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 

Abstract—One of the most characteristic features of biological 

molecular networks is that the network structure itself changes, 

depending on the cellular environment. Indeed, activated 

molecules show a variety of responses to distinctive cell 

conditions, and subsequently the network structures of active 

molecules also change. Here we present an approach to trace the 

network structure changes by using the graphical chain model 

developed from the gene expression data. The previous 

procedure for applying the graphical chain model to the 

expression profiles of a limited number of genes has been 

improved to analyze the entire set of genes. Furthermore, the 

chain model has been rearranged according to the association 

strength, and was scrutinized to identify the candidates of 

essential gene-gene relationships for the network changes, by 

using the path consistency algorithm. The improved procedure 

was applied to the expression profiles of 8,427 genes, which were 

measured in two distinctive stages of liver cancer progression. As 

a result, the chain model of the 18 gene cluster relationships with 

strong associations was inferred, in which the coordination of 

clusters was described in the cell stage progression, and the 

gene-gene relationships between known cancer-related genes 

causing the progression were further refined. Thus, the present 

procedure is a useful method to model the network structure 

changes in the cell stage progression, and to clarify the gene 

candidates for the progression. 

I. INTRODUCTION 

NE of the remarkable relationships between molecules in 

living organisms is the drastic changes of network 

structures in response to the environment. For example, it is 

well known that a specific set of molecules, among all of the 

molecules in a cell, is activated, in response to environmental 

stress [1, 2]. Unfortunately, the experimental techniques for 

monitoring the activated molecules in a living cell still require 

further development. Thus, it is desirable to be able to infer 

the network structure of activated molecules from data 

measured under distinctive conditions.  
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In human liver infected by hepatitis C virus (HCV), the 

infection induces the development of chronic hepatitis (CH), 

cirrhosis, and in some instances, hepatocellular carcinoma 

(HCC) [3]. The virological features of the infection were 

described [4, 5], and we previously reported that the gene 

expression profiles in chronic hepatitis C (CH-C) 

predominantly induced inflammatory and anti-apoptotic 

phenotypes. However, the network structure changes inducing 

these modifications in gene expression still remain to be 

elucidated. 

Recently, we have developed a procedure [6] for tracing the 

network structure changes from the gene expression data by 

using the graphical chain model (GCM) [7-10]. In the 

application of GCM to the expression data measured in 

progressive cell stages, the block and the variables in blocks 

correspond the cell stage and the genes characteristically 

expressed in each stage, respectively. Since GCM exhibits the 

overlaps of the variables between the blocks, the genes 

responsible for distinctive stages should be selected among 

the set of entire genes. Indeed, in our previous application of 

GCM to the yeast cell-cycle [6], we adopted the gene sets of 

about 700 genes that characterized each cell stage, from a 

previous study [11]. In general, the genes that are 

characteristically expressed in distinctive stages are identified 

most effectively by discriminating between the stages. In this 

case, however, the genes that are continuously up-regulated or 

down-regulated over the stages are not selected. In the case of 

progressive processes, the continuously up (or 

down)-regulated genes may be important for identifying the 

molecular mechanisms underlying the stage progression. 

Here, we have improved the previous procedure [6] to 

detect the changes of network structures more efficiently, by 

using the entire set of genes. The procedure was applied to the 

expression profiles measured in two stages of hepatocellular 

carcinoma, from CH to HCC [4, 5]. For each stage, all of the 

genes in the analyzed data were systematically classified into 

three groups, up-, down-, and unchanged regulated gene 

groups, and based on the classification, the three blocks in 

GCM-CH, HCC, and background-were defined. In particular, 

the background includes the genes that are continuously up- 

and down-regulated, and the influence of these genes on the 

progression from CH to HCC was estimated. Thus, the 

improved procedure allowed us to describe the network 

structure changes of entire sets of genes. Furthermore, the 

transformation of the inferred network structure helped to 

reveal the candidates of the gene-gene relationships causing 
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the cancer progression, including known cancer-related genes. 

II. MATERIALS AND METHODS 

A. Expression Profile Data 

The expression profiles of 8,427 genes were monitored in 6 

normal, 32 CH and 17 HCC samples [4]. Relative expression 

ratios of 8,427 genes were obtained by comparing 

hybridization of Cy5-labeled cDNAs from chronic hepatitis 

lesions and Cy3-labeled cDNA from normal liver tissue. 

B. Graphical Chain Modeling (GCM) 

The graphical chain model (GCM) is a probability model 

for multivariate random observations, in which the 

independence of the structure can be represented by a graph 

[7-10]. Here, we will briefly describe GCM. 

The graph G = (V, E) consists of a set of vertices V, 

representing the variables, and a set of edges E, representing 

the associations between pairs of variables. E is a set of 

ordered pairs (A, B), A, B  V. The chain graph is based on the 

partitioning of V into disjointed subsets: V = V1  V2  … 

VT. The subsets are called blocks or chain components. The 

edges within blocks are undirected, reflecting the systematic 

associations, and the edges between blocks are arrows 

pointing from blocks with lower index numbers to those with 

higher indices. A graphical chain model displays the 

independence between variables conditioned on all of the 

other variables in the current and previous blocks. In a 

graphical chain model, any direct association between two 

variables in the same block is assumed to be non-causal, and is 

represented by an undirected edge (line) in a graph. Any direct 

association between two variables from different blocks is 

assumed to be potentially causal, and is represented by a 

directed edge (arrow). The absence of a line or arrow between 

two variables in the graph indicates that there is no direct 

association between the variables, i.e. the variables are 

independent, after controlling for all of the other variables in 

the same and previous blocks. 

The graphical chain model is fitted in a number of stages. 

When fitting a graphical chain model, the first step is to 

partition the variables into a number of ordered blocks.   Then, 

the significant direct associations between the variables in the 

first block are determined. For each pair of variables, the null 

hypothesis when tested shows that the variables are 

independent, given all of the other variables in the first block, 

and the deviance statistics in graphical Gaussian modeling 

(GGM) is used [12]. 

Next, the significant direct associations between the 

variables in the second block and between the first and second 

blocks are determined. For each pair of variables, the null 

hypothesis when tested shows that the variables are 

independent, given all of the other variables in the first and 

second blocks, and again the deviance statistics is used. 

The fitting continues, block by block, by determining all of 

the significant direct associations between the variables in the 

current block and between all of the variables in the current 

and previous blocks. The null hypothesis is now independence, 

given the other variables in the current and previous blocks, 

and again the deviance statistics in GGM is used. In other 

words, the procedure of GCM is the iteration of GGM. All of 

these tests were carried out at the 5% level, using the 2
 

distribution in deviance statistics. 

In the present study, the block in the graphical chain model 

simply corresponds to the cell stages that are defined by 

biological information. By the intact correspondence to 

graphical chain modeling, the variable is the gene that has an 

expression profile with numerical values. However, since the 

expression profiles often show similar patterns, the genes are 

highly related to one another. Thus, hierarchical clustering is 

performed for the genes within each block, as a preprocessing 

step for the graphical chain modeling [7-10], and then, each 

gene cluster corresponds with the variable in the present 

procedure. 

C. Improved Procedure for Applying GCM to Gene 

Expression Profiles 

In the present study, we improved the procedure for 

applying GCM to gene expression measured in two cell stages. 

The overview of the present procedure is described in Fig. 1. 

1) Standardization 

The expression profiles of all genes are standardized by the 

average and the standard deviation for each sample, i.e., 

j

jij
ij

SD

AVx
z




, 

where zij and xij are the standardized and intact expression 

values of the i-th gene and the j-th sample, respectively, and 

AVj and SDj are the average and the standard deviation of all 

genes over the j-th sample, respectively. This allows the noise 

of the expression profiles of each gene, due to the differences 

between samples, to be excluded by the transformation of the 

 

 
 
Fig. 1. Improved procedure for applying GCM to gene expression 

profiles in two stages. 

 

ThC11.3

5625



  

intact expression degree into a standardized value, the 

z-value. 

2) Division of Average Expression Values into Three 

Classes 

The average expression values for each gene are calculated 

over the samples in one stage. Then, the genes are divided into 

three classes in terms of the average value: up-regulated gene 

class („+‟, abbreviation of class), down-regulated gene class 

(„-„), and the other class („/‟). If the average value of a gene 

ranges more than the 25 th percentile, less than the 75 the 

percentile, and between the 25 th and 75 th percentiles, then 

the corresponding gene is regarded as up-regulated, 

down-regulated, and the other class, respectively. 

3) Hierarchical Clustering 

All genes in the analyzed data were subjected to 

hierarchical clustering. In the present clustering, the metric is 

Pearson‟s correlation coefficient of genes between the 

expressions of samples, and the technique is the Un-weighted 

Pair Group Method using the Arithmetic average (UPGMA). 

The number of clusters was estimated by using the variance 

inflation factor, defined in the previous study [13]. 

4) Cluster Characterization in Terms of Expression Class 

Based on the gene classification into the three classes 

mentioned in 2), the clusters are characterized: each stage is 

characterized by the maximum number of gene classes. For 

example, if 50, 10, and 5 genes belonging one cluster in one 

stage are „+‟, „/‟, and „-„, respectively, then the cluster in the 

stage is characterized by [+]. According to the above rule, the 

class pairs in the two stages were defined: the nine class pairs 

in the two stages are [+, +], [+, /], [+, -], [/, +], [/, /], [/, -], [-, +], 

[-, /], and [-, -]. 

5) Allocation of Three Expression Classes into Clusters 

The clusters with the pairs of three expression classes for 

the two stages described in 4) were allocated to three groups. 

The rules for allocation are simple. First, if a cluster shows an 

up-regulated class at only one stage, then the cluster is 

allocated into a group that represents the corresponding stage. 

Second, among the remaining clusters, if a cluster also shows 

a down-regulated class at only one stage, then the cluster is 

allocated into a group that represents the corresponding stage. 

Finally, the remaining clusters are allocated into a 

hypothetical group, named the background stage. This is 

because the up-regulation of the gene indicates that the 

corresponding gene product increases, and plays a important 

role in the stage. Thus, for example, the clusters allocated into 

the first cell stage are composed as follows: according to the 

first rule, the up-regulated cluster class in the first cell stage 

and the other cluster class in the second cell stage [+, /] and the 

up-regulated cluster class in the first cell stage and the 

down-regulated cluster class in the second cell stage [+, -] are 

allocated. The down-regulated cluster class in the first cell 

stage and the other cluster class in the second cell stage [-, /] 

are then allocated, according to the second rule. The clusters 

are allocated into the second cell stage according to the same 

rule: [/, +], [-, +], and [/, -]. Finally, the clusters allocated into 

the background stage are the remaining clusters, i.e., [+, +], [-, 

-], and [/, /]. Here, the background stage is a hypothetical stage 

for considering the influence of the expression of 

uncharacterized genes on that of well-characterized genes, 

depending on the two cell stages. In other words, the variables 

in the hypothetical stage are viewed as purely explanatory 

variables, whereas the variables in the second and subsequent 

blocks are viewed as responses to the variables in the 

preceding blocks. Note that the usual approach, based on the 

gene selection by discrimination between the two stages, does 

not consider the effect of the genes showing a constant degree 

of gene expression. 

6) GCM 

Finally, we perform GCM for the three groups of clusters 

that were allocated in 5). In this case, the order of the above 

groups is set in the order of the background stage, the first 

stage, and the second stage. It seems natural that the 

background stage influences both the first and second stages. 

Thus, we can estimate the causal relationship between the 

clusters in the first stage and the background and between the 

clusters in the second stage and the background, as well as 

between the clusters in the first and second stages. 

D. Securitization of Chain Model 

The chain model obtained by the standard algorithm of 

GCM frequently has many edges, and thereby adopts a messy 

form with many nodes and edges. Even in a sparse form, each 

node obtained by cluster analysis for the entire set of genes 

also frequently contains many genes. To scrutinize the genes 

responsible for the network structure change in the chain 

model, therefore, we further devised two techniques: one for 

the former issue is the evaluation of the association strength of 

each edge in the model, and the other for the latter issue is the 

inference of the gene-gene association in the selected clusters. 

The details of the two techniques are described below. 

1) Evaluation of Association Strength in Chain Model 

When there are many edges, drawing them all on one graph 

produces a mess or `spaghetti' pattern, which would be 

difficult to read. Indeed, in some examples of the application 

of GGM to actual profiles, the intact networks derived by 

GGM still showed complicated forms with many edges [14]. 

The similar situation may be expected in GCM, which is the 

iteration of GGM. Thus, the strength of the association 

between clusters is evaluated in a statistical way: the intact 

network can be rearranged according to the partial correlation 

coefficient value, to interpret the associations between 

clusters. The strength of the association can be assigned by a 

standard test for the partial correlation coefficient, rij,rest, 

between the variables i and j, given the resting variables [15]. 

By Fisher‟s Z transformation of partial correlation coefficients, 

i.e., 























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r

r
Z

1

1
log

2
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, 

Z distributes according to the following normal distribution: 
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where Nc and M are the number of conditions and the number 

of clusters, respectively. Thus, we can statistically test the 

observed correlation coefficients under the null hypothesis 

with a significance probability. 

2) Application of Path Consistency Algorithm 

The application of GCM to the entire data set with the 

combination of cluster analysis produces a macroscopic view 

of the causal relationships between them. This is partly 

because the entire data set contains a similar pattern of gene 

profiles, and partly because the noise in the data due to various 

effects prevents us from inferring the entire relationship at a 

fine level, such as the causal relationship between the genes. 

However, if partial sets of genes are selected by GCM, then 

the selected sets of genes may be appropriate for applying a 

fine analysis to infer a causal relationship between the genes. 

Thus, the relationships between the constituent genes in the 

clusters whose relationships are inferred by GCM are also 

inferred by another graphical modeling method, the path 

consistency (PC) algorithm [16]. The PC algorithm is 

composed of two parts: the undirected graph inference by the 

partial correlation coefficient and the following directed graph, 

obtained by using the orientation rule based on the inferred 

undirected graph. A brief overview of the PC algorithm and 

the modifications for the present analysis is described below. 

The first part of the algorithm is simple. The relationship 

between two variables is tested from the lower partial 

correlation coefficient to the higher one. For example, the 

relationship between the two variables is first tested by the 

zero-th partial correlation coefficient. If the null hypothesis is 

accepted, i.e., no association between the two variables, then, 

the relationship between the two variables is tested by the first 

partial correlation coefficient. If it is rejected, then the test is 

not performed. In general, the (m-2)-th order of the correlation 

coefficient is calculated between two variables, given (m-2) 

variables, i.e., rij,rest, between Xi and Xj, given the „rest‟ 

variables, {Xk} for k=1, 2, …, m, and k≠i, j, and after 

calculating the (m-2)-th order of correlation coefficient, the 

algorithm naturally stops. However, the algorithm does not 

usually request the (m-2)-th order of correlation coefficient for 

the natural stop. This is because no adjacent variables will be 

found after excluding the variables, even in the calculation of 

the lower order of the correlation coefficient. In the practical 

analysis of sample data, the zeroth-order of the correlation 

coefficient is calculated by Pearson‟s correlation coefficient, 

rij, expressed by 

)var()var(

),cov(

ji

ji
ij

XX

XX
r 

, 

where cov (Xi, Xj) and var(Xi) are the covariance between Xi 

and Xj, and the variance of Xi, respectively. The higher order 

of the correlation coefficients is the partial correlation 

coefficient, rij,rest, expressed by 

jjii

ij

restij

rr

r
r




,

, 

where (ij, rest) means {1,2, …, p}]\{i,j}, and r
ij
 is the i-j 

element of the inverse correlation coefficient matrix. Note that 

the dimension of the correlation coefficient matrix 

corresponds to the orders of the correlation coefficients. The n 

th-order correlation coefficient is calculated from the (n+2) 

dimension of the correlation coefficient matrix. The 

correlation coefficient is statistically tested by using the 

Z-statistic [15], as in the case of the association strength 

evaluation in i). 

Based on the inferred undirected graph, C, the direction of 

each graph is decided in the second part, according to the 

orientation rule [17]. The rules for the direction decision in C 

are as follows: 

i) If there is an undirected relationship, X−Y−Z, and X and 

Z are not adjacent, then the direction is decided as being 

X→Y←Z. 

ii) If there is a relationship, X→Y−Z, and X and Z are not 

adjacent, then the direction is decided as being X→Y→Z. 

iii) If there is a directed path between X and Y, and there is 

a relationship, X−Y, then the direction is decided as being 

X→Y. 

The key point in the present network inference is a 

modification of the original PC algorithm, for application to 

the expression profiles. The modification corrects the 

algorithm in the calculation of the partial correlation 

coefficient. Since many genes frequently show very similar 

patterns of expressions, the difficulty arises in the numerical 

calculation of correlation coefficients, due to the 

multi-colinearity between the variables. The original PC 

algorithm accidentally stops, if only one correlation between a 

pair of variables shows a violation of the numerical 

calculation, against the high similarity of the expressions. To 

escape the accidental stop by the highly associated gene pairs, 

the original PC algorithm was modified as follows: if the 

calculation of any order of correlation coefficient between the 

variables is violated, then the corresponding pair of variables 

is regarded as being dependent. 

E. Software 

All calculations of the present clustering and GGM were 

performed by the ASIAN web site [18](http://eureka.cbrc.jp 
/asian) and “Auto Net Finder”, the commercialized PC 

version of ASIAN, from INFOCOM CORPORATION 

(http://www.infocom.co.jp/bio/download/). 

III. RESULTS AND DISCUSSION 

A. Clustering and Its Allocation into the Three Stages 

According to the procedure described in the preceding 

section, first, all genes characterized by the three degrees of 

expression were subjected to the cluster analysis, and then the 
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clusters were allocated into the three stages. The clusters and 

their allocations are listed in TABLE I  

As seen in TABLE I, all of the genes were grouped into 30 

clusters, with various numbers of members. Indeed, the 

minimum and maximum numbers of genes among the 30 

clusters were 9 in cluster 8 and 1,011 in cluster 23, 

respectively, and the average number of genes was 274.9, with 

a standard deviation of 243.3 genes. Based on the rule in 

II-C-5), the clusters were allocated to the three stages, 

Background, CH, and HCC. The classes of clusters in the CH 

and HCC stages are listed in the third column in the table, and 

the numbers of genes belonging to the class pairs of the two 

stages are listed in the fourth column. The total numbers of 

genes belonging to the class pairs were 3,908 among the 8,247 

genes analyzed in the present study: the average fraction of the 

numbers of genes in the fourth column to those in the second 

column was 0.513, with a standard deviation of 0.275. Thus, 

more than half of the genes were responsible for the allocation 

of the clusters into the three stages. Finally, the numbers of 

clusters allocated to Background, CH, and HCC were 14 

(2,370 genes), 9 (951 genes), and 7 (587 genes), respectively. 

The present allocation of clusters, with its small bias, may 

reveal the relationships between the clusters in the progression 

from CH to HCC.  

B. Chain Model 

The partial correlation coefficient matrix generated by 

TABLE I 

ALLOCATION OF CLUSTERS INTO THE THREE STAGES 

 Cluster Number Number of members Cluster class pair
Number of genes in

corresponding class pair
Allocated stage

1 146 [+, /] 66 CH

2 476 [+, /] 271 CH

3 654 [/, /] 394 B

4 198 [/, +] 54 HCC

5 440 [-, -] 173 B

6 229 [/, -] 127 HCC

7 51 [+, +] 47 B

8 9 [+, +] 9 B

9 288 [-, /] 85 CH

10 400 [/, +] 137 HCC

11 318 [-, /] 77 CH

12 272 [/, +] 115 HCC

13 188 [-, /] 85 CH

14 277 [-, -] 191 B

15 179 [/, /] 70 B

16 63 [+, /] 14 CH

17 310 [/, /] 86 B

18 184 [+, /] 38 CH

19 47 [-, -] 44 B

20 110 [-, -] 102 B

21 160 [-, /] 28 CH

22 950 [/, /] 565 B

23 1011 [+, /] 287 CH

24 23 [-, -] 23 B

25 392 [+, +] 281 B

26 127 [-, -] 92 B

27 274 [/, +] 126 HCC

28 40 [-, +] 6 HCC

29 316 [-, -] 293 B

30 115 [/, -] 22 HCC  

 

TABLE II 

PARTIAL CORRELATION COEFFICIENT MATRIX FOR THE THREE STAGES BY GCM 
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GCM is shown in TABLE II. By GCM, 195 (44.8%) of the 

possible 435 edges in the full model of 30 clusters were 

deleted; thus, there were still 242 edges in the inferred chain 

model, and its form was too complicated to interpret the entire 

association between the clusters. Within and between the three 

stages, the numbers of deleted edges were relatively uniform, 

except for those between Background and HCC: only 26 

(26.5%) of 98 edges (=14x7) were deleted. In other words, the 

influence of the clusters in the Background to those in HCC 

was inferred in the model. 

C. Arrangement of Chain Model 

According to the procedure for evaluating the association 

strength, the chain model corresponding to the partial 

correlation coefficient matrix was arranged. To interpret the 

model, the strong associations with the significant (p<0.01, 

r>0.510) edges were selected: in the rearranged model, 22 

clusters showed the strong association, and 8 clusters were 

isolated (not depicted in the figure).  

By the above arrangement, a simple chain model emerged 

in Fig. 2. As seen in the figure, the number of edges within the 

three stages was less than those between them. In particular, 

there was only one edge in CH, and HCC had two edges, 

whereas there were 6 edges in Background. In contrast, 10 

edges emerged between the three stages: there were 5 edges 

from Background to HCC, and in contrast, there were no 

edges from Background to CH. Thus, the bias of the numbers 

of edges between the stages to those within each stage 

suggests that the genes were coordinately expressed in 

accordance with the cancer progression.  

The following relationships are particularly remarkable: 

cluster 29 in Background, cluster 1 in CH, and cluster 6 in 

HCC ({29→6←1}), {(22, 25)→12←11}, and {17→10←(9, 

21)}. In the above cluster sets, the clusters in Background and 

in CH were coordinately related to the cluster in HCC. Since 

conventional approaches consider only the differences in gene 

expression between the two stages, the above relationships 

between the three stages, Background, CH, and HCC, would 

frequently be neglected. Thus, these clusters have the 

possibility of containing the essential genes responsible for 

cancer progression, which were not detected by the 

conventional discrimination approaches.  

 

D. Gene-Gene Relationships between Clusters 

Here, we focus on the genes responsible for the 

relationships between the three cluster sets in the preceding 

section. However, since the clusters still contain many genes, 

further analysis is needed to refine the candidates of the genes 

responsible for the cluster-cluster relationships. For this 

purpose, the PC algorithm was performed for the genes 

belonging to the respective sets. Then, the gene-gene 

relationships consistent with the relationship between the 

clusters were selected. For example, in the first set, {29→6←

1}, all of the genes belonging to clusters 29, 1 and 6 were 

attributed by the PC algorithm. If the inferred relationship of 

the genes belonging to the respective clusters is consistent 

with that between clusters 29, 1, and 6, then the gene sets were 

extracted from all of the gene-gene relationships inferred by 

the PC algorithm.  

The gene-gene relationships narrowed down by the above 

procedure are listed in Table III. As seen in the table, 40 

gene-gene relationships were narrowed down from a large 

number of possible gene relationships in the cluster 

 
 

Fig. 2. Chain model for hepatitis C virus-related hepatocellular 

carcinoma. In the chain model, the edges showing strong associations 

with less than 1% significance probability are depicted, but the isolated 

edges are not. The numbers in the circles correspond to the cluster 

numbers in TABLE I. The clusters allocated to the background, CH, 

and HCC are located in the upper, left, and right parts of the figure, 

respectively, and are separated by dotted lines. 

TABLE III 

GENE-GENE RELATIONSHIPS IN COORDINATED CLUSTER-CLUSTER 

RELATIONSHIPS 
Cluster 

Relationships 
Gene Relationships 

{29→6←1} 

ARL6IP→CDH1←FGFR2, Hs.209450→BHMT2←

SFRS11, SCP2→BHMT2←SFRS11, CYP4X1→NDRG1←

ELYS, GPAM→SYP←KIAA0182, RRAS2→CLDN12←

PXMP3, ARCN1→VDAC1←Hs.433078, SHANK2→

PDSS2←COX7B, MYO1B→KTN1←FKBP3, ARCN1→

KIAA0073←RNF146 

{22→12←11} 

NEO1→KRT14←FLJ12270, NEO1→KRT14←IGHMBP2, 

RANBP3→IL1RL1←SSRP1, Hs.79241→CD2←NFKB2, 

MGC4606→SLA/LP←EFNB2, PKD2L1→TK2←GNAI2, 

ADA→FLJ46603←HOXA9, GGA3→RAP1A←LSM14B, 

LMLN→RAP1A←LSM14B, ZNF638→GTPBP6←

Hs.298289, DCT→GTPBP6←Hs.298289, Hs.191356→

PTMS←ATP2A3, Hs.378847→UBE2G2←TEAD3, LIM→

UBE2G2←TEAD3, TCF7L2,FLJ23556→

CTAG1B,CTAG1A←Hs.107410, SAPS3→MYO1E←

ZNF175, SYNE1→SLC12A2←Hs.127657, C4.4A→PTEN

←NAPB, MGC23985→DDB1←HOXA9 

{25→12←11} 

T→MYCN←SLC30A4, CENTB1→CD2←NFKB2, SPINT2

→IRF3←ACVRL1, Hs.504960→TRAF2←BYSL, 

Hs.504960→TRAF2←SP192, MGC11266→CSNK1E←

MCRS1, Hs.23871→ELAVL2←Hs.439153, GFPT1→BCL3

←Hs.2173, KIAA1030→SEC5L1,HUS1B←TEB4 

{17→10←9} NAB2→STARD3←OPHN1, CINP→KRT8P12←MYF5 

 

ThC11.3

5629



  

relationships, {29→6←1}, {22→12←11}, {25→12←11}, 

and {17→10←9}: in {17→10←21}, no gene relationships 

were detected. Interestingly, known cancer-related genes were 

included in the constituent genes of the relationships. Indeed, 

17 genes in 17 relationships are described as the 

cancer-related genes in OMIM (Online Mendelian Inheritance 

in Man) [19]: CDH1, FGFR2, RRAS2, NEO1, NFKB2, TK2, 

HOXA9, ATP2A3, TCF7L2, CTAG1B, C4.4A, PTEN, 

MYCN, SPINT2, TRAF2, BCL3, and STARD3. Note that 

both known cancer-related genes and genes with other 

functions were included in most relationships. In these cases, 

genes with other functions may be involved in the cancer 

progression. In addition, some genes with unidentified 

functions were also included in the relationships above. This 

may suggest that one of the functions of the genes may be 

related to the cancer progression. At any rate, the gene-gene 

relationships, which were narrowed down with reference to 

network structure changes, reflect well the knowledge about 

the genes responsible for the cancer, and show the possibility 

of unknown relationships related to the cancer progression. 

E. Merits and Pitfalls 

We proposed a procedure for inferring a model for 

progressive stages from the entire data set, by using the 

graphical chain model. Furthermore, the following analyses of 

the evaluation of association strength by a statistical test and 

the selection of gene-gene relationships by the PC algorithm 

narrowed down the candidates of the gene sets causing the 

inferred cluster-cluster relationships. By using the above 

procedure, we analyzed 8,427 gene expression profiles in the 

two stages of hepatocellular carcinoma from CH to HCC. By 

the analyses, the chain model including the background stage 

was constructed, and several gene cluster connections were 

found to cause the progression from CH to HCC. Furthermore, 

40 candidates of gene-gene relationships responsible for the 

progression emerged, with reference to the cluster-cluster 

relationships. Thus, we successfully described a framework of 

network structure changes for cancer progression, and based 

on the inferred changes, further refined the causal gene-gene 

relationships for the cell stage progression in a rational and 

systematic manner.  

It is interesting in considering the present procedure in the 

case of more than two cell stages. For example, we can 

allocate 27 cluster sets of three cell stages into four groups, 

according to the rule adopted in the two cell stage: the first 

group, [+, /, /], [+, -, /], [+, -, -], [+, /, -], and [-, /, /]; the second 

group, [/, +, /], [-, +, /], [-, +, -], [/, +, -], and [/, -, /]; the third 

group, [/, /, +], [-, /, +], [-, -, +], [/, -, +], and [/, /, -]; the 

background group, [+, +, +], [-, -, -], [/, /, /], [+, +, -], [+, +, /], 

[+, -, +], [+, /, +], [-, +, +], [/, +, +], [-, -, /], [-, /, -], and [/, -, -]. 

In the allocation of the above clusters into the background 

group, some ambiguity emerged; the clusters showing up- or 

down-regulation at two cell stages are included. However, the 

present allocation rule may be reasonable, on the assumption 

that the network structure change is responsible for the up- 

and down-regulated classes characterizing each cell stage. 

Although the ambiguity of the allocation into the background 

group emerges as the number of stages increases, the present 

procedure may help to reveal the gene-gene relationships as 

well as to capture the network structure change through the 

distinctive cell stages in a systematic manner. 
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