding author: Shuang-Qin Yi, M.D., Ph.D.
14	Department of Functional Anatomy, Graduate School of Medicine,
15	Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8640, Japan
16	TEL: +81 76 2652494
17	FAX: +81 76 2344221
18	EMAIL: <u>yixim@med.kanazawa-u.ac.jp</u>
19	

20 Summary

21To investigate the distribution of ghrelin in different regions of stomach in Sprague-Dawley rat, and attempt to compare with those of humans and other mammalian species in the present 22study, the stomach of rats was divided into five sections, cardia, fundus, greater curvature, 23lesser curvature and pylorus. Immunohistochemistry and Western blotting were performed to 24investigate the ghrelin-producing cells. The immunolocalization and protein levels of ghrelin 25differed significantly in different regions of stomach in rats. It was present at a high level in 26the greater curvature of the pars glandularis, and the lesser curvature. In the fundus and 27pylorus, no ghrelin immunoreactive cells were detected. In this study, we elucidated the 28distribution of ghrelin-producing cells in different regions of rat stomach in detail for the first 29time. It is further considered that the differences of ghrelin distribution in stomach of different 30 species may induce different stimulatory effects on fat accumulation and metabolism. 3132

Key words: Ghrelin; Stomach; Greater curvature; Immunolocalization; Sprague-Dawley rat
34

35 Introduction

37	Ghrelin was initially identified in the rat stomach as an endogenous ligand of the growth
38	hormone secretagogue receptor. As a potent appetite stimulant, intracerebroventricular,
39	intravenous and subcutaneous injections of ghrelin have been shown to increase food intake
40	(Date et al., 2002; Kojima and Kangawa, 2005; Nakazato et al., 2001; Tschöp et al., 2000;
41	Wren et al., 2001). Ghrelin-producing cells have been detected in oxyntic glands of the rat
42	stomach (Kojima et al., 1999). Ghrelin mRNA was found to be most highly expressed in the
43	stomach among various human tissues, indeed the stomach is a major source of circulating
44	ghrelin (Ariyasu et al., 2001). It has also been reported that ghrelin is predominantly produced
45	in the stomach of rats and humans (Date et al., 2000; Yakabi et al., 2008; Zhao and Sakai,
46	2008). However, the immunolocalization in the different regions of stomach in rats has not
47	been elucidated in detail. Moreover, some inconsistent reports still exist about the
48	immunolocalization of ghrelin in the stomach of rats and other species.
49	Morphologically, in rats, the stomach consists of forestomach and pars glandularis. The
50	forestomach contains the fundus and part of the greater curvature, which has no gastric glands,
51	and the mucosal layer is covered by stratified squamous epithelia (Kurohmaru, 1985), and not
52	occurring oxyntic glands of stomach.
53	In this study, to investigate the distribution of ghrelin-producing cells in the different

54	regions of stomach in rats, the stomach was divided into cardia, fundus, greater curvature,
55	lesser curvature and pylorus as humans. We attempted to compare with those of humans and
56	other mammalian species, and discuss from functional viewpoint.
57	
58	Materials and Methods
59	Animals
60	Male Sprague-Dawley rats (3- to 6-months old, body weight: 350-450 g) purchased from
61	Clea-Japan, Inc. (Tokyo, Japan) were used in the experiment. The animals were housed and
62	handled in accordance with the Guide for the Care and Use of Laboratory Animals and the
63	Guide for the Care and Use of Experimental Animals of the Canadian Council on Animal
64	Care. All rats were housed under controlled illumination (25±2 °C, 12:12 h light/dark cycle,
65	lights on at 08:00) with standard F-2 chow (Nippon Funabashi Farm Co., Ltd., Chiba, Japan),
66	and the pellets and water were supplied ad libitum.
67	All protocols for animal care and experimental procedures (including euthanasia) were
68	reviewed and approved by the Animal Care Committee of Tokyo Medical University and
69	were in accordance with the National Institute of Health guidelines.
70	
71	Tissue preparation for immunohistochemistry

72 Tissue preparation for immunohistochemistry was performed as previously described (Yi et

	al., 2004). Briefly, rats ($n = 10$) were first anesthetized with ether and then injected
74	intraperitoneally with urethrane solution (sodium ethylcarbamate, 900 mg/kg). After the
75	animals were completely anesthetized, perfusion was initiated with normal saline and
76	thereafter with 0.01 M PBS (pH 7.4) containing 4% paraformaldehyde (PFA). The whole
77	stomach, including the esophagus-cardia junction and part of the pylorus, was then removed
78	and divided into 5 sections, cardia, fundus, greater curvature, lesser curvature and pylorus,
79	and then immersed in 4% PFA at 4 °C overnight. The fixed tissue was then routinely
80	embedded in paraffin wax. The sections (5 μm) were cut and placed on gelatin-coated glass
81	slides.
82	
83	Immunohistochemistry
83 84	Immunohistochemistry Immunohistochemical procedures were performed as previously described (Yi et al., 2004).
83 84 85	Immunohistochemistry Immunohistochemical procedures were performed as previously described (Yi et al., 2004). Briefly, after rinsing the fixed tissue specimens in 0.01 M PBS (pH 7.4), endogenous
83 84 85 86	Immunohistochemistry Immunohistochemical procedures were performed as previously described (Yi et al., 2004). Briefly, after rinsing the fixed tissue specimens in 0.01 M PBS (pH 7.4), endogenous peroxidase activity was inhibited by 30-min incubation in methanol containing 0.3% (v/v)
83 84 85 86 87	Immunohistochemistry Immunohistochemical procedures were performed as previously described (Yi et al., 2004). Briefly, after rinsing the fixed tissue specimens in 0.01 M PBS (pH 7.4), endogenous peroxidase activity was inhibited by 30-min incubation in methanol containing 0.3% (v/v) hydrogen peroxidase. After rinsing in PBS, the sections were blocked with Protein Block
83 84 85 86 87 88	Immunohistochemistry Immunohistochemical procedures were performed as previously described (Yi et al., 2004). Briefly, after rinsing the fixed tissue specimens in 0.01 M PBS (pH 7.4), endogenous peroxidase activity was inhibited by 30-min incubation in methanol containing 0.3% (v/v) hydrogen peroxidase. After rinsing in PBS, the sections were blocked with Protein Block Serum-Free (DAKO Cytomation, x0909, USA) for 1 h at room temperature (RT), incubated
83 84 85 86 87 88 88	Immunohistochemistry Immunohistochemical procedures were performed as previously described (Yi et al., 2004). Briefly, after rinsing the fixed tissue specimens in 0.01 M PBS (pH 7.4), endogenous peroxidase activity was inhibited by 30-min incubation in methanol containing 0.3% (v/v) hydrogen peroxidase. After rinsing in PBS, the sections were blocked with Protein Block Serum-Free (DAKO Cytomation, x0909, USA) for 1 h at room temperature (RT), incubated with the primary antibody overnight at 4 °C in a humidified chamber, and then with the

91 (ABComplex/HRP; DAKO, k355, Denmark) was performed by incubating the sections with

ABC complexes for 30 min at RT, and then treating them for 1 min with 923-3-diaminobenzidine and 0.005% H₂O₂, which acted as chromogens. The sections were 93 counterstained with Harris hematoxylin for 50 s, dehydrated in a graded ethanol series and 94 xylene, and mounted under coverslips with Entellan neu (Merck, Dannstadi, Germany). 95The primary and secondary antibodies were rabbit anti-rat ghrelin antibody and 96 biotinylated link anti-rabbit IgG, respectively, details described in Table 1. 97 The control experiments were performed as follows: (1) removal of primary antiserum; (2) 98 substitution of primary antibody with 0.05 M Tris-BSA buffer. The controls were run on 99 sections at the time of treating with the primary antibody. 100 101

102 Western blotting

103	Ghrelin protein levels in the rat stomach ($n = 5$) were measured using Western blotting. After
104	the animals were completely anesthetized, the abdominal cavity was opened and the stomach
105	was removed. The stomach of rat was divided into five sections, cardia, fundus, greater
106	curvature, lesser curvature and pylorus and immediately stored in liquid nitrogen.
107	Western blotting analysis was performed as previously reported with certain modifications
108	(Ohta et al., 2003). Briefly, snap-frozen tissue from rat stomach was homogenized in lysis
109	buffer (10 mM phosphate buffer, pH 7.2, 0.1% Triton X-100, 1 mM
110	phenylmethylsulfonylfluoride, 1 µg/ml leupeptin, 1 µg/ml chymostatin). Insoluble material

Li

111	was removed by centrifugation at 12000 g for 30 min. Approximately 50 μ g of cellular
112	protein extract was loaded into a well, separated electrophoretically through a 10%
113	SDS-polyacrylamide gel, and transferred onto Sequi-Blot PVDF membrane (Atta, Tokyo,
114	Japan) by electroblotting. BSA/Tween-PBS (1% w/v) in Tween-PBS buffer was used to block
115	filters for 3 hr at 4 °C. The primary antibody was added to the membranes for 1 hr at RT.
116	After five washes in blocking buffer, the membranes were incubated with the secondary
117	antibodies for 1 hr at RT. The membranes were finally washed five times in washing buffer;
118	the signals were detected by chemiluminescence using ECL Plus (Amersham Pharmacia
119	Biotech, Chicago, IL, USA) according to the supplier's recommendations. Thereafter, the
120	developed membrane was exposed to X-ray film (Kodak, Wiesbaden, Germany). Ghrelin
121	protein level measuring was made by determining the ghrelin/ß-actin ratio of the
122	immunoreactive area by densitometry.
123	The primary and secondary antibodies were polyclonal rabbit anti-rat ghrelin/polyclonal
124	rabbit anti-ß-actin and horseradish peroxidase-conjugated anti-rabbit IgG, respectively, the
125	details described in Table1. Western blotting band intensity analyses were presented as raw
126	volume by the software of Image Quant TL analysis toolbox (GE Healthcare, Tokyo, Japan).
127	

128 Statistical analysis

129 All sections with ghrelin immunostaining were evaluated. Only nucleated cells with distinct

130	cytoplasmic or surface staining were counted. Positively stained cells were counted in a fixed
131	field of vision. The results are expressed as positive cells /mm ² (Singh et al., 2004).
132	Data are presented as the means \pm SEM. Repeating measures ANOVA analyses were used
133	to perform the test by JSTAT (version 10.0, Tokyo, Japan) software.
134	
135	Results
136	
137	Immunolocalization of ghrelin in the stomach
138	In the Sprague-Dawleg rats, the region showing the highest density of ghrelin
139	immunoreactive cells was the lesser curvature ($67 \pm 7/mm^2$), followed by the greater
140	curvature of the pars glandularis (48 \pm 3/mm ²). In the fundus (0 \pm 0/mm ²) and pylorus (0 \pm
141	0/mm ²), no ghrelin immunoreactive cells were detected (Figs. 1 and 2).
142	No immunoreactive cells $(0 \pm 0/\text{mm}^2)$ were detected in the gastric mucosa of rat stomach
143	when antisera were absorbed with excessive ghrelin.
144	
145	Ghrelin protein distribution in the stomach by Western blotting
146	In Western blotting analyses, the regions showing the highest concentration of ghrelin protein
147	level occurred at the lesser curvature and greater curvature of the pars glandularis, with values
148	of 19.31×10^3 and 17.31×10^3 raw volume respectively. While in the fundus, pylorus and

149 cardia, no ghrelin protein was detected (Fig. 3).

Discussion

153	In this study, the distribution of ghrelin-producing cells in the different regions of stomach in
154	Sprague-Dawleg rats was investigated in detail. It was found that ghrelin-producing cells
155	were absent throughout the fundus, and presented at a high level in the greater curvature of
156	the pars glandularis, and the lesser curvature; and Western blotting analysis also showed the
157	same results.
158	Regarding the immunolocalization of ghrelin in the different regions of stomach in rats,
159	Lee et al. (2002) reported the highest ghrelin expression in the rat stomach fundus. Sakata et
160	al. (2002) also reported that distribution of ghrelin-producing cells appeared in fundic region
161	of stomach in postnatal rats. However, the fundus of rats is located in the forestomach, which
162	has no gastric glands, and the mucosal layer is covered by stratified squamous epithelia in rats
163	(Kurohmaru, 1985). It is possible that the greater curvature was confused with the fundus in
164	rats in these reports. Katayama et al. (2007) reported that mRNA of ghrelin was expressed
165	predominantly in the lower body and pyloric gland of rat stomach, but little or not in the
166	upper body and cardia. Date et al. (2000) also reported that ghrelin cells were distributed from
167	the neck to the base of the rat oxyntic gland and were infrequent in the pyloric gland. In their

168	report, the glandular stomach of rats was divided into the fundus and pylorus; other regions,
169	including the greater and lesser curvatures, were not mentioned in detail.
170	Except for rats, distribution of ghrelin-producing cells in stomach of the humans and other
171	mammalian species has also been reported. Recently, Stengel et al. (2010) reported
172	ghrelin-O-acyltransferase-immunoreactive cells were mainly distributed throughout the
173	middle portion of the oxyntic glands in mice, whereas in rats they were localized mainly in
174	the lower portion of the glands. In humans, it was also reported that the distribution of
175	ghrelin-immunoreactive cells were found in all regions of stomach, but mainly in the fundic
176	region (Tanaka-Shintani and Watanabe, 2005). The results were similar to our recent study in
177	the house musk shrew, Suncus murinus, one of the most common insectivore species.
178	Furthermore, our recent study has demonstrated Suncus murinus has natural
179	obesity-resistant phenomenon (Yi et al., 2010; Li et al., 2010), and it was considered that the
180	different distribution in different regions of stomach in this shrew may be associated with
181	obesity-resistant phenomenon, the relation with fat accumulation and metabolism will need to
182	be investigated further in rats.
109	

183

184 Acknowledgements

185 We wish to thank Associate Professor E. Kawamoto, Laboratory Animal Center, Tokyo

186 Medical University, for his continuing efforts at breeding house shrews. Supported by Grant

187 17590155 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.188

189 **References**

- 191 Ariyasu, H., K. Takaya, T. Tagami, Y. Ogawa, K. Hosoda, T. Akamizu, M. Suda, T. Koh, K.
- 192 Natsui, S. Toyooka, G. Shirakami, T Usui, A. Shimatsu, K. Doi, H. Hosoda, M. Kojima, K.
- 193 Kangawa, and K. Nakao, 2001: Stomach is a major source of circulating ghrelin, and
- 194 feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J. Clin.
- 195 Endocrinol. Metab. **86**, 4753-4758.
- 196 Date, Y., M. Kojima, H. Hosoda, A. Sawaguchi, M.S. Mondal, T. Suganuma, S. Matsukura, K.
- 197 Kangawa, and M. Nakazato, 2000: Ghrelin, a novel growth hormone-releasing acylated
- 198 peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats
- and humans. Endocrinology **141**, 4255-4261.
- 200 Date, Y., N. Murakami, K. Toshinai, S. Matsukura, A. Niijima, H. Matsuo, K. Kangawa, and
- M. Nakazato, 2002: The role of the gastric afferent vagal nerve in ghrelin-induced feeding
- and growth hormone secretion in rats. Gastroenterology **123**, 1120-1128.
- 203 Katayama, T., S. Shimamoto, H. Oda, K. Nakahara, K. Kangawa, and N. Murakami, 2007:
- 204 Glucagon receptor expression and glucagon stimulation of ghrelin secretion in rat stomach.
- 205 Biochem. Biophys. Res. Commun. **357**, 865-870.

206	Kojima, M., H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, and K. Kangawa, 1999: Ghrelin is
207	a growth-hormone-releasing acylated peptide from stomach. Nature 402 , 656-660.
208	Kojima, M., K. Kangawa, 2005: Ghrelin: structure and function. Physiol. Rev. 85, 495-522.
209	Kurohmaru, M., 1985: V-6: Characteristics of the gastrointestinal tract of the house musk
210	shrew, Suncus murinus. In: Suncus murinus, Biology of the Laboratory Shrew. Kondo K,
211	Oda S, Kitoh J, Ota K, Isomura G eds. 1 st ed. Tokyo: Japan Scientific Societies Press
212	389-396 (In Japanese).
213	Lee, H.M., G. Wang, E.W. Englander, M. Kojima, and G.H. Jr Greeley, 2002: Ghrelin, a new
214	gastrointestinal endocrine peptide that stimulates insulin secretion: enteric distribution,
215	ontogeny, influence of endocrine, and dietary manipulations. Endocrinology 143, 185-190.
216	Li, J., S.Q. Yi, H. Terayama, M. Naito, S. Hirai, N. Qu, H.X. Wang, N. Yi, N. Ozaki, and M.
217	Itoh, 2010: Distribution of ghrelin cells in stomach and the effect of ghrelin intraperitoneal
218	administration in house musk shrew (Suncus murinus). Neuroendocrinol. Lett. 31, 406-412.
219	Nakazato, M., N. Murakami, Y. Date, M. Kojima, H. Matsuo, K. Kangawa, and S. Matsukura,
220	2001: A role for ghrelin in the central regulation of feeding. Nature 409 , 194-198.
221	Ohta, T., K. Shimizu, S.Q. Yi, H. Takamura, K. Amaya, H. Kitagawa, M. Kayahara, I.
222	Ninomiya, S. Fushida, T. Fujimura, G. Nishimura, and K. Miwa, 2003: Protease-activated
223	receptor-2 expression and the role of trypsin in cell proliferation in human pancreatic
224	cancers. Int. J. Oncol. 23, 61-66.

225	Sakata, I., T. Tanaka, M. Matsubara, M. Yamazaki, S. Tani, Y. Hayashi, K. Kangawa, and T.
226	Sakai, 2002: Postnatal changes in ghrelin mRNA expression and in ghrelin-producing cells
227	in the rat stomach. J. Endocrinol. 174, 463-471.
228	Singh, J.A., T. Arayssi, P. Duray, and H.R. Schumacher, 2004: Immunohistochemistry of
229	normal human knee synovium: a quantitative study. Ann. Rheum. Dis. 63, 785-790.
230	Stengel, A., M. Goebel, L. Wang, Y. Taché, G. Sachs, and N.W. Lambrecht, 2010:
231	Differential distribution of ghrelin-O-acyltransferase (GOAT) immunoreactive cells in the
232	mouse and rat gastric oxyntic mucosa. Biochem. Biophys. Res. Commun. 392, 67-71.
233	Tanaka-Shintani, M., and M. Watanabe, 2005: Distribution of ghrelin-immunoreactive cells
234	in human gastric mucosa: comparison with that of parietal cells. J. Gastroenterol. 40,
235	345-349.
236	Tschöp, M., D.L. Smiley, and M.L. Heiman, 2000: Ghrelin induces adiposity in rodents.
237	Nature 407 , 908-913.
238	Wren, A.M., L.J. Seal, M.A. Cohen, A.E. Brynes, G.S. Frost, K.G. Murphy, W.S. Dhillo, M.A.
239	Ghatei, and S.R. Bloom, 2001: Ghrelin enhances appetite and increases food intake in
240	humans. J. Clin. Endocrinol. Metab. 86, 5992.
241	Yakabi, K., J. Kawashima, and S. Kato, 2008: Ghrelin and gastric acid secretion. World J.

- 242 Gastroenterol. **14**, 6334-6338.
- 243 Yi, S.Q., K. Akita, T. Ohta, T. Shimokawa, A. Tanaka, F. Ru, T. Nakatani, G. Isomura, and S.

244	Tanaka, 2004: Cellular localization of endocrine cells in the adult pancreas of the house
245	musk shrew, Suncus murinus: a comparative immunocytochemical study. Gen. Comp.
246	Endocrinol. 136, 162-170.
247	Yi, S.Q., J. Li, N. Qu, H.X. Wang, M. Itoh, T. Yamaguchi, S. Oda, and N. Ozaki, 2010: House
248	musk shrew, Suncus murinus: a novel and natural obesity-resistant animal model. Obes.
249	Metab. 6, 22-28.
250	Zhao, Z., and T. Sakai, 2008: Characteristic features of ghrelin cells in the gastrointestinal
251	tract and the regulation of stomach ghrelin expression and production. World J.
252	Gastroenterol. 14, 6306-6311.
253	

254

Figures legends

255	Fig. 1. The longitudinal section of the stomach (upper) and immunolocalization of ghrelin in
256	the stomach (under) of Sprague-Dawleg rat. Regions locating at the right and left of the line
257	(in longitudinal section) show the forestomach (fs) and pars glandularis (pg) respectively. (a)
258	fundus, (b) greater curvature, (c) lesser curvature, (d) pylorus. Arrows indicate ghrelin
259	immunoreactive cells. ca, cardia; du, duodenum; fu, fundus; gc, greater curvature; lc, lesser
260	curvature; and py, pylorus. Scale bars = stomach, 1200 μ m; fu and others, 200 μ m.
261	
262	Fig. 2. Relative quantitation of ghrelin-producing cells in the stomach of Sprague-Dawleg rats
263	$(/mm^2)$ from the immunoreaction. Data are presented as the mean \pm SEM.
264	
265	Fig. 3. Levels of ghrelin in the stomach of Sprague-Dawleg rats by Western blotting. Western
266	blotting band intensity analysis results are also presented. st, stomach; ca, cardia; fu, fundus;
267	gc, greater curvature; lc, lesser curvature; and py, pylorus.

Table 1. Antibodies used in this study.

Antibodies	Code	Source	Dilution	Purpose
Rabbit anti-rat ghrelin	No: KR069	Trans Genic Inc.,	1:2500	IHC
		Japan		
Biotinylated link	No: K1491	DAKO Cytomation,	Ready to	IHC
anti-rabbit IgG		USA	use	
Rabbit polyclonal	No: F2607	Santa Cruz	1:200	WB
anti-rat ghrelin		Biotechnology, USA		
Rabbit polyclonal	No: B1308	Santa Cruz	1:200	WB
anti-ß-actin		Biotechnology, USA		
Horseradish	No: 329616	Amersham	1:10000	WB
peroxidase-conjugated		Biosciences, UK		
anti-rabbit IgG				

IHC, Immunohistochemistry; WB, Western blotting.

