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ABSTRACT

The purpose of this study was to investigate muscle activation patterns for executing the
force vector at the human upper limb, using optimization techniques. To predict muscle ac-
tivation levels, a nonlinear optimization with the objective function as the total squared
muscle activation was used., Based on the data measured during force vector regulation
tasks in a human experiment, for each subject, we constructed a planer 2 degrees of free-
dom model with 6 muscles, and computed optimized muscle activation patterns using
Lagrange multipliers methods. Comparing the data of the model and experiment, the results
showed that high correlation coefficients were found in 4 of 6 muscles. In addition, in 5
of 6 muscles, preferred directions where the muscle activation level was highest were
shown no significant differences. These results suggest that muscle activation levels in op-
timization-based model with the objective function of the total squared activation was
analogous to experimental data and both patterns and directions in muscle activation levels
were predicted with high aspects. However, on the other hand, 2 muscles with low coeffi-
cient correlation and 1 muscle with significant difference in the preferred direction have in-
dicated the limitations in the modeling in the prediction of muscle activation levels. In our
modeling, since we utilized muscle parameters as a constant value regardless of the sub-
ject, there is a possibility that errors in the model resulted from differences of muscle pa-
rameters for each subject. If it was estimated parameters of muscles in each subject using
an appropriate manner such as magnetic resonance imaging, we may be able to predict fit-
ted muscle activation patterns for each subject.
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Introduction

To generate an appropriate joint moment for a
given joint, the muscle activation level in muscles
yield important information for a set of muscle ac-
tions. However, because a musclo-skeletal system in
humans has the redundancy in which the number of
the muscle around a single joint exceeds the degrees
of freedom of the joint, there are infinite combina-
tions for muscle activation patterns. For this undeter-
mined problem, in recently, one possible solution has

been obtained by the optimization concept with mini-
mization or maximization of the objective function.
Crowninshield and Brand'’ indicated that, in predict-
ing muscle activity, muscle activation patterns were
formed so as to minimize the sum of muscle stress
cubed. Van Bolhuis and Gielen®’ showed a model
based on minimization of the sum of squares of mus-
cle stress gave the best predictions for muscle activa-
tion patterns. Additionally, Fagg et al.”’ suggested
that the total squared activation criterion showed util-
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ity in describing muscle recruitment patterns. Thus,
the optimization with the "nice" objective function
may be suitable technique to investigate muscle acti-
vation patterns.

Whereas, although a variety of objective functions
have been designed to predict muscle activation pat-
tems®’, modeling studies that used the actual human
data during movement for elucidating the optimiza-
tion-based model have been less likely reported. In
particular, it has been often disregarded concerning
the differences of characteristics in each subject for a
given task. Therefore, by using the data measured in
each subject, muscle activation patterns with high ac-
curacy might be able to be examined.

The purpose of this study was to investigate muscle
activation patterns to execute the force vector at the
end effect in the hand, by using nonlinear optimiza-
tion. We selected the objective function as the
squared muscle activation in the optimization-based
model in order to predict muscle activation patterns.
The data used in our model, which were the length
of limbs, joint angle and force vector, was utilized
from force vector regulation tasks measured in human
experiment®’. Based on these data, we analyzed opti-
mized muscle activation patterns predicted from the
sum of squares of muscle activation in each subject
during the exertion of force vector.

Methods
1. Optimization-based model

We constructed a planer 2 degrees of freedom
model of the upper limb with 6 muscles using sub-
Jject's anthropometric data in the actual human experi-
ment as shown in Table 1. Six muscles modeled were
the pectralis major muscle (PMA), the posterior del-
toid muscle (DEL), the brachioradialis muscle (BRD),
lateral head of the triceps brachii muscle (TLA), the
biceps brachii muscle (BIC) and long head of the tri-
ceps brachii muscle (TLO). Figure 1 shows the planer
2 degrees of freedom model of the upper limb. Here,
assuming that the shoulder joint angle is 6, and the
elbow joint angle is &., we can obtained that the
hand position in the horizontal plane is expressed as
the following equation,

X= [Lwos@; Le:cos (6.+6.)

Lisin@, Lssin (0.+46.)) (1

Table 1. Anthropometric data of 11 subjects in the
actual human experiment. The length of
UA and LA denote the length of the upper
arm and lower arm, respectively.

Subject UA length m) LA length m)
1 0.30 031
2 0.30 0.33
3 0.32 0.32
4 0.32 0.30
5 0.32 0.33
6 0.32 031
7 0.31 0.31
8 0.32 0.31
9 0.33 0.34
10 0.30 0.32
11 0.31 0.33

Figure 1. A planer 2 degrees of freedom human arm
using the optimization-based model. The
number in figure denotes the number of
muscles; 1, pectralis major (PMA); 2, pos-
terior deltoid (DEL); 3, brachioradialis
(BRD); 4, lateral head of triceps brachii
(TLA); 5, biceps brachii (BIC); 6, long head
of triceps brachii (TLO). L, and L; denote
the length of the upper and lower arm,
respecively. 6, and 6. denote the joint
angle of the shoulder and elbow, respec-
tively. F denotes the force vector and ¢
denotes the force direction as making right
direction 0 deg.

where X=(x, y)" are hand position in 2 dimensional
plane at which the shoulder joint is the origin of co-
ordinates, and subscript T indicates the transpose of
matrix. L, and L: indicate the upper and lower arm
length in Table 1. In addition, by partial differentia-
tion of Eq. (1), we can obtain matrix of the Jacobian
as follows,
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0X _(~Lisin@,~L:sin (6.+0.) ~Lesin(0+6.)

90 | Licos8,+Lscos (8,+6.) Lacos(8+6.)
(2)

where J are the Jacobian matrix. The relation between

1(0)=

the joint moment and the force at the hand is formu-
lated using above the Jacobian matrix,

M=J(6)'F, (3)

where M=(M, M.)" are the joint moment vector about
the shoulder and elbow moment, that is, M, and M.
indicate the shoulder and elbow joint moment, respec-
tively. F=(Fcos ¢, Fsin® )" are the force vector at the
hand.

The number of muscles around the shoulder and
elbow joint exceeds degrees of freedom in these
joints. Thus, a muscle force that is produced in each
muscle is not uniquely determined from one joint mo-
ment. Concerning this undetermined problem, in order
to calculate muscle activation levels in each muscle,
we used a non-linear optimization technique.
According to Milhorn®’, the muscle activation level a

is represented by using muscle force f and maximum
muscle force foux,
I

Jox—Bv ’

where B is a coefficient of viscous damping and v is

(4)

a

muscle contraction velocity. Here, v is set to the
value 0, because force vector regulation was isometric
contraction tasks. Therefore, Eq. (4) can be substituted
as a=f/fu Each fux was calculated by multiplying
a physiological cross-sectional area (PCSA) in
Gomi”’ and 62 N/em of muscle tension per sectional

Table 2. Muscle parmeters using the optimization-
based model. Abbreviations for each muscle
refer to Fig. 1. PCSA denotes the physio-
logical cross-sectional area of muscles. fmx
denotes the maximum muscle force. The
moment arm of flexion direction has nega-
tive values, and (s) and (e) denote the mo-
ment arm aroud the shoulder and elbow
joint, respectively.

Muscle PCSA (em?) finax ) Moment arm (cm)
PMA 19.4 1202.8 -4.4
DEL 38.7 2399.4 35
BRD 103 683.6 -2.8
TLA 7.8 483.6 2.0
BIC 32 198.4 -2.9(s) ~4.3(e)
TLO 3.9 241.8 2.5(s) 3.0(e)

area reported by Ikai et al.®’. Table 2 shows PCSA
and fu. in each muscle. The individual muscle activa-
tion levels that produce a given joint moment can be
found by solving the optimization problem in the fol-
lowing function to minimize,

U=Zadi, {5)

where U is the objective function, a; is the muscle
activation level of i-th muscle, and » is order power.
Since models with second-order power resulted over-
all in the best fits in comparing experimental muscle
activation patterns®’, we choose »=2 as second-order
power. Equality constraint functions are subjected to
Eq. (5) are formulated as follows,

M, =a:difom1tardafometasdsfonstasdefoss
M. =asdsfomatasd sfomatasdsfomstasdefoss’
where subscripts denotes the number of muscle ; 1,
PMA ; 2, DEL ; 3, BRD ; 4, TLA ; 5, BIC ; 6,TLO.
d, is moment arm of i-th imuscle shown in Table 2.
In addition, in order to constrain each muscle activa-

(6)

tion level to range of minimum and maximum level,
we added inequality constraint functions,

0=a=<1l (7

Finally, the above muscle activation level was treated
as the percentage, which the maximum level is 100%.

For solving the optimization problem, the Lagrange
multipliers method was employed®’. Generally, for the
number of unknowns x (X&R’), in this case, corre-
sponding to muscle activation levels with n=6, the
Lagrange function is defined as follows,

L, 2, i)~ )+ 5 L)+ 160, ®)

where A and 4 indicate Lagrange multipliers and
penalty parameters, respectively. m and »n are the
number of equality and inequality constraint functions,
respectively. The function f(x) corresponds to Eq.

(5) for which it is the objective function. Here, by
imbedding equality constraint functions in Eq. (6) and
inequality constraint in Eq. (7) to functions g(x) and
h(x), respectively, then we can solved Eq. (8) as the
optimization without constraints under necessary con-
ditions of 0 L/dx=0", 8 L/® A=0 and 0L/ & ©=0.
As requisite data to execute the optimization, that are
the joint angle, arm length, and force vector at the

hand, were used from the experiment data
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investigated by Inumaru®’. Based on these data, we
firstly computed the moment using Eq. (3), and then
solved the optimization problem with regard to Eqg.

(8) for obtaining the muscle activation level, by using
a computer program written in C++.

2. Experimental procedure

The data that was measured during force vector
regulation in prior experiment was used for this
study. Since the detailed procedure was presented
before®’, therefore, we described here in briefly with
regard to the experimental process.

Eleven male subjects participated in the experiment
with informed consent. All subjects were right-handed
and all force vector regulation tasks were executed by
right upper limb. The subject performed force vector
regulation in a horizontal plane monitoring a display
in which the force magnitude and direction at the
hand were shown. For the subject monitoring the dis-
play, we instructed to the subject exerting the force
magnitude at 20 N with the force direction at one of
eight directions of 45 deg intervals, on the basis of
bar graph's level on the display presented values of
the force vector at the hand. Simultaneously,
electromyographic (EMG) activity and joint angles
were recorded during force vector regulation tasks.
The EMG activity that was recorded using surface
electrodes were PMA as shoulder mono-flexor, DEL
as mono-shoulder extensor, BRD as mono-elbow
flexor, TLA as mono-elbow extensor, BIC as bi-
articular flexor, and TLO as bi-articular extensor. The
EMG signal was filtered at low-pass filter with 50 Hz
and was normalized as percentage of EMG activity in
maximum voluntary contractions according to the fol-
lowing equation : EMG=EMGuw/EMG,.. For elimina-
tion of the EMG activity of posture, EMG.« was used
as the value that subtracted the background activity in
posture maintained. The shoulder and elbow angle
were measured by using an electrogoniometer.

3. Data analysis

To compare relationships of muscle activation lev-
els between the experiment and the model, we com-
puted the correlation coefficient, R, for all data. The
number of data is 88 (11 subjects X 8 directions) for
each muscle activation level of the model and

experiment. The values of R range between -1 and 1,
and are close to 1 when the experimental activation
level are close to the model activation level.

As in Flanders et al.'” or Hoffman et al.'”, muscle
activation values were fit to a cosine-shaped function
as a function of a force direction or a movement di-

rection. In recently, Todorov'”

have proved that this
cosine tuning comes from the process of minimizing
the variance of the end point force vector. Therefore,
we also estimated the muscle activation levels in both
the experiment and the model as a cosine-shaped
function of the force direction. If the direction of the
force is ¢, the muscle activation levels M4 as a

function of the force direction is expressed as
MA=a+bcos ( $ -PD), (9)

where PD is the preferred direction of muscle activa-
tion (PD) in which the activation level become maxi-
mum, a and b are coefficients. We compared PD in
both the experiment and the model of the muscle ac-
tivation level.

Results

Figure 2 shows muscle activation levels for each
muscle in the model computed using the optimization
technique and in the experiment measured by the ac-
tual human subject. The value of the force direction
along abscissa axes indicates the force direction that
exerted by each subject. As a trend of all muscle, it
was identified that the model activation level qualita-
tively agreed with the experiment activation level. In
particular, we observed that there was reasonable rela-
tionship between the model and the experiment in the
muscle activation level of PMA, DEL and TLO.
Calculating the correlation coefficient, we found that
there was the highest correlation coefficient in the
muscle TLO (R =0.84). The lowest correlation coeffi-
cient was found in the muscle BIC (R=0.33) and
subsequently BRD (R =0.42). Another muscles of
PMA, DEL and TLA were also found the high corre-
lation coefficient. Each correlation coefficient was R
=0.76, 0.79, 0.74 regarding the muscle PMA, DEL,
TLA, respectively. Assuming that the muscle with R
above 0.7 was the muscle done modeling, we were
able to demonstrate that the muscle activation level in
PMA, DEL, TLA and TLO could be predicted from
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Figure 2. The muscle activation level predicted by the optimization technique (@) and
measured by the actual human experiment (O). Abbreviations for each muscle
refer to Fig. 1. The value of the force direction along abscissa axes denotes the
force direction that exerted by human subjects. There are 88 data points (11
subjects X 8 directions) for each method.
the optimization technique. both the model and the experiment. Left plot repre-
Inspired by studies that muscle activity has been sents the preferred direction of the model predicted
tuned by a cosine function as a function of the force by optimization method, and right plot represents that
direction'”, we have calculated the preferred direction of the experiment executed by human. In this figure,
of muscle activation levels, which was fired maxi- the direction of polar plots indicates the force direc-
mally to a given direction. Figure 3 shows polar plots tion. All of preferred directions presented as the aver-
of the preferred direction of the muscle activation for aged direction in eleven subjects. In prior study, we
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Figure 3. Polar plots of the preferred direction of muscle activation in the optimization
model (bold arrows, left) and in the experiment (dotted arrows, right).
Abbreviations for each muscle refer to Fig. 1. The center of a polar plot corre-
sponds to the hand position, and the direction of that corresponds to the force
direction.

Table 3. The preferred direction of muscle activation in the model and in the experiment.
The value indicates by means (£SD) of 11 subjects, in degrees. Abbreviations
for each muscle refer to Fig. 1. There were no significant differences between

the model and experiment, except TLO (*P<0.05).

PMA DEL

TLA BIC TLO

Model 176.1+6.8 341.0%£13.7 212.2%6.7
181365 363.1%18.0 195.1%509 739+65.9

Experiment

442%9.1 208.1%6.6 43.019.4*
1723%52.6 344%13.1

showed that the mechanical pulling direction of mus-
cles have not coincided with the preferred direction of
muscle activity®’. However, preferred directions of the
muscle activation predicted by the optimization-based
model indicated similar preferred directions that were
observed in the experiment as shown in Figure 3. The
deviation between the model and the experiment was
9.2 deg, 17.1 deg and 35.8 deg in PMA, BRD and
BIC as the flexor, respectively. In the extensor, the
deviation was 22.1 deg, 29.7 deg and 8.6 deg in
DEL, TLA and TLO, respectively. The preferred di-
rection of muscle activation in the model and experi-
ment for all subjects shows in Table 3. The paired t-
test indicated that, except for TLO, there were no
significant differences between the model and the ex-
periment, with the probability of P <0.05.

Discussion
Many studies have employed optimization tech-
niques in an attempt to predict muscle activation pat-

tems®> .

In our modeling, we also adapted the
optimization technique with the objective function of
the total squared activation criterion that might give
the best prediction for muscle activation patterns, and
then we computed muscle activation patterns on the
basis of the data measured from human subjects. The
results have shown clearly that only small differences
were found between the model and experiment.
Specifically, the high coefficient correlation was
found in TLO, PMA, DEL and TLA of muscle acti-
vation levels between the prediction and measurement.
In addition to that, except for TLO, there were no
significant differences in muscle activation of the pre-
ferred direction, which represents maximum activation
level. These results suggest that muscle activation
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levels in optimization-based model with the objective
function of the total squared activation was analogous
to experimental data and both patterns and directions
in muscle activation levels were predicted with high
aspects. However, on the other hand, in BIC and
BRD with low coefficient correlation and TLO with
significant difference in the preferred direction, have
indicated the limitations in the modeling in the pre-
diction of muscle activation levels.

In other researcher's optimization-based model,
Buchanan et al.”’ demonstrated that, using a variety
of cost functions, no particular cost function was
found to adequately represent actual muscle activity at
the elbow. Moreover, van Bolhuis et al.*’ demon-
strated that none of the existing models fitted the ex-
perimental data in all aspects. Unfortunately, our
results also have indicated that it was not able to do
modeling in all muscles, regardless of the total
squared activation used. As the reason that this result
occurred, parameters of muscles, such as PCSA,
maximum force and moment arm might have been
given errors in predicting muscle activation levels™™.
If it was estimated parameters of muscles in each
subject using an appropriate manner such as magnetic

resonance imaging'

, we may be able to predict
"best" muscle activation patterns for each subject.

In addition to relationships between the model and
experiment of muscle activations, we also examined
with regard to the preferred directions of muscle acti-
vation. The preferred direction indicates the direction
where muscle activation level is highest in the case
that the muscle activation level is fitted to the cosine
regression as a function of the direction of movement
or force. According to Fagg et al.?’, cosine-like re-
cruitment behavior of muscles as a function of move-
ment direction may result from a process of
movement optimization. Additionally, this cosine-like
burst also exists in the motor cortex as a neuronal

population vector'™. Recently, Morrow et al."”

exam-
ined the relationship between muscle activity and
motor cortex discharge, and have demonstrated that a
small number of neurons recorded in the primary
motor cortex contain sufficient information to recon-
struct the time course of averaged muscle activity. In
our optimization-based model, since cosine-like burst

patterns of muscles with no significant differences in

the preferred direction was shown in both the model
and the experiment, it is suggested that this pattern
reflects discriminative patterns in cortical level.
Therefore, producing the "best" muscle activation pat-
tern, it may be able to investigate as aspects of the
internal representation in cortical level as an opti-
mized movement for each subject.
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