Simple syntheses of lespedamine and
5-bromo-N,N-dimethyltryptamine based on
1-hydroxyindole chemistry
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DIMETHYLTRYPTAMINE BASED ON 1-HYDROXYINDOLE CHEMISTRY1
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Abstract------ Various types of 1-hydroxyindoles were prepared for the first
time. Through methylation or acid catalyzed nucleophilic bromination of
N,N-dimethyl-1-hydroxytryptamine, simple syntheses of lespedamine and

5-bromo-N, N-dimethyltryptamine were achieved, respectively.

Lespedamine2 (1a, Scheme 1) was isolated from Lespedeza bicolor var. japonica Nakai and
5-bromo-N,N-dimethyltryptamine3 (2a) from marine sponge Smenospongia aure. Bufotenine
(3a),4 1 a, and 2a seem to have no relation to each other. However, if we assume the existence
of N,N-dimethyl-1-hydroxytryptamine (4 a), 1 a, 2a, and 3 a might be expected to originate from
4 a as a common intermediate. Along this biosynthetic working hypothesis,5 we have now
achieved the simple syntheses of 1 a and 2a through 4a.

We have succeeded for the first time in the syntheses® of various 1-hydroxyindoles. Initially,
N,N-dimethylitryptamine (6) was prepared from indole (5) according to either the known two
step sequence’ (87% yield) of N,N-dimethylindole-3-glyoxylamide formation and treatment with
LiAIH4 or direct dimethylation of tryptamine8 (70% vyield). Reduction of 6 with triethylsilane? in
CF3COOH afforded 2,3-dihydro-N,N-dimethyltryptamine (7 a) in 92% yield. Oxidation of 7 a with
NagWO4-2H20 and 30% Hp029:6 in MeOH-Ho0 produced 55% yield of N,N-dimethyl-1-
hydroxytryptamine (4a, mp 179.5-180.0°C) as stable crystals. Subsequent methylation of 4 a with

diazomethane afforded lespedamine (1 a) in 53% yield. One pot preparation of 1 a from 7ain
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26% yield was also possible by carrying out the above two reactions, successibly. Thus, the

shortest synthetic route among so far reported for 1 a was established.
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a) i. (COCI) 5, MeaNH; ii. LiAIH 4; b) Et3SiH, CF3;COOH; ¢)
NasWO04:2H50, 30% H,0,; d) CH2No; e) one pot operation of
c and d; f) 47% HBr; g) Bry, AcOH; h) NaH, AcCl.

Similar oxidation of indolines (7b-g), 1,2,3,4,4a,9a-hexahydro-2-methoxycarbonyl-f-carboline
(8), and 1,2,3,4,4a,9a-hexahydrocarbazole (1 1) produced the corresponding 1-hydroxyindoles
(4b-g) and 9-hydroxy compounds (9 and 1 2) in good yields and the results are summarized in
Scheme 2. Surprisingly, these 1-hydroxy and 9-hydroxy compounds were stable except for 12
and they were converted to the corresponding more stable 1-methoxy (1b-g) and 9-methoxy
compounds (1 0 and 1 3) by methylation either with diazomethane or dimethyl sulfate.

Next, based on the nucleophilic substitution reactions on indole nucleus,® 4 a was treated with
47% aqueous HBr at room temperature for 1 hto produce expectedly the 5-bromo- (2 a), 2-

bromo-N,N-dimethyltryptamine (1 4) and 6 in 25, 2, and 11% vyields, respectively (Scheme 1).
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Scheme 2
O ©Tf . ©ff
N

- H OMe
R Yield (%), mp (°C) Yield (%), mp (°C)
b) NHCOCF 4 65, 123.5-124.5 96, 70.5-71.0*
¢) CH,NHCOOMe 67,114.0-115.0 83, oil
d) CHoNHCOCF 4 72, ol 78, 70.5-71.0
) CHoNHCH,CHoMe 57, 147.0-148.0 65, oil
f) CH,COOMe 59, oil 57,% ol
g) CH,CH,COOMe 52, 56.0-57.0 49,7 ol

* See reference 6d, ** Overall yield from 7.

8 9
31%, mp 135.0-138.0 °C 0%, oil
OMe
1 12 13
65%, unstable oil 76%, oil*?
;Z 282WO4.2H20' 30% H205, MeOH-H 50; b: CHaN» or Me 2SO0,
2C03.

Similar reaction of 4 a with aqueous HCI proceeded cleanly and produced 55% yield of 5-chloro-
N,N-dimethyltryptamine (3b, oil). The structure of 2awas confirmed unequivocally by
comparing its TH-nmr spectrum with that of 1-acetyl derivative (2b), exhibiting that C-7 proton of
2 b was deshielded about 1 ppm by the anisotropy effect of 1-acetyl group.

Concerning the biosynthesis of bromine containing natural products, suitable bromoperoxidases
are generally believed to catalyze regioselective bromination of the substrates with electrophilic
bromonium ion.10 Therefore, electrophilic bromination of 6 was examined chemically with Bra in

AcOH to afford exclusively 2-bromo-N,N-dimethyltryptamine (14) in 39% yield with no
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detectable amount of 2a. These results might suggest that acid catalyzed nucleophilic

substitution reaction of 1-hydroxyindo|es5 b with halide is the other possible biosynthetic

mechanism in vivo.
With various 1-hydroxyindoles in hand, their nucleophilic substitution reactions are in progress.

Attempts to prepare bufotenine and related alkaloids are also in progress.
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