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Abstract 

The male-specific region of Y chromosome (MSY) has accumulated a higher density of human 

endogenous retroviruses (HERVs) and related sequences when compared with other regions of 

the human genome. Here, we focused on one HERV family, HERV-K14C that seemed to 5 

integrate preferentially into the Y chromosome in humans. To identify every copies of HERV-

K14C in the human genome, we applied computational screening to map precisely the locus of 

individual HERV-K14C copies. Interestingly, 29 of all 146 copies were located in Y 

chromosome, and these 29 copies were mostly dispersed in the palindromic region. Three 

distinct HERV-K14C-related transcripts were found and were exclusively expressed in human 10 

testis tissue. Based on our phylogenetic analysis of the solitary LTRs derived from HERV-K14C 

on the Y chromosome we suggested that these sequences were generated as pairs of identical 

sequences. Specifically, analysis of HERV-K14C-related sequences in the palindromic region 

demonstrated that the Y chromosomal amplicons existed in our common ancestors and the 

duplicated pairs arose after divergence of great apes approximately 8-10 million years ago. 15 

Taken together, our observation suggested that HERV-K14C-related sequences contributed to 

genomic diversification of Y chromosome during speciation of great ape lineage. 
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Introduction 

The human Y chromosome is believed to have evolved from an autosomal ancestor. The 

pseudoautosomal regions (PAR) at the termini of the X and Y chromosome recombine during 30 

meiosis, but most of parts of the X and Y chromosome do not undergo X-Y genetic exchanges. 

The male-specific region of Y chromosome (MSY) is directly inherited from father to son and is, 

therefore, highly informative regarding the evolutionary history of male lineages. The MSY 

contains at least 156 transcript units that seem to be expressed abundantly and exclusively in 

testis suggesting that these male-specific transcripts are associated with spermatogenesis.1 35 

Roughly, 41 mega bases (Mb) of MSY is heterochomatic sequences, and most of the 

heterochromatin comprises the distal long arm of the Y chromosome. The euchromatic region of 

MSY, which spans 23 Mb, has three structurally distinct features, X-degenerated, X-transposed, 

and ampliconic sequences. The ampliconic region make up 25% of the euchromatic portion of 

the human MSY, which includes eight palindromes with pairs of duplicated amplicon that 40 

ranges from 9 Kb (kilo bases) to 1.45 Mb (Figure 1). There is approximately 99.97% sequence 

identity between the repeats within each palindrome, implying that the palindromes arose 

through duplication events approximately 10 million years ago.2 Based on sequence 

comparisons of the inner boundaries of each palindrome (P), six out of eight palindromes (P1, 

P2, P4, P6, P7, and P8) seem to have arisen after divergence of the great apes lineage suggesting 45 

that structures within the MSY has evolved recently. In particular, these palindromic sequences 

contained a high frequency (11.8%) of human endogenous retroviral sequences (HERVs) when 

compared to the average from the human whole genome (8%).3-5  

  Several distinct families of HERVs exist in the human genome.6,7 The majority of HERVs 

inserted into primate genome after the divergence of New World and Old World monkeys and 50 

were subjected to several amplification events during primate evolution. 8,9 When HERVs 

integrate into a host genome, they generate a form of the viral genome, including a 5’ LTR (long 

terminal repeats) - gag (capsid protein) - pol (viral enzyme) - env (envelope protein) -3´LTR, 
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that is for replication and infection.10 Most HERVs are thought to be remnants of ancient germ 

line infection because they are defective and have accumulated multiple stop codons and 55 

deleterious mutations during evolution. Nevertheless, some HERV-related sequences are 

actively expressed and able to influence the host genome. For instance, the envelope protein of 

one of the most abundant families, HERV-W, serves an important function in the morphogenesis 

of the placenta in human.11 Not only the coding regions of HERVs contribute to transcriptome 

diversity; the LTRs contain transcription factor binding sites, hormone response elements, and 60 

polyadenylation signals that influence the host genome. Many reports demonstrate that HERV 

sequences regulate expression of functional genes near the site of integration.12-14 

An ancient member of HERV-K family entered the genome in the Old World monkey lineage 

but HERV-K recurrently amplified and expanded during primate evolution.15 Some of HERV-K 

members are present only in chimpanzees and humans, indicating a relatively recent integration 65 

event within in the last five to eight million years.16 The solitary HERV-K LTR sequences, 

rather than the full-length retrovirus, give rise to the genetic variants found in some human 

individuals.17,18 In addition, the amplification of HERV-K elements within the human lineage 

causes insertion polymorphism in the human genome.19  

High sequence similarities between different HERV copies at different loci mediate non-70 

reciprocal homologous recombination causing the accumulation of deleterious mutations in the 

human genome. For instance, recombination between HERV15 proviruses resulted in the 

deletion of the azoospermia factor a (AZFa) region on MSY and caused spermatogenic 

impairment.20 These previously published reports suggest that HERVs are a potential source of 

genetic diversity due not only to integration events but also to providing transcriptome 75 

variations.  

The HERV-K14C element entered the primate germ line after the divergence between the 

Old World and New World monkey lineages approximately 39 million years ago.21 Flockerzi et 

al. surmised that 12 out of 23 copies of HERV-K14C copies were located on Y chromosome. 
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Based on this knowledge, we hypothesized that the HERV-K14C seemed relevant to Y 80 

chromosomal evolution and we aimed to investigate this possibility with a high-resolution 

analysis of HERV-K14C elements on the Y chromosome. Indeed, our computational analysis 

demonstrates that copies of HERV-K14C were heavily dispersed in palindromic regions. We 

investigated a multilateral effect of HERV-K14C during Y chromosome evolution. 

 85 

Materials and Methods 

 

Bioinformatic analysis 

All human sequences were obtained from the NCBI database, Build 36.1. HERV-K14C 

elements were identified in the Repbase database (http://www.girinst.org/repbase/) and in the 90 

genomic sequences using RepeatMasker (http://ftp.genome.washington.edu.cgi-

bin/RepeatMasker), which uses a cross_match program to perform perfect sequence 

alignments.5,22 As a consensus sequences, LTR14C and HERV-K14C consensus sequences 

were joined. Finally, LTR14C-HERV-K14C-LTR14C sequences were consensus sequences for 

our study. The internal retroviral sequences of the HERV-K14C were constructed by comparing 95 

conserved residues as potential coding region (gag, pro, pol, env) using the Blastx program.23 

The human expressed sequence tag (EST), RefSeq mRNA, and non-redundant databases were 

screened using BLAST, version 2.2.11 with the “ -q -e -e 0.01 -F T” options, and HERV-K14C 

consensus sequences to identify hybrid transcripts.24 HERV-K14C-related transcripts (more 

than 95% sequence identity) were identified by comparing HERV-K14C elements with each 100 

database.  

 

Phylogenetic analysis 
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Multiple alignment analysis and phylogenetic trees were constructed using loci containing 

solitary LTRs.25 The solitary LTRs from the human genome were selected to align with 105 

consensus sequence of LTR14C and these were matched over 80% of sequence identity. There 

were 93 loci identified in this study. To improve the accuracy of the comparisons, we limited 

our analysis to sequences greater or equal to roughly 500 – 600 bp. In addition, solitary LTRs 

were deleterious sequences or disturbed by insertions of other genomic sequences that 17 of 93 

loci loci were eliminated. In all, 76 LTRs were analyzed to construct for phylogenetic tree. For a 110 

smooth phylogenetic analysis, incomplete and elements and elements containing many gaps 

were manually excluded. The neighbor-joining trees were obtained with the MEGA4 program.26 

Bootstrap values for branches were calculated based on 1,000 replications. Distances were 

estimated by the Kimura two-parameter method in the MEGA4 program to estimated sequence 

divergence. 115 

 

Preparation of Genomic and RNA samples 

Total RNA from Japanese monkey tissues was extracted by RNeasy Mini Kit (Qiagen, 

Hilden, Germany), and total RNA from human tissue (brain, liver, lung, testis, heart, stomach, 

spleen, prostate, bladder, and ovary) was purchased from Clonetech (Clontech Laboratories, Inc, 120 

Mountain View, CA, U.S.A). Pure mRNA was isolated using PolyA Tract mRNA isolation 

systems (Promega Corporation, Madison, WI, USA). Genomic DNA was isolated from blood 

samples by a standard protocol from the following species: (1) hominoids: chimpanzee (Pan 

troglodytes), gorilla (Gorilla gorilla), orangutan (Pongo pygmaeus), and gibbons (Hylobates 

agilis); (2) Old World monkeys: Japanese monkey (Macaca fuscata), rhesus monkey (Macaca 125 

mulatta); (3) New World monkeys: night monkey (Aotus trivirgatus), and common marmoset 

(Callithrix jacchus) using a standard protocol.  
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Genomic and RT-PCR amplification  

cDNA samples from human and Japanese monkey RNA were to be synthesized by MMLV-130 

derived reverse transcriptase with oligo (dT) and random hexamer primers (Promega 

Corporation). Genomic PCR and RT-PCR reactions were carried out using the standard PCR kit 

supplied by Takara. Primer information and accession numbers are documented in Table 1. SRY 

and GAPDH were used as positive controls. 

 135 

Sequencing 

PCR products amplified from genomic DNA were isolated using a PCR purification kit 

(Qiagen, Hilden, Germany) and were sequenced with the BigDye Terminator version 3.1 Cycle 

Sequencing Kit (Applied Biosystems, Foster City, CA, USA) on an ABI wi337 DNA sequencer 

using the same primer pairs that had been used for amplification. 140 

 

Statistical analysis 

The difference between expected and observed copy number of HERV-K14C in proportions 

were contrasted by computing odds ratios (OR) and 95% CIs. All analyses were performed 

using Statistical Package for Social Sciences, version 11.0 (SPSS, Chicago, IL, USA) and the P 145 

value was corrected using Fisher’s exact test.  

 

Results and Discussion 

We first identified the genomic locations of all HERV-K14C-related sequences using 

computational approaches to search the entire human genome. In total, 146 loci dispersed across 150 

the human chromosomes. Only 14 of these loci had comparatively intact copies of HERV-K14, 

and 93 loci had LTR-related sequences (Suppl. Table 1). The other 39 loci were deleted and 

mutated their internal sequences that mostly lost a 5’ or 3’ LTR. Presumably, the high frequency 

of solitary LTR copies implied that the majority of the HERV-K14C inserts underwent intra-
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homologous recombination between 5’ and 3’ LTR and then recurrently amplified in human 155 

genome. In addition, eight transcripts with HERV-K14C-related sequences were found 

suggesting that HERV-K14C elements provided promoters, exons, and polyadenylation signals 

for endogenous genes near the HERV insertion sites (Suppl. Table 2). Of these eight HERV-K-

related transcripts, three resided in the MSY (Figure 1d). 

The chromosomal distribution of HERV-K14C loci suggested that these sequences were not 160 

evenly dispersed in the human genome. HERV-K14C-related sequences were absent from 

chromosomes 9 and 22, whereas a high frequency of all HERV-K14C-related sequences (up to 

20% or 29 copies) were found on the Y chromosome (Figure 2). To determine the statistical 

significance of high frequency of HERV-K14C copies on Y chromosome, we calculated the 

expected copy numbers based on the size of each chromosome. As shown in Figure 2, 165 

chromosome 8, 19 and Y seemed to present higher density of HERV-K14C copies when 

compared with expected copy numbers. Specifically, based on its size of Y chromosome was 

expected, theoretically, to have 3.09 copies of HERV-K14C element. However only Y 

chromosome had a statistical significance between expected and observed copy numbers (P < 

0.001, OR = 11.8, CI: 3.5 – 39.8). Indeed, HERV-K14C sequences were more likely to insert 170 

onto the Y chromosome than onto any of autosomes or the X chromosome.    

To understand the evolutionary relevance of HERV-K14C sequences, we chose to study 

solitary LTRs for phylogenetic analysis because other fragment of HERV-K14C-related 

sequences were too truncated and mutated for useful analysis. Having eliminated 17 incomplete 

LTR copies, we used 76 copies of solitary LTR for this study (Suppl. Table 1). The neighbor-175 

joining method was used to construct a phylogenetic tree with all 76 intact solitary LTR loci 

(Figure 3). Of the 76 LTR loci in the genome, 15 were located on the Y chromosome (Table 2). 

These 15 loci are marked with starred numbers in Figure 3, and the other loci are named by their 

chromosomal location.  

As shown in Figure 3, the 76 solitary LTRs clustered into distinct phylogenetic groups that 180 
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suggest these sequences were amplified at least four times after the initial genome integration 

event. Members of group I were scattered on autosome and both sex chromosomes. In contrast, 

no members of group II were found on the Y chromosome. One interesting features of this tree 

was that group I members derived from the Y chromosome clustered into same nodes. For 

instance, LTRs 7&14, 27&28, 9&12, and 10&11 formed five distinct pairs and LTRs 24, 25,26, 185 

and 29 clustered into a single node. These observations implied that each pair of LTRs was 

duplicated from a single copy of LTR during Y chromosomal evolutionary past. As we 

described above, HERV-K14C-related sequences were enriched on Y chromosome, and this 

observation explained, in part this feature of the phylogenetic analysis of the solitary LTRs. The 

insertion of initial HERV-K14C element predated to integrate into the Y chromosome, and 190 

HERV-K14C element underwent subsequent genomic amplification events producing identical 

pairs. 

The copies of HERV-K14C-related sequences on the Y chromosome are listed in Table 2 and 

Figure 1a,b, and c. As we mentioned above, 29 different HERV-K14C-related loci were 

identified on the Y chromosome; of these 17 loci were solitary LTRs and eight copies preserved 195 

both the 5’ and 3’ LTR. Three of loci only had a side of LTRs and its internal sequences; 5’LTR 

(8 and 13) and 3’LTR (3). In all, 18 copies were part of palindromes, meaning that these 18 

copies actually represented 9 pairs, each with one member of the part on an arm of the 

respective palindrome. For example, 7-10 resided on the proximal arm of P5 and 11-14 resided 

on the distal arm of P5, the pairs were in reverse complementary direction. In a similar manner, 200 

two pairs — 15/19 and 16/18 — were identical sequences in P4. The b amplicons had four of 

copies (24/25/26/29) scattered along P3 (b1 and b2) and P1 (b3 and b4) and these four 

duplicated copies were generated from a single HERV-K14C element. The duplicated pair 

(27/28) was found on P1.1 and P1.2. In each case, the sequence alignment between duplicated 

copies within a palindrome showed perfect identity between the duplicated pair. The solitary 205 

LTRs derived from the b amplicons were the only exceptions, there were single nucleotide 
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difference (C → A) between the pairs 24/29 and 25/26. Four comparatively long HERV-K14C-

related sequences — 8, 13, 16, and 18 — also revealed perfect matched pairs (8&13 and 

16&18) that did not have a single nucleotide gap or difference. 

Although, 24, 25, 26 and 29 loci were all located in the b amplicons, they arose from 210 

different two duplication lineages. As shown in the topology of the tree of solitary LTRs on Y 

chromosome in Figure 4, duplicated partners clustered together. Each LTR copy on an arm of a 

palindrome was clearly clustered with one LTR copy on the other arm of the same palindrome. 

For example copy 24 formed a pair with 29 and 25 formed a pair with 26 on the b amplicons. As 

illustrated in Figure 1c, P1 contains the b3/b4 amplicon as an inner segment and b1/b2 amplicon 215 

is dispersed across P3. According to our results, the 24 (b1)/29 (b4) and 25 (b2)/26 (b3) pairs 

were mingled indicating that genomic structures of P1 and P3 were generated in concert. 

To investigate, the integration history of each HERV-K14C copy on the Y chromosome, we 

looked for the orthologs of the boundaries each of HERV-K14C locus on Y chromosome to 

estimate an ancestral structure of the Y chromosome. Unlike autosomal chromosomes, the Y 220 

chromosome contains massive palindromes and many repeated sequences making it very 

difficult to amplify specific loci. Therefore, we chose fifteen HERV-K14C-related copies for 

amplification of genomic DNA from male primate genomes. The chosen loci are denoted in 

Figure 1a,b, and c with vertical red arrows and in Table 2 with highlighted numbers.  

The amplification boundaries covered the individual HERV-K14C sequences and their 225 

flanking regions. When a HERV-K14C locus was not observed in the orthologous region of 

primate genome, we can find a pre-integration site or intact structure of HERV-K14C that 

enabled us to estimate generation timing of Y chromosome. For each species tested, PCR 

products were not observed when DNA from female primates was used as template (data not 

shown).  230 

Overall, the integration of HERV-K14C loci occurred in Old World monkey and hominoids 

approximately 25 million years ago (Figure 5). Most of HERV-K14C copies (5, 9/12, 15/19, 20, 
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21, 22, 24/25/26/29, and 27/28) resulted from insertion events that occurred after divergence of 

the hominoids from Old World monkeys. Specifically, copies 5, 15/19, 21, and 27/28 were only 

observed in humans and the samples from the great apes excluding orangutan suggesting that 235 

these insertions were occurred 10 million years ago.  

In all copies, we only observed that 1 and 24/25/26/29 were an intact structure and pre-

integration sites, respectively. The solitary LTR locus 1 (Table 2 no. 1) was present in not only 

the hominoid lineage, but an enlarged form of it was also found in the Old World monkey 

samples. Based on our sequencing data, the large product amplified from the Old World monkey 240 

samples had both LTRs and internal HERV sequences, and the sequence identity between the 5’ 

and 3’ LTR was quite high at approximately 82% (data not shown). Many HERV sequences 

have been lost their functional domains by internal recombination between the 5’ and 3’ LTRs 

leading to solitary LTR formation. In addition, a recombination between the 5’ and 3’ LTRs 

continues to occur in individuals of human population that has caused recent genetic variation in 245 

humans. 27 In case of LTR locus 1, an HERV-K14C had integrated into the primate genome and 

then underwent a subsequent deletion event owing to homologous recombination between 5’ 

and 3’ LTRs. 

Conversely, copies 24/25/26/29 on the b amplicon were unexpectedly small at 

approximately 384 bp with a gap of 7 bp) in Japanese and rhesus monkey genomes. In contrast, 250 

hominoids were revealed exact target size (976 bp); therefore, the LTR sequences copies 

24/25/26/29 in the Old World monkey lineage seemed to have lost 585 bp. We attempted to 

confirm the sequences of unexpected product in the Old World monkeys. The sequencing results 

showed that a high degree of identity (86%) was found between flanking region of 24/25/26/29 

and the small product. This observation suggested that 384 bp of small product was from a pre-255 

integration site that existed before the integration of 24/25/26/29 LTRs. This data implied that 

the ancestral b amplicon has existed since the Old World monkey lineage. At least, the 

duplicated pairs that span P1 to P3 of the b amplicons were amplified after the divergence of 
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hominoids and Old World monkey. Because the b amplicons reside in palindromic regions, it 

was quite difficult to amplify specific a locus from these regions. Thus, we could not clarify 260 

which of the b amplicons predated the insertion event and existed in the ancestral Y 

chromosome. Nevertheless, this investigation allowed us to analyze the complex evolutionary 

past of the Y chromosome. 

The pair 15/19 was dispersed in P4, and this region was present only in human and gorilla 

consistent with an amplification of the inner boundaries of P4 from Page’s study.2 In addition, 265 

an identical pair of 9/12 on P5 was observed in the great apes, and the 27/28 locus on P1 

identified an insertion site in gorilla, chimpanzee and human. 

 Obviously, orthologs of the HERV-K14C loci found in humans were detected in our closest 

evolutionary relatives, but we could not determine whether the integration time was consistent 

with the complete formation of the palindromic structure. In spite of that, our results 270 

demonstrated that at least an arm of P4 and of P5 already existed in the great ape lineage 

approximately 8-15 million years ago. In our result, most of loci were incapable of revealing a 

pre-integration site except locus 1 and loci 24, 25, 26, and 29. The majority of orthologs was not 

detected in samples from lesser apes, indicating that the genomic structure of human Y 

chromosome arose recently. 275 

HERV-K14C was associated not only with palindromic structures but also with Y 

chromosomal transcripts. Using a computational approach, we screened human EST and mRNA 

databases with HERV-K14C consensus sequences to identify hybrid transcripts. As denoted in 

Figure 1d and Table 2, HERV-K14C provided gene regulatory regions to three transcripts. The Y 

chromosomal transcripts—AW966153, AK026367, and TTY13—were dispersed throughout the 280 

P4 and inverted repeat 2 (IR2) (Figure 1d).  

Two identical copies of AW966153 were due to the duplication of P4 and solitary HERV-

K14C LTRs from loci 15 and 19 provided the polyadenylation signals for these transcripts. 

Based on the integration lineage of LTRs on 15/19 locus, AW966153 was only expressed in the 
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human and gorilla genomes. The 5’ LTR of locus 21 provided the promoter region for 285 

AK026367, and the first exon of this transcript was totally donated by HERV-K14C-related 

sequences. Using TRANSFAC® Professional version 10.1 with a strict threshold (core match: 1 

and matrix match: 0.95~1), we found five binding sites for multiple transcription factors 

(including GATA box, TFE, TGIF, and others) distributed on 5’ LTR of locus 21 which provided 

the transcription starting sites for AK026367. 28 In addition, HERV-K14C sequences entirely 290 

provided the last two exons on TTY13 locus. 

We used RT-PCR to examine the expression profiles of HERV-K14C-related transcripts in 

various human tissues (Figure 6). All of these HERV-K14C-related transcripts were exclusively 

expressed in human testis tissue. Based on genomic PCR result of loci 15/19, 21, and 22, these 

transcripts arose in the genome after divergence of the orangutan and gibbon lineages. 295 

Many researchers who study male infertility have investigated deletions of ampliconic 

sequences. 29-31 For example, some studies reporting deletion between the distal arm of P1 to the 

proximal arm of P4 explained only those deletions that resulted from micro-deletions between 

direct repeat sequences that cause spermatogenic failure due to removal of Y chromosomal 

specific transcripts 32. In our investigation, three of HERV-K14C related transcripts spanned on 300 

between P4 and P1. The removal of HERV-K14C related transcripts has a potential possibility 

to be related with spermatogenic failure due to the deletion between P1 and P4 region. In this 

investigation, we could not fully elucidate the molecular role of HERV-K14C-related transcripts, 

but they were only detected in testis. In other words, HERV-related transcripts were not 

expressed in human testis when HERV-K14C was not present. Namely, the acquisition of testis-305 

specificity could be attributed to the integration of HERV-K14C elements meaning that HERV-

K14C gave a rise to transcriptome diversity in the Y chromosome during primate speciation. 

In summary, we have estimated the evolutionary timing of the emergence of palindromic 

region of the Y chromosome. The orthologs of sequences flanking the HERV-K14C inserts were 

detected mostly after divergence of hominid lineage around 18-20 million years ago (Figure 7). 310 
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Moreover, ancestral region of b amplicon existed in the Old World monkey lineage. We could 

not estimate the emergence date of both arms of each palindrome but one arm of P1.1/2, P3 and 

P4 was existed since gorilla lineage. Subsequently, they underwent the duplication event at least 

10 million years ago. In our study, the integration timing of HERV-K14C presented orthologues 

of Y chromosome in primate genome that enabled to conjecture emergence timing of Y 315 

chromosomal sequences during primate evolution. Not only HERV-related sequences but also 

other transposable elements (TEs) should be useful tool to estimate evolutionary past of modern 

human Y chromosome as molecular clock. Moreover, these TEs have a possibility of different 

integration lineage that potentially have an effect on genomic differences between human and 

our closet relatives, implying that further studies of TEs lead us to understand a puzzled history 320 

of Y chromosome evolution. 

Here, we suggested that the ancestral palindromic structure was constructed gradually as a 

pair of palindromes emerged during the evolutionary past and subsequently built up to its 

current structure of multiple palindromes due to duplication event that occurred in the great ape 

lineages. Analysis of Y chromosome sequences from the chimpanzee suggests that repeat 325 

sequences expanded and accumulated on the Y chromosome. In addition, this report suggested 

that the variation in sequence identity between repeat elements in human and chimpanzee was 

higher on the Y chromosome than it is on average across the genome implying that these 

repeated sequences changed more quickly.33 

In our study, we investigated the orthologs of HERV-K14C integration sites that reflected 330 

the evolutionary past of the human Y chromosome. Because most of HERV family members 

emerged in the primate genome after the divergence of Old World and New World monkey 

lineages and some HERV-K family members still exhibit variability in human populations,34 

HERVs may function as molecular clocks in the investigation of human evolution. 

We aimed to verify the association between HERV-K14C and Y chromosome evolution. 335 

HERV-K14C-related sequences have been amplified during the evolution of the Y chromosome 
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and contributed to genomic diversification of Y chromosome during great ape lineages. 
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Figure legends 
 

Figure 1. The overview of the structure of the Y chromosome.  

The male-specific region of Y chromosome (MSY). Black signifies the pseudoautosomal region, 

pale grey signifies euchromatin and dark grey is depicted as heterochromatic region of Y 460 

chromosome, respectively. Red triangles are depicted as locations of HERV-K14C locus on 

Table 2. (a). Enlarged schematic representation of the palindromic region, paralleled blue arrows 

represent each arm of eight palindromes. (b). Individual amplicons span from b1 on P3 to b4 on 

P1. Identical pairs of amplicons are colored the same color and arrows denote the direction of 

amplicons (c). The genomic structure of HERV-K14C-related transcripts (d). Exons are drawn 465 

as pale grey boxes and open reading frames are in black. The numbers above the boxes indicate 

exon number. Dark grey arrow depicts the HERV-K14C-related sequences, and the direction of 

the arrows illustrates the direction of transcription. Small black arrows indicate primer 

sequences (d). Vertical red arrows indicate the locations are used for genomic amplification in 

Figure 5 and represent a numbers in highlighted numbers on Table 2. 470 

 

Figure 2. The chromosomal distribution of HERV-K14C-related sequences. Pale grey bar 

depicts the expected copy number of HERV-K14C-related sequences based on the genomic size 

of each chromosome. Dark grey bar presents observed copy number of HERV-K14C within 

each chromosome. The P – value was calculated and corrected between expected copy number 475 

and observed copy number. The value of P > 0.05 was not described. 

 

Figure 3. The phylogenetic analysis of solitary LTRs from the entire genome.  

Bootstrap values derived from 1,000 bootstrap replicates measured by the posterior probabilities 

are shown at the nodes. We also constructed a neighbor-joining tree using the MEGA4 program 480 

and the HERV-K14C consensus sequence. Each taxon name indicates the chromosomal location 

of a LTR locus except for those loci on the Y chromosome. Starred numbers detailed in Table 2 
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indicate the solitary LTRs on the Y chromosome. 

 

Figure 4. Fine scale phylogeny of the solitary LTRs on the Y chromosome.  485 

Only the gross topology of the tree is shown in this image. Bootstrap replicates support from 

1,000 is indicated for each node. Each taxon is described in Table 2. 

 

Figure 5. The integration lineage of HERV-K14C copies in Y chromosome.  

The numbers correspond to the vertical red arrows and highlighted numbers in Figure 1 and 490 

Table 2, respectively. Hominoids: HU (human), CH (chimpanzee), GO (gorilla), OR (orangutan), 

and GI (gibbons); OWM (Old World monkeys): JM (Japanese monkey), RM (rhesus monkey); 

NWM (New World monkeys): NM (night monkey) and CM (common marmoset); ddH2O was 

used as a negative control.  

 495 

Figure 6. Expression profiles of HERV-K14C-related transcripts.  

GAPDH was used as internal marker, and ddH2O was used as a negative control. 

 

Figure 7. The putative time of amplicon formation based on the integration lineage of HERV-

K14C-related elements in Figure 4. The evolutionary tree is based on and adapted from reported 500 

data. 31 32  

 







 



  

 







 

 



 

Name Forward 5' - 3' Reverse 5' - 3' Product Reference

Genomic DNA

1 TGTGGCACAGCTATTTGTCA TGCAGGATGCTGATGCTTAT 730 bp NT_011896.9

5 AAGAACTCCCTTTGTCTCCAA GAGCAGTTCATGGGGAATG 859 bp NT_011878.9

9/12 AGGAGGGCTTGTTGAGTTGA CTTCCCAGCAGGTAAAGCAG 773 bp NT_011875

15/19 (AW966153 ) GTAAATACCACCTCTTGGTG TCGCCGCTAGACTCAGGGT 517 bp NT_011875

20 CCAGATCAGGAATCAATATAGCC ACCTGCCGGAAACTACAAGA 965 bp NT_011875

21 (AK026367 ) CCTGCCATAAATCTCTGGAAAC GCCAATGGTGTCACTCTATCAA 6,395 bp NT_011875

22 (TTY13 ) CAGAGGCTGTCTGTGGCAATTC GCAGCTTGTTTCACTCCTTTCTC 6,073 bp NT_011875

24/25/26/29 TGGGAGAAGAGGTTTTGTGG CACTTCCCTGTCCCTTTCAA 976 bp NT_011903

27/28 CCAGTGGTTCTGATGGTCCT CTTTGGCTGGAGAAAAGTGC 867 bp NT_011903

SRY GAATATTCCCGCTCTCCGGA GCTGGTGCTCCATTCTTGAG 400-472 bp NM_003140.1

mRNA/EST

AW966153 CTTCACATCCAGGCTCAACA TGGTTTCCCCAACAGTCTTC 226 bp AW966153

AK026367 GGCTCCCCATAATCTCTACAA GGTGTTTGGTTTTCTGTCCTT 722 bp AK026367

TTY13 CAAGCAGAGCCAAACAGACA GACCACCAGTAATCTAATGGT 611 bp NR_001537

GAPDH CAAAGTTGTCATGGATGACC CCATGGAGAAGGCTGGGG 195 bp NM 002046

Table 1. Primers used in this study 

 



 

Number location 5' and 3' LTR direction length mRNA/EST Palindrome

1 7,934,660-7,935,245 Solitary C 585 bp

2 8,049,863-8,054,809 Both C 4946 bp

3 8,924,104-8,928,826 3'LTR + 4722 bp

4 9,171,317-9,177,286 Both C 5969 bp

5 10,502,263-10,502,845 Solitary + 582 bp

6 14,234,539-14,239,889 Internal C 5350 bp

7 18,194,256-18,194,814 Solitary C 558 bp Proximal-P5

8 18,291,100-18,293,064 5'LTR C 1964 bp Proximal-P5

9 18,366,095-18,366,679 Solitary + 584 bp Proximal-P5

10 18,374,133-18,374,713 Solitary C 580 bp Proximal-P5

11 18,773,845-18,774,425 Solitary + 580 bp Distal-P5

12 18,781,880-18,782,464 Solitary C 584 bp Distal-P5

13 18,855,500-18,857,464 5'LTR + 1964 bp Distal-P5

14 18,953,747-18,954,305 Solitary + 558 bp Distal-P5

15 19,233,969-19,234,110 Solitary C 141 bp AW966153 Proxiaml-P4

16 19,243,801-19,248,243 Both C 4442 bp Proxiaml-P4

17 19,287,744-19,293,649 Both + 5905 bp

18 19,314,707-19,319,149 Both + 4442 bp Distal-P4

19 19,328,842-19,328,983 Solitary + 141 bp AW966153 Distal-P4

20 19,788,470-19,789,056 Solitary + 586 bp

21 22,017,509-22,023,645 Both C 6136 bp AK026367

22 22,151,328-22,157,319 Both + 5991 bp TTY13 IR2

23 22,401,007-22,407,033 Both C 6026 bp IR2

24 22,640,603-22,641,188 Solitary + 585 bp Proxiaml-P3/b1

25 23,056,286-23,056,871 Solitary C 585 bp Distal-P3/b2

26 24,250,291-24,250,876 Solitary + 585 bp Proxaimal-P1/b3

27 24,443,767-24,444,351 Solitary + 584 bp Proximal-P1/P1.2

28 26,336,826-26,337,410 Solitary C 584 bp Distal-P1/P1.1

29 26,530,270-26,530,855 Solitary C 585 bp Distal-P1/b4

Table 2. The location of HERV-K14C-related sequences in the Y chromosome

Numbers are depicted in Figure 1 and highlighted numbers are for Figure 5, 6 and 7. Bolded numbers are used in
Figure 3, 4. Abbreviations: Solitary, Solitary LTRs; Both, Presence of 5’ and 3’ LTR; N/D, Not Determined;
Integration into genome with complementary (C) and sense (+) direction relative to Y chromosome reference
sequences.  


