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On Fechner’s Problem

Yasuharu OKAMOTO

Summary

Replacement of differences by differentials in derivation of the logarithmic
law has been criticized, but, in case of the revised Fechner’s problem, differen-
tials and integration can be introduced. Dzhafarov and Colonius (1999)
presented their model, in which psychophysical distances are calculated by
integration of differentials derived from psychometric functions. But their
model should be considered to be based essentially on Case V of Thurstonian
models. On the other hand, explicit use of Thurstonian models and
psychometric functions has been proposed to derive a differential equation for
relation between physical and sensation intensities by Okamoto (1993, e.g.),
which is presented here with a more general approach than the previous ones.
After the introduction of these models, I discuss problems in criticisms for
Fechner’s differential formula, other uses of differential equations in psycho-
physics (e.g., Eisler (1963)), psychological nonsense in general mathematical

distances in Dzhafarov and Colonius’ model, and so on.
Introduction

Fechner’s problem is concerned to scaling of sensation, especially based on discrimina-
tion data. Minimum increments of stimulus intensities to be discriminated, e.g.,
intensities of 1000-Hz tones, are called JNDs (just noticeable differences or difference
limens (DLs)) and thought to be the same size in the sensation scale with each other.
So, one might expect that the sensation scale could be obtained by cumulating JNDs
(see, Gescheider, 1985, 144-146, e.g.). Furthermore, replacing differences called JNDs
by differentials, we get the differential equation which leads to the logarithmic law

with Weber’s law. But, this process of derivation has problems (Luce and Edwards,
1958). ‘



When intensity of the stimulus is denoted by s and JND for intensity s by As,

Fechner’s problem can be formulated as follows:

Find a scale « for s such that

u[s+As]—u(s) =constant (1)

In discrimination experiment, the size of JND is determined by setting discrimina-
tion probability = at some value, e.g. #=0.75, so the probability that s+ As is judged
to be more intense than s is z. Making this dependence of As on =z explicit, we can

formulate eq.(1) as follows (Luce and Galanter, 1963, p.208) .

uls+A(s, n)]—u(s)=g(zn) (2)

In eq.(2), A(s, #) represents JND for discrimination probability z, and g (z) the
constant value of corresponding differences in the sensory scale .

In an experiment, = is fixed value, so g (z) also fixed. Luce and Galanter (1963,
p.223) said that JND is an algebraic rather than probabilistic notion. In this case,
functional equation analysis of eq.(2) is appropriate (Luce and Edwards, 1958) and
measurement theorists have contributed (e.g., Falmagne, 1985).

But, conceptually, = can be any value of probability. When value of 7 in eq.(2)
is allowed to vary, eq.(2) is called the revised Fechner problem (Luce and Galanter,
1963, p.210). For the revised Fechner problem, we have various values of A(s, )
corresponding to various values of z. Specifically, we can have infinitely small A (s,
n) as m approaches 1/2, assuming no biases. Hence, we can derive differential
equations with z approaching to 1/2.

As eq.(2) can be transformed to the following psychometric function

n=g ' {uls+A(s, m)]—uls)}

the differential equation is linked to a psychometric function, which is the basic idea
of Dzhafarov and Colonius (1999). But, strictly speaking, the central concept in
Dzhatfarov and Colonius’ model should be considered not to be a psychometric function,
but to be something like a Thurstonian model, especially Case V (Thurstone, 1927).

A psychometric function in the strict meaning has been used in Okamoto (1993,
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1994, 1995a, 1995b, 1996a, 1996b, 1997, 1999) to derive psychophysical differential
equations, where a Thurstonian model is linked to a psychometric function to get
relation between the physical stimulus intensities and the corresponding sensation
intensities. Use of a psychometric function introduces a Weber function in some form
into the psychophysical differential equation, which is not clear in Dzhafarov and
Colonius (1999).

In the next section, I will explain Dzhafarov and Colonius’ model in a rather
simplified way to elucidate the essential of their model.

As a subsidiary assumption, in their model the equally-often-noticed-difference
problem (Luce and Galanter, 1963, p.211) is accepted. Luce and Galanter (1963, p.216)
suggested that this problem has a solution if and only if the variances of the sensation
differences are all equal to each other. Falmagne (1985, p.144-145) showed that, in
Thurstone’s Case III, the equally-often-noticed-difference problem has a solution not
only for the constant variance assumption but also for linearly variable variance with
mean. But, in the latter case, difference is calculated in the scale constructed as
logarithmic transformation of the original sensory scale (Falmagne, 1985, p.136).

The assumption of constant variance is too ‘restrictive and has not yet been
empirically confirmed. But, constant variance assumption seems to be tacitly taken in
criticisms for the logarithmic law and this assumption plays an important role in some
type of the criticisms. Constant variance aséumption will be discussed later in this
paper. Equality of variances is not assumed in Okamoto’s model, which will be

introduced after explanation of Dzhafarov and Colonius’ model.
Dzhafarov and Colonius’ Model

Dzhafarov and Colonius (1999) proposed their model for multidimensional stimuli,
which includes an unidimensional model as a special case, and the basic idea can be
shown most easily for unidimensional one. So, in this section, I explain their model in
case of unidimensional stimuli.

Dzhafarov and Colonius denoté a sensory scale «# by ¢, physical intensity s by x,
and discrimination probability = by p, and JND A(s, =) by w(x, p). Hence, eq.(2)

becomes

$lxtwx p)]l—o (x) =g () (3)
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Eq.(3) is presented in Dzhafarov and Colonius (1999, p.246).

Taking the inverse function 2=g"' of g, we have

p=g ' {plxtwx p)]—¢ ()}
=h{plx+twx p)]—¢(x)} (4)

If we can set with the standard normal distribution N (z)
h(t)=[_N(z)dz,
we have
p:f‘fiﬁwu‘mvwx}N(z)dz. 5)
Eq.(5) corresponds to Case V of Thurstone’s (1927) model. Luce and Edwards (1958,
p.233) pointed out the relevance of Case V to the equally-often-noticed-difference

problem.

Intuitively, from eq.(5) we have in the neighborhood of p=1/2,
dpecdg (x).
Hence, difference G (4, a) of scale values of @ and b can be given by
Gla, b)=¢(b)—¢(a) o ['dp(x). (6)
That is, difference of sensory scale values, from which we can easily determine the
scale, can be calculated by accumulating differentials of discrimination probability and

this process of scaling is guaranteed by the model like Thurstone’s Case V.

More rigorously, rewriting eq.(4) as

v ) =h{¢p() —¢ )}, (4)

where v, (y) =p=Prob(“y is more intense than x”) according to Dzhafarov and

Colonius’ notation, and differentiating the above equation by v, we have
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d_ _dh  d¢
1) — ()] -ffl%

As notational change, setting

y=x
and
d
F —_
0 =37.0)|
we have

Hence, we have

By suitable choice of unit of the scale, i.e., replacing scale ¢ by %’ (0) - ¢, we have
Gla, b)=¢(b)— ¢ (a) =[ F(x)dx

Eq.(8) was presented by Dzhafarov and Colonius (1999, p.248) in the following

form

Ga, b)=['dy,(x),

(8)

as to which Dzhafarov and Colonius suggested that this surprisingly simple approach

to G(a, b) constitutes the essence of Fechnerian scaling for unidimensional continua.

But, eq.(8) is trivial in view of eq.(6).

Eq.(8) is derived from eq.(4’), which is a psychometric function as a function of

y. But, given the formulation eg.(5), it is more appropriate to consider egs.(4’) or (4)
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as a Thurstonian model. The function % in egs.(4) or (4’) is a function of difference
between sensory scales. In contrast to eq.(5), a psychometric function, as a function

of physical intensities, should be given as follows

klx) 22X

p=["T"" N(2)ds, (9)

where k(x) is the coefficient that is determined by the slope of the psychometric
function at x.

Combination of a psychometric function such as eq.(9) with a Thurstonian model
such as eq.(5) gives interesting models (Okamoto, 1993, 1994, 1995a, 1995b, 1996a, 1996
b, 1997, 1999). In Okamoto’s models, variances of the sensation differences are not
assumed necessarily to be constant. These variable variance models will be explained

in the next section.
Variable Variance Models

Before explaining the present version of the variable variance model, I review the
previous versions briefly.

The early version was a rather simple model presented in Okamoto (1993, 1994).
To get a relation between physical intensities S, and S,, and the corresponding sensory
intensities R, and R,, the following Thurstonian model and psychometric function

were used:
Prob (“S, is judged to be more intense than S,”) :f(_ROfR’W "%”{q&o(x)dx (10)
and
« .. . ”» ks, + (Sy=S8)/S,
Prob(“S, is judged to be more intense than S,”) =" ¢, (x) dx (1

where R, and R, are means of intensities of sensations produced by physical stimuli S,
and S,, o% and o} variances of sensation intensities of S, and S,, ks, the coefficient
determined by the slope of the psychometric function at S|, and ¢,(x) the standard
normal distribution.’ Strictly speaking, the left sides of egs.(10) and (11) were written

in Okamoto (1994) as P(X,>X,), where X, and X, are random variables for
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sensation intensities invoked by physical stimuli S; and S,. Hence,
P(X,>X,) =Prob(“S, is judged to be more intense than S,”)

By egs.(10) and (11), we have

RZ_R1 SZ—SI

Letting S, and R, approach to S; and R, respectively, and replacing S, and R, by

S and R, respectively, we have

dR V2 - ok

a4 s

In the above equation, standard deviation (square root of variance) ¢ and coeffi-
cient kg, which is closely related to a Weber function, are explicitly included. These
factors, o and a Weber function, play important roles in analysis of discrimination
data. In a general case, where ¢ is any function of S, discrimination probabilities are
not only determined by sensation differences but also affected by the sizes of variances
of them. This point is important when we discuss number of JNDs between fixed
differences of sensation magnitudes, and will be considered later in this paper.

R.D.Luce (personal communication, 1994 to 1995) gave me detailed comments on
Okamoto (1994). Based on Luce’s comments, a revised manuscript (Okamoto, 1995b)
was written. In Okamoto (1995b), revision was mainly on notation. R,, R,, o7 and o;

were replaced by R, R, 0‘25 and o'ZZ, so the Thurstonian model was presented as
P(X,> X9 =[I20 g () - d
I got valuable comments on Okamoto (1995b) from active specialists, including R.
D.Luce (personal communication, 1995), D.Laming (personal communication, 1995)
and H.Colonius (personal communication, 1995). Again, a more general model than

Okamoto (1994, 1995b) was presented in Okamoto (1996b), where o-notation (see
Apostol, 1974, p.192, e.g. Meaning of Apostol’s notation of O (big oh) is different from

! Notations used here to present early versions of my models follow those in my previous papers.



that in Dzhafarov and Colonius (1999, p.267, note 3)) was introduced in response to
Luce’s comment. In Okamoto (1996b), it was emphasized that % s, ineq.(11) may vary
as a function of S}, so kg was denoted as £(S,). While constancy of ks, with respect
to S, can be derived from Weber’s law, variable £ s, can correspond to a case such as
the near-miss to Weber’s law, which case was suggested by D.R.Luce (personal
communication, February 17, 1995).

In Okamoto (1996b), eqs.(10) and (11) in Okamoto (1994) were reformulated? as

(W (S,) =¥ (S1)) /v ) 2 5,)2— L) T o (W(Sy) —¥(S)))
P(X,> X)) =[ 70 YO eSS i s e SIS ) -

and

S,—S
%m(sz—sp

P(X,>X,)=[""""75 b, (x) + d.

But, here I will present the above model with notational change as egs.(12) and
(13), because notations in Luce and Galanter (1963), Dzhafarov and Colonius (1999)
and Okamoto’s papers are different to each other, and I felt that some consideration
on notation is needed.

The symbols used afterward are as follows:

x and y denote physical stimulus magnitudes. These symbols, ¥ and y, play
the role of independent variables in psychophysical functions and, in mathematics,
independent variables are often denoted as x, v and so on. This notation accords
with Dzhafarov and Colonius (1999).

X and Y denote random variables which represent sensation magnitudes
invoked by physical stimulus intensities x and y, respectively.

Stevens (1975) denoted stimulus magnitude by ¢ and sensory one by ¥. In
accord to Stevens’ notation, means of X and Y are denoted by ¥ (x) and ¥ (y),
respectively. These means, ¥ (x) and ¥ (y), are interpreted to represent the
sensory scale values of the physical stimulus intensities, x and y.

Variances of X and Y are denoted by ¢*(x) and ¢*(»).

? The term 0 (S,—S)) in the psychometric function was carelessly omitted in Okamoto (1996b), but
is included in this paper.



With these notations, set the following Thurstonian model:

Prob(“y is judged to be more intense than x”)

=Prob(Y > X)
:J‘ ([ () -]/ [62x) +02(3) ~2r0(x) s (112 +0 [w(y) —w ()] N(t) - dt 12)

where 7 represents the correlation coefficient between X and Y, and N (#) the
standard normal distribution. Signal detection theory (Green and Swets, 1966) also
uses normal distributions.

Psychometric function® is assumed to be written as

u-+-o(y—x)

1
Prob(“y is judged to be more intense than x”) =[*@ "= N@)-dt

o-notations in egs.(12) and (13) are introduced to show that at least asymptotic
representations by the standard normal distribution N () around x is sufficient in this
model. This approximate type of modeling, which is for Fechner’s problem, was
introduced as M.F.Norman’s by Krantz (1971, p.596). More generally, use of N (¢) is
not necessary and a model without use of N (¢#) will be introduced later. Representa-
tion of a psychometric function by a cumulative normal of the physical stimulus is
called the phi-gamma hypothesis and supported with respect to some sensory contin-
uum (Gescheider, 1985, Pp.65-67). The phi-gamma hypothesis depends on the physical
scale used. Dependency of a model or a theory on a particular system of representation
is also ‘observed in physics. Newtonian mechanics stands on inertial systems (e.g.,
Arya, 1979).

By egs.(12) and (13), we have

¥(y)—¥ ) B 1 y-x )
[o‘z(x)+0'2(y)—2m(x)o-(y)]l/z—i_o['{/(y) ¥ )=gy 5 Tob—x)

With some smoothness conditions, letting y approach to x, we have

d¥ ox) -/ 2(0—7)
dx k(x) - x

(19

3 k(S) is replaced by ﬁ, to make the meaning of the term k(x) more straightforward.

Explanation of k(x) will be given later.



k (x) and Weber function
That £(x) in eq.(14) is closely related to Weber function can be shown as follows.

Let z, ,; and x, ,; be the values corresponding to discrimination probability 0.75
such that

0.75=[""N(t) - dt

I Xo75—% _
=[F0 T N ) gy
— 00
Then we have
1 Xo.15— %
2y = '
0.75 k(x) M
1 Xo e —X
k(x) ~ 0.75
2075 X

Because ——9—7;56——— is Weber fraction for discrimination probability 0.75 and
20.75
constant coefficient, we can see that k(x) is essentially Weber function.

More general approach’
In eqs.(12) and (13), the standard normal distribution N (¢) is used. But N (#) is not

necessarily needed. More generally, we can proceed as follows:

Set
B ¥ () —¥ (1)
Pr"b(bX)‘T{ [P0 +0) —2r0 @ o () ] } v
and
Prob(Y>X)=W <k(1x) y;") 19

where T (z) and W (z) are cumulative distribution functions, i.e.

im7 z)=limW (2) =0, lim7 (z) =lim W (z) =1,

zZ——0C0o Z—— 00 Z2— 400 Z—> 400

* This general approach is tried in response to stimulation given by D.Laming (personal communica-
tion, 1995).
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and it is assumed that T (z) and W (z) are not decreasing, and strictly increasing in
the neighborhood of 0.
By egs.(15) and (16), we have

¥(y)— ¥x) R 1 y—x
[6°(x) +6°(y) =270 (x) o (¥)]"* =T {W [k(x) X } }

at least in the neighborhood of x, where T ' is defined. |
When h(z) =T "' [W(z)] is linear® in the neighborhood of 0, i.e.,

h(2)=T 'W(2)]

=a-z+to(z),

we have

w(y)—¥(x) _ 1
(6% (x) +6°(y) =270 (x) o(3) ]

Let y approach x, we have

d¥y = a-o(x) v/ 2(0=7)

dx k(x) *x

This equation is essentially the same as eq.(14).

Asymmetry of psychometric functions
Psychometric function eq.(11) is symmetric around S, as a function of S,. But, if
Weber’s law holds strictly, the psychometric function is not symmetric (Drosler, 2000).
This asymmetry can be seen as follows:

Let AS be JND of stimulus S for discriminability probability = and k Weber

fraction k:% and set

T=S+AS,

then

5 Luce and Galanter (1963, p.200) said that the psychometric function is very nearly a straight line
in a region approximately one JND, or a little more, above and below the PSE.
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T=S+AS

=(1+4)S
Hence, we have
S R
T—-S 1+%
T T
_k
14k
With A T:L- T
o 1+k b
We have
T—AT=T—-(T-S)
That is,

Prob (“T—AT is less intense than 7”) =Prob (“S is less intense than T”)

=7

in case of a forced two-choice experiment.

_k_
T 1+£
and not equal to that value % in the positive direction. This asymmetry necessitates

. . . AT . . .
This equation shows that Weber fraction —=— in the negative direction is
the introduction of o-notation into eq.(13).

Discussion

The logarithmic and power laws

Based on the idea of cumulating JNDs, the logarithmic law is derived. But, this
logarithmic function for sensory intensity has been criticized theoretically that, in
derivation, differences are replaced by differentials, and Weber’s law is assumed.
There are also empirical criticisms against the logarithmic law. For example, Stevens
(1936, p.412) pointed out that summating the same number of JNDs for two tones of

different frequency does not yield equal loudnesses.

— 12 —



Against the logarithmic law, the power law is proposed (Stevens, 1975). Baird
(1997, p.50) says that the power law must be squarely faced by any theory of psycho-
physicé. The power law has been supported empirically by experiments such as
magnitude estimation, cross-modality matching, partition and so on. In some theoreti-
cal approaches, power functions are derived (e.g., Luce, 1990; Krantz, 1972).

Just like as the logarithmic law can be derived from the Fechner’s assumption

(Krueger, 1989, p.253)
Ay =constant, 1
the power law can be derived from Ekman’s law (Stevens, 1975, p.235)
%=constant, (18

where Ay is the increment of sensory magnitude corresponding to JND. But, to
confirm eq.(18) empirically, Ekman (1959) assumed the power law. So, it is tautologi-
cal to justify the power law by Ekman’s law.

As another hypothesis than Fechner’s or Ekman’s law, Krueger (1989, p.260)

presents the following
Apocm™, ‘ 19

where m is the total number of JNDs in a continuum.
Eq.(19) is also considered to be a model without the constant variance assumption,
interpreting

o(x)ccm L,

But, in the model eq.(19), variance varies only over frequencies of tones, say. Over
intensities of a fixed frequency, the variance is constant.

Krueger (1989, p.265), in the last paragraph, refers to the problem of constancy of
Ay. In view of eq.(14), this problem is fundamental and should be given more
attention by researchers.

In general, laws of empirical sciences like psychology should be supported ulti-
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mately by empirical facts. In view of validity of experimental methods, Laming (1997)
criticized the power law. From their results of the scale discrimination experiment,
Namba and Kuwano (1991, p.238) concluded that it is possible that whether a ratio or
interval scale is found depends on the instruction given to the subjects. In their
experiment (experiment 2, pp.236-238), the subjects were instructed to judge whether
the stimulus spacing produced equal perceived ratios, equal perceived intervals, or
neither. For the stimuli spaced 10-dB steps, 30 out of 44 subjects perceived equal
ratios, but for 3-dB steps stimuli, 32 out of 44 subjects perceived equal intervals. Here,
it should be noted that, mathematically, structures of ratios and intervals (i.e. differ-
ences) are isomorphic to each other, hence theoretical analysis to distinguish between
them is difficult.

When, to criticize the logarithmic law, Stevens (1936, p.412) said “it has been
found that summating the same number of DL'’s for two tones of different frequency
does not yield equal loudness”, it sounds like that constancy of variance of sensory
intensity was assumed, which is clearly inferred in view of Thurstonian model like eq.
(10). Hence, if the constancy of variance is abandoned, Stevens criticism as to
number of JNDs loses force.

In a sense, Ekman’s law eq.(18) denies the constancy of variance, because it can -

be interpreted in the framework of eq.(14) as setting
o(x)oc¥ (x) (20
In this case, by eq. (14) and Weber’s law
k (x) =constant, )

we can derive the power law as follows:

By eq.(14) and eq.(20), we have

dy _w -y 2(0—7)
dce  k(x)-x
By eq.(21), we have
ay _ ¥
o ¢



J2(1—7)
k(x)
Hence, we have

where o= =constant.

log#¢ =a - logx+B, B=constant
w=¢f - x*

B

=y x° y=¢” . constant

On the other hand, Fechner’s assumption eq,(17) can be formulated as follows
olx)=c¢

- where c is the size of the constant variance.
In this case, we get the logarithmic law. By eq.(14) and the above equation, we

have

d'[/: c+v 2(1—7)
dx k(x) - x

With Weber’s law eq.(21), we have

d¥ 1
s
c-v 2(01—7)
where = 2 0x) =constant.

Hence, we have

v=a-logx+pg

with 8 a constant.

Some unification attempts of the logarithmic and the power law have been tried.
Baird (1997, p.84) said that researchers in psychophysics implicitly understand the
sameness of local and global psychophysics. Reviewing researches of scales of
magnitude, partition or category, summated JND and neurelectric, Krueger (1989)
seeked a common unified sensory scale. For example, he noted that a logarithmic
function can be approximated by a power function with a low exponent and presented

a figure (Fig.1 in his paper) to show this fact concretely (p.254). The power law is
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only an approximation in case of the Sensory Aggregate Model (Baird, 1997, p.46;
also see p.66). Norwich (1993) derived his law of sensation theoretically and showed
that his law includes both the logarithmic and power laws as extreme cases. But, in
the present state where experimental validity of the power law is doubted (Laming,
1997), before trying to unify both laws, we should scrutinize experimental results that

are considered to support the power law.

Problems in Criticisms for Fechner’s Differential Formula
Counter examples have been proposed concerning the process of deriving differential
formula from difference ones. But, these examples are inappropriate in some sense. I
will show this point using examples in Dzhafarov and Colonius (1999).

To show self-contradiction as to the derivation, they set the following equations

(p.245):

Ax=w (x) 22

and

Ad=c, (23)

where ¢ represents sensation scale for physical stimulus x, and w (x) increment of

stimulus intensity corresponding to the increment ¢ of sensation.

By egs.(22) and (23), they gave

Axr__ A )
w(x) ¢
and, replacing differences by differentials, finally presented
ﬂ_:i‘ﬁ_ (25)
w(x) c

As criticism for this replacement of differences by differentials, Dzhafarov and
Colonius (1999, p.245) presented superficially self-contradictory examples. But,
scrutinizing these examples, we can see that problems are not in replacement of

differences by differentials, but rather in carelessness of proposers of so-called self-
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contradictory examples.
Ax and A¢ are interpreted as JND and its corresponding difference of sensations.
Letting Ax and A¢ approach to 0, we have w (x) and ¢ also approaching to 0. So, in

this case, eq.(25) becomes the following nonsense equation

dx _ dé
0 0

To avoid this nonsense, Dzhafarov and Colonius (1999) should have taken an
approach such as the following:

Let return to egs.(22) and (23). Actually, w (x) and ¢ are functions of discrimina-
tion probability =z, so these should be denoted as w(x, =) and c(z). With these
notational changes, eq.(24) becomes

Ax _ A¢

wix, m) clx)

So, we have
ZZ? - wc(iﬂ)”) o
As = approaches to 1/2, i‘ﬁ = wii”)”) converges to %
At this point, we should note that when, e.g.,
‘s,
we haye
¢(z) > ¢ (z) for n, <=,

w(x, 7, w(x, m,)

The above equation is the cause of so-called self-contradiction using finite differ-

ence. That is, in general, coefficient ” ?x) in differential equation is different from the
value of w—€x)~ for finite differences Ax or Ag.

Consider the following example in Dzhafarov and Colonius (1999, p.245)

<

Glx, x+kx)= p

log(1+ k) *+¢,
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where G (x, x+ kx) denotes difference of sensory scale values, the coefficient % is the
limit of %(Z))— as = approaches 1/2. The constants ¢ and % are nonsense when
considered individually, because these values should be 0 as limit values.

For discrimination probability z, set

Ax  wl(x x)
x

and
Ap=c(n) 29
In the above equations, Weber fraction Axx— and corresponding sensory difference

A¢ are explicitly denoted as functions of 7.

By egs.(27) and (28), we have

clm) A _x-c(n)
k(z) ~ Tax w(x, x)

Letting z approach to 1/2, we have

lime -=x -2 ~Jim

7—1/2

Hence, setting the limit as a ratio of some non-zero values ¢, and k&, ie.,

i O
ko x—1/2 k(”) ,
we have
g _ ¢ 1
dx 0 X
and

Cy
¢ (%) = logx +constant
0

Because ———ko is given as the limit value with Ax approaching to 0, it is trivial that
0
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A¢ is not equal to ¢, for arbitrary finite Ax. Hence, it is not appropriate to consider
that this fact of A¢ being not equal to ¢, is self-contradictory.
. Ax
But, constancy of A¢ for constant Weber fraction —, can be shown as follows;
Set

: %2 J =constant,

then we have
A¢=¢(x+é‘- x>_¢(x> :&. logm
k, x
¢y
=—"-log(l+¢
p og ( )

0
=constant

As a more general case, Dzhafarov and Colonius (1999, p.245) presented the

following equation

G(a, a+Aa) ZCIZW(G) <%x)) @9

They said that the right side of eq.(29) should be cdnstant, although it is not in
general. 1 find two problems in their discussion concerning this point.

First, coefficient ¢ in eq.(29) is nonsense, because it is 0 as a limit value.

Second, the right side, if correctly interpreted, should be constant against Dzhafar-

ov and Colonius’ explanation. The reason is as follows:

. ¢ (m) .. dé . .
By eq.(26), ratio w2 has limit value e with Ax approaching to 0. That
is, we have
dp 1. clm)
T
172
Set
(x) =—2 ¢ iti tant
w\x)= or an 0OS111 1! nt ¢
V) y positive constant c,
then
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w (x) is determined as a ratio of any positive constant co to Vix).

Then, we have

I2+Aa ( Cy > . dx:JZMu <d_> . dx:¢<d+Aa)_¢<a>

Hence, when eq.(30) holds and ¢(a+Aa) —¢ (@) is constant for —A—;— constant,

then the following integration

is also constant.

But, it should be noted that, in general, the constant value is not equal to Cor
because the value of ¢ (¢+Aa) — ¢ (a) is determined by ratio %, and the value of ¢,
depends on w (x). When a pair of ¢, and w(x) are used in eq.(31), then for any

non-zero constant «, the pair of ac, and aw (x) can be used as ¢, and w (x) in eq.(31).

Differential Equation in Psychophysics
Eisler (1963) used a differential equation to represent intrasubjective relations in
psychophysics, e.g. relation between magnitude and category scales. By assuming
proportionality between the two scales, x and y (according to Eisler’s notation, x and
y represent subjective scales of stimulus @), he derived the following equation

o, ()

dy g
- 32
dc o, (x)’ .

where o, (x) and o,(y) are Weber functions of independent variables x and .
Okamoto (1994) applied eq.(32) to cross modality matching. He set the following

model:

drR" dR"
(4

o, = o

) (33

; 4 ) o |
where R' and R" are sensory values (mean values) of physical simuli S and S" ,

which are of two modalities, i and j, respectively. ¢, and o; are variances of sensations
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of stimuli S® and S, and « is a constant.

Eq. (33) represents some correspondence between discriminabilities of sensations,

(1) )
when dlj_' and dR

i i
(33) may be considered to reflect dynamic range (Teghtsoonian and Teghtsoonian,

are considered as indices of discriminability. Moreover, eq.

1997). By eq.(33), Okamoto (1994) derived a power function for magnitude estimation

and a logarithmic function for category scale.

Mathematical distance and Psychological Meaning

Although the problem is not psychological but merely mathematical, Dzhafarov and
Colonius (1999, p.248) pointed out the possibility that the derivative in eq.(7) equals 0
or infinity. In this case, they proposed the following derivative (ibid. p.249),

Flx) = lim}\‘/ y, (x+Ax) —y, (x)

Ax—0+ Ax

’

where y is some positive constant such that F (x) has a finite positive value.

In case of 4 =1, by eq.(8) their distance
Gla, b)=["F(x) - du
gives discrimination probability p by eq.(4’). That is, calculated distances are con-

nected with the probabilities, from which they are calculated. But, in case of x#1, it

is not clear how to calculate the discrimination probability from the distance

- dx

Cla b Zﬁlim‘/ v, (x+Ax) —y,(x)
Ax—0+ Ax

Without the way to calculate the probabilities from which the distances are
determined, these distances for x+1 are mere mathematical objects without psycho-

logical meaning.
Conclusion

For the fixed discrimination probability, just noticeable differences are of finite sizes.
As a solution for Fechner’s problem, we can accumulate the JNDs to get a sensory

scale. But, when this cumulative method goes beyond the simple summation, we see

P



troubles, which can be revealed by strict mathematical consideration (Luce and
Edwards, 1958) .

From theoretical point of view, discrimination probability can be any value
between 0 and 1. For the revised Fechner’s problem given by Luce and Galanter
(1963), discrimination probability z takes any value, so the corresponding JND varies
as n varies. Hence, for the revised Fechner’s problem, derivation of differential
equation can be justified. Considering in the framework of the revised Fechner’s
problem, Dzhafarov and Colonius (1999) introduced differentials and gave a sensory
scale by integration of differentials. But their approach has problems: (1) Although
their approach seems to be based on a psychometric function, its core should be
considered to belong to Thurstonian model, especially to Case V. So, its relation to
characteristics of discrimination in terms of physical continuum such as Weber’s
function is not clear. (2) Possibility of variability of variances of sensory intensities
are not considered. That is, constancy of variances are implicitly assumed.

When we explicitly combine a Thurstonian model with a psychometric function,
we get the differential equation (14), where physical and sensory scales are related to
Weber function and variance of sensory intensity. In this model eq.(14), we need not
to assume the Weber function and the variances to be constant. Hence, eq.(14) can
treat of a wide range of possibilities as to sensory scales.

Possibility of variability of variances of sensory intensities is important in case of
Stevens’ (1936) criticism for number of JNDs beween the same differences of sensa-
tion. When variances vary, numbers of JNDs between the same sensory differences
are not the same as each other.

Constancy of Weber function, i.e. Weber’s law, which is assumed in derivation of
the logarithmic law, does not hold strictly. Eq.(14) can be used in case where Weber
function is not constant, e.g. in case of the near-miss to Weber’s' law (Baird, 1997, pp.
56-58; Luce, 1993, p.124).

Fechner’s problem treats of construction of a sensory scale. As to sensory scales,
two types of scales, the logarithmic and the power laws, are the famous opponents in
psychophysics. The logarithmic law is derived from constancy of variance and Weber’
s law. The power functions are proposed against the logarithmic ones and derived
from data of direct methods, or from Ekrﬁan’s law as the logarithmic law from
constant variance of sensation.

Some theorists attempted to unify the two laws. Krueger (1989) reviews works
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on the four major types of scales, magnitude, partition or category, summated jnd, and
neurelectic, and tried to find a common basic underlying scale (ibid. p.252). Norwich
(1993) derived theoretically his equation, which includes both the logarithmic and
power laws as extreme cases. How to unify the two types of scales, scales constructed
from the data of discrimination experiments and scales from those of direct methods,
depends on validity of the scales.

The power law is supported by direct methods. But, those methods are criticized
not only in the current years (Laming, 1997), but also were rejected, according to
Scheerer (1987, pp.199-200), in about a century ago. Baird (1997, (_:hap.8) presented the
results of the simulations where the power law was obtained by Number Preference
Model. According to Number Preference Model, response numbers are not determined
based on sensation ratios, but selected based on the subject’s preference for numbers.

When we restrict the problem within discrimination experiments, we must deter-
mine how the variances of sensations vary. As to cumulating JNDs, Luce and Edwards
(1958, p.237) said in the last paragraph “(most psychophysicists) have stubbornly
summated jnd’s in the obvious and correct way” (words in parentheses are added by
the author). But, this summation of JNDs depends on the assumption that variances
of sensations are constant. When we read Stevens’ (1936) criticism as to number of
JNDs, we find the necessity of empirical supports of this constant variance assump-
tion.

In derivation of the logarithmic law, Weber function is assumed to be constant.
However, it is well known that Weber function is not constant (Baird, 1997, pp.54-59).
Cases, where variances may vary or Weber functions are not constant, can be treated
in the unified framework eq.(14).

Eq.(14) treats exclusively of discrimination data, but includes cases other than of
constant variances of sensation or Weber’s law. Relation between eq.(14) and direct

methods is not discussed in this paper.
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