
Oral drug delivery utilizing intestinal OATP
transporters

言語: eng

出版者: 

公開日: 2017-10-04

キーワード (Ja): 

キーワード (En): 

作成者: 

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/2297/29307URL



1 
 

Oral drug delivery utilizing intestinal OATP transporters 

Ikumi Tamai*, 

Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmacy, Institute of Medical, 

Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi Kanazawa 920-1192, Japan 

 

*Corresponding author: Tel: +81-76-234-4479; fax: +81-76-264-6284;  

E-mail address: tamai@p.kanazawa-u.ac.jp 

 

  



2 
 

Abstract. 

Transporters play important roles in tissue distribution and urinary- and biliary-excretion of drugs and 

transporter molecules involved in those processes have been elucidated well.  Furthermore, an 

involvement of efflux transporters such as P-glycoproteins, multidrug resistance associated protein 2, and 

breast cancer resistance protein as the intestinal absorption barrier and/or intestinal luminal secretion 

mechanisms has been demonstrated.  However, although there are many suggestions for the contribution 

of uptake/influx transporters in intestinal absorption of drugs, information on the transporter molecules 

responsible for the intestinal absorptive process is limited.  Among them, most studied absorptive drug 

transporter is peptide transporter PEPT1.  However, utilization of PEPT1 for oral delivery of drugs may 

not be high due to the chemical structural requirement of PEPT1 limited to peptide-mimetics.  Recently, 

organic anion transporting polypeptide (OATP) family such as OATP1A2 and OATP2B1 has been 

suggested to mediate intestinal absorption of several drugs.  Since OATPs exhibit species difference in 

expressed tissues and functional properties between human and animals, human studies are essential to 

clarify the intestinal absorption mechanisms of drugs via OATPs.  Recent pharmacogenomics studies 

demonstrated that OATP2B1 is involved in the drug absorption in human.  In addition, information of 

drug-juice interaction in the intestine also uncovered the contribution of OATP1A2 and OATP2B1 in drug 

absorption.  Since OATP1A2 and OATP2B1 exhibit broader substrate selectivity compared with PEPT1, 

their potential to be applied for oral delivery should be high.  In this review, current understanding of 

characteristics and contribution as the absorptive transporters of OATPs in small intestine in human is 

described.  Now, it is getting clearer that OATPs have significant roles in intestinal absorption of drugs, 

therefore, there are higher possibility to utilize OATPs as the tools for oral delivery. 
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1. Introduction 

An involvement of transporters as the mechanism for intestinal absorption of drugs has been studied 

during about past five decades. Before molecular cloning of transporter genes, various in vivo and in vitro 

studies suggested a contribution of the carrier-mediated absorption of drugs via the nutrient transport 

systems for amino acids, oligopeptides, monocarboxylic acids, water-soluble vitamins, sugars, bile acids, 

amines, and nucleosides [1, 2].  After molecular cloning of membrane transporter genes in the middle of 

1990’s, more confirmative evidences which demonstrate the contribution of transporters in drug 

absorption have been obtained.  Peptide transporter PEPT1 (SLC15A1) has been extensively studied as 

the drug transporter by demonstrating that several clinically used drugs such as beta-lactam antibiotics 

and valacyclovir are absorbed by PEPT1 due to their structural similarities with native peptides. Since the 

characteristics of PEPT1 have been clarified well, PEPT1 studies are currently in the stage for utilization 

of the transporter as the tool for oral delivery by mainly pro-drug approaches [3-8].  In addition to 

peptide transporter, we found that certain anion transporters which exhibit pH-dependent transport 

activity contribute to the absorption/uptake of monocarboxylic acid-type drugs such as benzoic acid [9] 
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and pravastatin [10]. In the beginning, monocarboxylate transporters MCTs (SLC16A family) were 

hypothesized to contribute as the responsible transporter molecules, since they accept monocarboxylates 

such lactic acid and nicotinic acid as substrates.  When MCT1 was expressed in Xenopus oocytes or 

cultured cells, it transported benzoic acid as expected, while pravastatin was not [12].  Therefore, we had 

to consider that certain other transporters contribute to the absorption of such acidic drugs.  Organic 

anion transport systems in liver and kidney had been studied well and organic anion transporting 

polypeptide (OATP) was molecularly identified as the anion transporter in liver [13].  Accordingly, we 

expected that OATP type transporters are expressed and functional as drug absorptive transporter in the 

small intestine.  Since OATPs exhibit significantly broader substrate selectivity than PEPT1, they are 

more attractive to use as the transporters for oral delivery.  In this review, a contribution of OATPs in the 

intestinal absorption of drugs mainly done by authors is described. 

   

2. Characteristics of OATP Transporter Family  

Organic anion transporting polypeptides (OATPs, SLCO family) are involved in the cellular 

uptake of numerous endogenous and xenobiotic organic anions in various tissues and affect absorption 

and disposition of their substrate drugs.  In liver, OATP1B1 (former name is OATP-C), OATP1B3 

(OATP8) and OATP2B1 (OATP-B) are expressed at the basolateral membrane of hepatocytes and 

contribute to hepatic uptake of various compounds [14, 15], while OATP1A2 (OATP-A), which was 

molecularly identified for the first time in human liver, is expressed more abundantly in brain [16].  

These hepatic OATPs, OATP1B1 and OATP1B3, accept various clinically used drugs as substrates and 

their pharmacologically relevant observations in hepatic disposition in human are now accumulating 

based on the pharmacogenomic and drug-drug interaction studies.  OATP1B1 has genetic variants and 

one of genotype called SLCO1B1*15 shows lower transport activity by in vitro studies [17, 18].  The 

first pharmacogenomic study on OATP1B1 observed an increase of plasma concentration of pravastatin, 

which is extensively taken up by liver, in SLCO1B1*15 genotype in a gene-dose dependent manner [19]. 
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This observation is explained by a decreased hepatic uptake by impaired activity of the genotype, which 

results in the increased plasma concentration. Since then, it has been shown that SLCO1B1*15 variant 

affects the hepatic uptake of several drugs, resulting in altered pharmacokinetics [20].  Drug-drug and 

drug-juice interactions also provide in vivo evidences for the significance of OATP transporters in drug 

disposition in human.  For example, clinically observed effect of cyclosporine A on the cerivastatin 

pharmacokinetics was clearly explained by the interaction of cyclosporine A with the hepatic uptake of 

cerivastatin by OATP1B1 [21].  Although pharmacokinetic relevance of these hepatic OATPs in human 

is now accumulating, one of difficulties in OATP studies is a species difference.  Figure 1 shows the 

similarities between typical human OATPs and rat Oatps.  Multiple OATP molecules are expressed in 

liver of both animals and such a redundancy makes an identification of the functionally corresponding 

OATP/Oatp molecules between human and rat difficult only from the similarity of amino acid sequences 

and requires further functional studies.  For example, rat Oatp1b2 is expressed in liver and its similarity 

in amino acid sequences with human OATP1B1 and OATP1B3 are equivalent.  Accordingly, it is not 

easy to identify human OATPs that correspond to rat Oatp1b2, resulting in the difficult extrapolation of 

pharmacokinetic properties of drugs obtained in rat studies to human. We tried to identify human hepatic 

OATPs that correspond functionally to rat hepatic Oatps [22]. Many beta-lactam antibiotics are taken up 

by hepatocytes via organic anion transporters, including OATPs. Although multiple hepatic OATPs/Oatps 

can transport these antibiotics, a contribution of OATP1B3 and Oatp1a4 were largest in human and rat, 

respectively, demonstrating that amino acid sequence similarity may not be adequate to correlate human 

and rat OATPs/Oatps functionally.  Accordingly, in vivo human studies such as the effects of genetic 

polymorphisms of transporter genes and the altered pharmacokinetics by drug-drug and drug-juice 

interactions should be useful for OATP studies.   

As described above, since hepatic OATPs have been studied well and accept various drugs such as 

statins, angiotensin II receptor blockers, beta-lactam antibiotics, peptides, fluoroquinolones, angiotensin 

converting enzyme inhibitors, H1-antagonists, and other drugs and metabolites such as SN-38, 
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troglitazone sulfate, digoxin, bosentan, rifampicin, methotrexate, and glibenclamide as substrates, their 

pharmacological relevance is very high.  Accordingly, if similar OATPs are expressed in small intestinal 

epithelial cells, it is expected that those OATPs may determine the bioavailability.  Then, we can utilize 

such OATPs for oral delivery by improving intestinal membrane permeability by consideration of 

structural requirement of intestinal OATPs. Here, the current status of intestinal OATP studies and their 

possibility for oral delivery is described. 

 

3. Expression of OATP in Enterocytes    

Table 1 shows tissue expression profiles of OATPs in human.  It is well known that OATP1B1 and 

OATP1B3 are exclusively expressed in human liver and OATP4C1 is in human kidney [15, 23-25].  

OATP1C1 is in brain and testis and others are expressed multiple tissues, including intestine [15, 26].  

Accordingly, other OATPs than OATP1B1, OATP1B3, OATP1C1 and OATP4C1 are possible intestinal 

OATPs. Since until now drug transports have not been observed well in OATP3A1 and OATP4A1, we 

focused more on OATP2B1 and studied its intestinal cellular localization, which exhibits similar but 

relatively narrower substrate selectivity than liver-specific OATP1B1 and OATP1B3 [27].  By 

immunohistochemical studies in human small intestinal tissues, OATP2B1 protein was localized at the 

apical membrane of intestinal epithelial cells as shown in Figure 2 [28].  Therefore, it is possible that 

OATP2B1 contributes to the absorption of its substrates from intestinal lumen.  In addition, OTP1A2 

was also shown to localize at the apical membrane of intestinal epithelial cells by exhibiting the same 

localization with P-glycoprotein [29].  In our separate study in Caco-2 cells, we searched for the 

transporter molecules responsible for the uptake of fluoroquinolones, especially levofloxacin, by 

microarray analysis of the differentially expressed transporter genes derived from the Caco-2 sub-clones 

which exhibited high and low activity to transport of levofloxacin and we succeeded to identify 

OATP1A2 as the most responsible molecule for apical uptake of levofloxacin in Caco-2 cells [30]. At the 

same time, it was reported that Caco-2 cells expressed most abundantly OATP2B1 compared to 
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OATP3A1 or OATP4A1 [31].  Accordingly, both of OATP1A2 and OAT2B1 are considered as the 

intestinal OATPs.  However, although expression of OATP1A2 genes and proteins are reported in human 

small intestine cells [29], there are several controversial observations on the expression level of 

OATP1A2 in the human small intestinal tissues.  One observation is shown in Table 2, which examined 

the intestinal regional difference in the expression of transporter genes, including OATP2B1 and 

OATP1A2.  OATP1A2 expression in intestinal tissues is very low or negligible and OATP2B1 is more 

abundantly expressed [32] (Table 2).  We also observed an absence of mRNA expression of OATP1A2 

in human small intestine, while OATP2B1 was detected significantly [15]. Our observation of OATP1A2 

as the responsible transporter molecule for levofloxacin found in sub-cloned Caco-2 [30] may be 

explained by the alteration of expression level by long term cultivation and that Caco-2 is derived from 

the intestinal cancer tissues.  In addition, we reported that OATP2B1 gene expression is differently 

regulated from that of liver specific OATP1B1 and OATP1B3 being regulated by general transcription 

factor Sp1 in both liver and small intestine, while HNF1alfa which regulates liver-specific OATPs is not 

involved [33].  Taken together, intestinal expression of OATP2B1 should be more confirmative and 

currently it may be possible to say that OATP2B1 is generally responsible as the functional OATP in 

small intestine and OATP1A2 may show a variation in expression level by an induction and/or 

inter-individual variability [15, 32, 34].  Further studies on expression levels of OATPs molecules in 

human small intestine should be needed.   

In rats, Oatp2b1, a counterpart of human OATP2B1, and Oatp1a5 are expressed in small intestine 

[35].  However, although expression of Oatp1a5 protein at the apical membrane of rat enterocytes was 

demonstrated [35], intestinal cellular localization of rat Oatp2b1 has not been clarified yet.  We have 

reported that several drugs are transported by rat Oatp1a5 (former name is Oatp3), including fexofenadine 

[36], pravastatin [37], pitavastatin [38], tebipenem [39], talinolol [40, 41] and endothelin receptor 

antagonist [42] and their transport characteristics are comparable with those observed in rat intestinal 

tissues.  So, it is thought that Oatp1a5 is functional for drug absorption in rat.  Furthermore, Oatp1a5 
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shows similar functionality with human OATP2B1.  If rat Oatp2b1 is expressed at the apical membrane 

of rat enterocytes, relative contribution of Oatp1a5 and Oatp2b1 is not clear at present and further studies 

should be required.  

 

4: In Vitro Functional Characteristics of OATP2B1 

OATP2B1 is characterized by its pH-dependent transport activity. When examined the uptake of 

estrone-3-sulfate by in vitro OATP2B1-gene transfected cells, it exhibited pH dependent activity [28, 43]. 

Figure 3 shows the uptake of estrone-3-sulfate by HEK293 cells transfected with OATP2B1 gene at pH 

5.0 and 7.4.  OATP2B1 exhibited higher activity at acidic pH and the increase was due to the 7-fold 

increase of Vmax with only 1.5-fold increase of Km. Although the mechanism of the increase of transport 

activity at acidic pH is not clear, FCCP, a protonophore, decreased significantly the uptake at acidic pH to 

42% of control, while the decrease at neutral pH was not significant (81% of control).  Replacement of 

sodium or chloride ions with N-methylglucamine or gluconate ions, respectively, did not affect the 

apparent activity of OATP2B1.  Furthermore, glutathione did not show any effect on 

OATP2B1-mediated transport of estrone-3-sulfate.  Accordingly, it was suggested that proton-coupled 

transport (alternatively exchange transport with hydroxyl ion) was suggested as the mechanism of 

pH-dependent transport of OATP2B1 [43].  Since the physiological microclimate pH in the intestinal 

lumen is weakly acidic, pH dependence of OATP2B1 activity is not surprising as the intestinal apical 

membrane transporter.  Similar pH dependence is well known for peptide transporter PEPT1 [8] and 

monocarboxylate transporter MCT1 [9, 11] that are expressed at the enterocytes.  Therefore, an increase 

of transport activity of these transporters at acidic pH might have a physiological relevance as the 

intestinal transporters.  In addition to estrone-3-sulafate, dehydroepiandrosterone sulfate (DHEAS), 

fexofenadine, and pravastatin showed higher uptakes at acidic pH (pH 5.0) than those at a neutral pH (pH 

7.4) via OATP2B1, showing about 3-, 3-, and 50-folds increases at acidic pH, respectively [43].  Similar 

pH dependence was reported in OATP2B1-transfected cells and Caco-2 cells [44].  In addition, as 
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described above, we observed proton-coupled transport of pravastatin using brush-border membrane 

vesicles prepared from rabbit intestinal epithelial cells. Accordingly, OATP2B1 might contribute to 

intestinal uptake of pravastatin [10].  In addition, it is essential to functionally characterize 

OATP2B1-mediated transport of drugs at acidic pH to understand the physiological and pharmacological 

relevance, since characteristics of OATP2B1 at usually used neutral pH might be different from those at 

acidic pH which is more physiologically relevant.   

 

5: Effect of Genetic Polymorphisms of SLCO2B1 

In vivo pharmacological relevance of OATP2B1 is characterized by the effect of genetic 

polymorphisms of OATP2B1 gene (SLCO2B1).  Figure 4 shows non-synonymous mutations found in 

genetic variants of SLCO2B1.  Among these genetic variants, SLCO2B1*3, which has mutation of 

c.1457C>T that causes amino acid change of Ser486Phe, exhibited a decreased transport activity by in 

vitro studies [17].  When SLCO2B1*1 (wild type) and SLCO2B1*3 genes were expressed in vitro 

cultured cells, uptake activity of estrone-3-sulfate was decreased to 42% of wild genotype after correction 

of the amount of expressed OATP2B1 proteins.  This change was explained by the decrease of Vmax 

with negligible change in affinity (Km) 2.97 uM (*1) and 2.31 uM (*3).  In addition, allele frequency of 

SLCO2B1*3 gene is 31% in Japanese, while it is less in Finnish (2.8%) [45].  Accordingly, allele 

frequency of SLCO2B1*3 gene is relatively high in Japanese population and shows ethnic difference.  

When pharmacokinetics of fexofenadine after oral administration was studied in Japanese, 

SLCO2B1*3-gene dose dependent decrease of plasma concentration of fexofenadine was observed [46].  

The plasma concentration-time curves are shown in Figure 5.  Areas under plasma concentration time 

curve (AUCs) of genotypes of CC, CT, and TT are 1762, 1088, and 1136 ng･hr/mL, respectively, at a 

dose of 60 mg.  Maximum plasma concentrations (Cmax) were 343, 224 and 179 ng/mL for those three 

genotypes, respectively, whereas the time to reach Cmax (1.5, 1.5 and 1.8 hr, respectively) and clearance 

(0.6, 1.0, and 0.8 L/hr/kg BW, respectively) were comparable among three genotypes of SLCO2B1 
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c.1457C>T.  The observation demonstrated that intestinal absorption of fexofenadine is affected by 

genotypes of SLCO2B1.  Similar effect of genetic polymorphism of SLCO2B1 on the absorption of 

beta-blocker celiprolol was also reported [47].  The other variant of SLCO2B1 gene, c935G>A, which 

causes amino acid change of Arg312Gln also showed the decreased absorption of montelukast [48, 49].  

Allelic frequencies of c.935G>A genotype of SLCO2B1 are 13.6%, 8% and 13% in Finnish, Caucasian, 

and African American, respectively, showing relatively high frequencies [45].  These observed 

correlations between intestinal absorption and variants of SLCO2B1 genes strongly demonstrate that 

OATP2B1 is responsible and a determinant of the intestinal absorption of its substrate drugs.  More 

specifically, two variants c.1457C>T and c.935G>A of SLCO2B1 gene, decrease the plasma 

concentration of drugs such as fexofenadine and motelukast, which may cause a decreased efficacy of 

drugs.  Therefore, we need to be careful for dosage regimens in patients with those genotypes.  

However, there is a report on the higher plasma concentration of R- and S-fexofenadine in c.1457C>T 

genotype than the wild type subject [50], which means that the variants exhibited higher activity than wild 

type.  Further studies should warrant the clinical effect of SLCO2B1 gene. 

   

6: Drug-Fruit Juice Interaction on OATP2B1 

Alteration of in vivo drug absorption by concomitantly administered drugs or food/juice provides 

further evidence for the contribution of transporters in intestinal absorption of drugs.  In 2002, 

significant effect of fruit juices such as grapefruit-, orange- and apple-juices on the plasma concentration 

of fexofenadine after oral administration was reported [51].  The earlier reports on the increases of 

bioavailability of drugs by concomitant fruit juice were mainly focused on the interactions of juice with 

intestinal drug metabolizing enzymes such as cytochrome P450 [52].  Later, since non-metabolizable 

drugs showed the similar increase in plasma concentration by ingestion with fruit juice, intestinal drug 

efflux transporters were proposed as the second mechanism of drug-juice interaction [53].  Now, there 

are many reports on these drug-juice interactions on drug metabolizing enzyme (CYP3A4) and efflux 
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transporter (P-glycoprotein) that are expressed in enterocytes.  When these enzymes and transporters in 

small intestine are inhibited by fruit juices, an increase of plasma concentration should be observed, 

which may cause an adverse effect of dugs due to the increased systemic exposure [54].  However, fruit 

juices caused a decrease in plasma concentrations of fexofenadine, which cannot be explained by 

previously known drug-juice interaction on drug metabolizing enzymes and/or drug efflux transporters in 

small intestine.  Based on these backgrounds, new type of drug interaction on the intestinal uptake/influx 

transporters was proposed [51].  It was hypothesized that OATPs are contributing to the absorption of 

fexofenadine and in vitro studies showed that OATP1A2 could be responsible transporter molecule [51].  

On the other hand, it was reported that talinolol, a beta-blocker, exhibited a species difference in the effect 

of fruit juice on the plasma concentrations after oral administration between rat and human by showing an 

increase and a decrease of plasma concentrations of talinolol in rat and human, respectively, by ingestion 

with grapefruit juice [55, 56].  It has been known that talinolol is not metabolizable in intestine and is a 

good substrate of efflux transporter P-glycoprotein and those characteristics cannot explain a decrease of 

talinolol concentration in plasma by juice.  So, it was hypothesized that talinolol is a substrate of 

uptake/influx transporter in the intestine and the effect of grapefruit juice on intestinal uptake and efflux 

transporters are different between human and rat [40, 41].  To examine this hypothesis, we used naringin 

as the responsible ingredient in grapefruit juice, since naringin is present in grapefruit juice at high 

concentration (~ 1.5 mM) and has been known to affect both of drug metabolizing enzymes and 

P-glycoprotein [57].  Both of human and rat OATP/Oatp accepted talinolol as substrate by in vitro 

studies and OATP/Oatp-mediated transport of talinolol was inhibited by naringin at the concentration 

present in grapefruit juice.  However, rat mdr1a but not human MDR1 was inhibited by naringin at such 

concentration, when examined in rat mdr1a- or human MDR1-gene-transfected cells.  These studies 

strongly demonstrated that OATPs are responsible for the intestinal absorption of talinolol in both rat and 

human and that apparently differential effect of grapefruit juice on talinolol absorption between rat and 

human could be explained by the difference in the affinity of naringin to rat and human P-glycoprotein as 
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schematically shown in Figure 6 [40, 41].  There are several similar studies on the effect of grapefruit 

juice on drug absorption by interacting with intestinal uptake/influx transporters.  Fexofenadine 

absorption was reduced by ingestion with grapefruit juice by inhibition of OATP1A2 [58] or OATP2B1 

[46].  Intestinal absorptions of statins [59], montelukast [49] and aliskiren [60] were reduced by 

inhibition of OATP2B1 by grapefruit juice.  All these results support that OATPs are responsible for the 

drug-fruit juice interaction in the process of intestinal absorption.   

In addition to grapefruit juice, other fruit juices and beverages affect drug absorption by interacting 

with OATPs.  Fexofenadine absorption is reduced by orange juice and apple juice [46, 51].  Green tea 

catechins such as epicatechin gallate and epigallocatechin gallate inhibit intestinal OATP1A2 and 

OATP2B1 as well as hepatic OATP1B1 [61].  There are several well summarized review papers on the 

influence of fruit juices on drug absorption due to inhibition of influx transporters OATPs as well as 

efflux transporters and drug metabolizing enzymes in intestine for more information [54, 62].               

 

7: Perspective of OATP-Mediated Oral Delivery 

Tebipenem pivoxyl is a prodrug of carbapenem antibiotic tebipenem and exhibits very high 

bioavailability by 80% of dose.  Since usually observed bioavailability of ester prodrugs is about 30 to 

50%, we hypothesized that tebipenem pivoxyl might include carrier-mediated transport in addition to 

simple diffusion in intestinal membrane permeation [39].  When examined by in vitro studies, tebipenem 

pivoxyl was shown to be a substrate of OATP1A2 and OATP2B1 but not PEPT1.  Although it is not 

clear whether this prodrug is absorbed by intestinal OATPs in vivo, there is a possibility that intestinal 

OATPs or other influx transporters contribute to the high bioavailability of the tebipenem.  We have 

recently reported that antiviral oseltamivir, which is an ester prodrug of active Ro64-0802, is a substrate 

of peptide transporter PEPT1 and it may contribute to the intestinal absorption in human [63, 64].  These 

observations of the increased absorption of ester prodrugs suggest that the intestinal uptake/influx 
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transporters are involved in the intestinal membrane permeation and determine the success of prodrug 

approach.  We have experimentally showed the application of PEPT1 for oral deliver by three strategies 

depending on the chemical structures of the pharmacologically active drugs [4-6].  Compared with 

PEPT1, structural requirements as substrates of OATPs are not easy to clarify due to the broad selectivity, 

but they have more potential to be applied for variable compounds.  Accordingly, at least an evaluation 

of transport of drug candidate compounds by intestinal OATPs, PEPT1, and other uptake/influx 

transporters should be valuable and the utilization of these transporters may be the next strategy for oral 

delivery. 
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Table 1 

 

Tissue expression profiles of OATPs in human 

Protein Name Former Name Major Expressed tissues 

 

OATP1A2 OATP-A  Intestine, Brain and various tissues  

OATP1B1  OATP-C  Liver (No expression in intestine) 

OATP1B3  OATP8  Liver No expression in intestine) 

OATP2B1  OATP-B  Intestine, Liver, Placenta, Muscle etc. 

OATP3A1 OATP-D  Intestine and various tissues 

OATP4A1 OATP-E  Intestine and various tissues 

OATP1C1  OATP-F  Brain, Testis (No expression in intestine) 

OATP4C1  OATP-R  Kidney (No expression in intestine) 
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Figure legends 

 

Figure 1: 

Similarities in amino acid sequences between typical human OATPs and rat Oatps. 

The numbers represent percentage of similarities. Human OATPs are shown by capital letter and rat Oatps 

are shown by lowercases.  Parenthesis show former names of each transporter. 

 

Figure 2: 

Immunohistochemical localization of OATP2B1 in human small intestine.   

OATP2B1 (a, c) and Normal IgG (b, d) represent the result using anti-OATP2B1 serum and rabbit normal 

IgG, respectively.  Expression of OATP2B1 is indicated by brown coloration with the 

immune-peroxidase method.  OATP2B1 protein was localized at luminal surface. The result is cited 

from report by Kobayashi et al. (reference 28) and modified. 

 

Figure 3 

Concentration- and pH-dependences of estron-3-sulfate uptake by OATP2B1. 

Uptake of estrone-3-sulfate by OATP2B1 at acidic (pH 5.0: closed circles) and neutral (pH 7.4: open 

circles) pH was measured at its increasing concentrations.  Inset: Eadie-Hofstee plot of the result and 

obtained kinetic parameters (Km and Vmax) are shown.  The data is cited from report by Nozawa et al. 

(reference 43) and modified.  

 

Figure 4.  

Locations of non-synonymous changes of amino acid residues in OATP2B1 variants. 

Membrane spanning model of OATp2B1 and upper and lower area mean the extracellular and 

intracellular domains.  The locations of mutated amino acid residues are shown by star and each circles 

represents each amino acid residues.  

 

Figure 5. 

Effect of SLCO2B1*3 gene on plasma concentration-time curve of fexofenadine after oral administration 

in subjects with c.[1457C]/c.[1457C], c.[1457C]/c.[1457C>T], and c.[1457C>T]/c.[1457C>T] for circles, 

squares, and triangles, respectively. 

The data is cited from report by Imanaga et al. (reference 46) and modified. 

 

Figure 6. 

Scheme of the species difference of grapefruit juice effect on change of plasma concentration of talinolol 

between human and rat.  Left: In vitro inhibitory effect of increasing concentration of naringin on OATP 



23 
 

and MDR1 in rat (a) and human (b).  Dotted area means the naringin concentration present in grapefruit 

juice.  Right: In vivo talinolol blood concentration ingested with water (closed squares with dotted line) 

and with grapefruit juice (open squares with solid line).  Both of human OATP and rat Oatp are inhibited 

by naringin at the concentration present in grapefruit juice, while only rat mdr1a but not human MDR1 is 

inhibited.  Differential effect of naringin (grapefruit juice) on MDR1/mdr1a causes the differential 

change in absorption of talinolol between human and rat, while influx was commonly mediated by 

OATP/Oatp in human and rat.     
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