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 Introduction 

 Lymphocytes accomplish a complex balance between proper response to foreign 

antigens and minimized reaction to self-antigens. Disruption of this balance can result in the 

induction of autoimmune diseases. Recent assessments of the role of B cells in the immune 

system have indicated that B cells have more essential functions in regulating immune 

responses than had previously been appreciated 1-6. B cell functions include Ig secretion, 

antigen-presentation, production of various cytokines, and regulating lymphoid organogenesis, 

differentiation of T effector cells, and antigen-presenting dendritic cell function 7. 

Abnormalities of these B cell functions could contribute to the induction or development of 

autoimmunity. Thus, B cells are now considered as a potential therapeutic target in a wider 

range of autoimmune disorders 8. For example, B-cell depletion by anti-CD20 antibody (Ab) 

has shown unexpected impacts by dramatic effectiveness in treating patients with not only 

autoantibody-mediated diseases but also other various autoimmune disorders including 

rheumatoid arthritis 9,10. On the other hand, recent studies have shown that B cells can also 

play a protective role against autoimmune diseases in certain circumstances 1,2. Collectively, 

B cells have multiple critical roles in autoimmune disease expression through various 

functions. 

Experimental autoimmune encephalomyelitis (EAE) is an inflammatory 

demyelinating disease of the central nerve system (CNS) that is primarily mediated by CD4+ 

T cells specific for CNS autoantigens, and is considered as a prototypic T helper type 1 

(Th1)-mediated autoimmune disease 11. Based on similarities in disease susceptibility, course, 

and histology, EAE is currently considered as an experimental animal model for multiple 

sclerosis in human, a common inflammatory and demyelinating disease of the CNS. 

Cytokines play a key role in the development and remission of EAE. The inflammatory lesion 

in the CNS requires a Th1 response, producing proinflammatory cytokines interferon-γ (IFN-
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γ) and tumor necrosis factor-α (TNF-α) 12. Recovery is associated with production of Th2 

cytokines, interleukin 4 (IL-4) and IL-10 13,14. Although EAE has long been considered as a T 

cell-mediated disease because adoptive transfer of neural antigen-specific T cells alone is 

sufficient to induce the disease 15, recent studies have clarified roles of B cells and humoral 

immune response in the pathogenesis of EAE 1,16-20.  

 B cell fate and functions are largely determined by signal transduction through a B cell 

antigen receptor (BCR), which is further regulated by signal transduction molecules that 

amplify or inhibit BCR signaling during responses to self and foreign antigens. These 

regulatory molecules include a subset of functionally interrelated cell surface receptors, such 

as CD19, CD21, CD22, CD40, CD72, and FcγRIIb 21. Especially, CD19 regulates basal 

signaling thresholds and accelerates BCR signal, and thus serves as a general ‘rheostat’ that 

defines signaling thresholds critical for B cell responses and autoimmunity 22-24. Modulating 

CD19 expression and/or function has been shown to have great effects on normal immune 

responses and autoimmunity 3,25-28. 

In the current study, we have assessed the roles of CD19 in EAE. Remarkably, CD19 

expression influenced T cell differentiation and cytokine profile of the tissue. CD19 loss 

resulted in increased severity of the disease as well as delayed recovery, suggesting an 

inhibitory role of CD19 in the etiology of EAE.  

 

Materials and Methods 

Mice 

CD19-/- (C57BL/6 x 129) mice were generated as described 26 and backcrossed 12 generations 

onto the C57BL/6 background before use in this study. Wild type C57BL/6 mice were 

purchased from The Jackson Laboratory (Bar Harbor, Maine). Lack of cell-surface CD19 

expression was verified by two-color immunofluorescence staining with flow cytometric 
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analysis. All mice were housed in a specific pathogen-free barrier facility and screened 

regularly for pathogens. All studies and procedures were approved by the Committee on 

Animal Experimentation of Kanazawa University Graduate School of Medical Science.  

 

Peptide 

MOG peptide (P35-55: MEVGWYRSPFSRVVHLYRNGK) was synthesized by Multiple 

Peptide Systems (San Diego, CA).  

 

Induction and evaluation of EAE 

Active EAE was induced in female mice (six- to eight-week-old) by subcutaneous 

immunization with 100 µg of MOG peptide emulsified in CFA containing 1 mg/ml of heat-

killed Mycobacterium tuberculosis H37RA (Sigma-Aldrich, St. Louis, MO) on days 0 and 7. 

Additionally, mice received 200 ng of pertussis toxin (Sigma-Aldrich) intraperitoneally in 0.5 

ml of PBS on days 0 and 2. Clinical signs of EAE were assessed daily with a 0-6 scoring 

system (0, no signs; 1, flaccid tail; 2, impaired righting reflex and/or gait; 3, partial hind limb 

paralysis; 4, total hind limb paralysis; 5, hind limb paralysis with partial fore limb paralysis; 6, 

moribund or dead). Differences in total disease burdens between groups were analyzed with 

Mann-Whitney U test.  

 

Serological evaluation of MOG peptide-specific Ig production 

Serum was obtained 14 and 28 days after immunization. ELISA was used for detection of 

MOG peptide-specific Ab. Briefly, 96 well microtiter plates (Costar, Cambridge, MA) were 

coated with 10 µg/ml of MOG peptide. Plates were incubated with serum samples diluted 

1:100. The bound Abs were detected with alkaline phosphatase-conjugated goat anti-mouse 

IgG or goat anti-mouse IgM Abs (Southern Biotechnology Associates, Inc., Birmingham, AL).  
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Histology 

MOG-induced EAE mice were euthanized on day 28 and perfused by intracardiac injection of 

4% paraformaldehyde and 1% glutaraldehyde in PBS. Transverse sections of the cervical, 

upper thoracic, lower thoracic, and lumbar region of the spinal cord were stained with H&E 

or Luxol Fast Blue-Periodic acid. Each spinal cord section was further subdivided into an 

anterior, posterior, and two lateral columns. Each subdivided area displaying either 

lymphocyte infiltration or demyelination was assigned a score of one; thus, each animal had a 

potential maximum score of 16. 

For immunohistochemistry, frozen tissue sections of the spinal cord were acetone 

fixed and then incubated with 10% normal rabbit serum in PBS (10 min, 37°C) to block 

nonspecific staining. Sections were then incubated with rat mAbs specific for mouse 

macrophages (F4/80), CD4 (Clone RM4-5; BD PharMingen, San Diego, CA), and CD8 

(clone 53-6.7; BD PharMingen). Rat IgG (Southern Biotechnology Associates, Inc.) was used 

as a control for nonspecific staining. Sections were then incubated sequentially (20 min, 

37°C) with a biotinylated rabbit anti-rat IgG and then HRP-conjugated avidin-biotin 

complexes (Vectastain ABC kit; Vector Laboratories, Burlingame, CA). Sections were 

developed with 3,3'-diaminobenzidine tetrahydrochloride and hydrogen peroxide and then 

counterstained with methyl green. 

 

Isolation of total RNA and real-time RT-PCR 

After perfusion with PBS, spinal cord from each MOG-induced EAE mouse was collected. 

Total RNA from spinal cord was extracted using QIAGEN RNeasy spin columns (QIAGEN 

Ltd., Crawley, UK) and digested DNAse I (QIAGEN Ltd.) to remove chromosomal DNA in 

accordance with the manufacture’s protocol. Total RNA was reverse transcribed to cDNA 
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using Reverse Transcription System with random hexamers (Promega, Madison, WI). Real-

time quantitative RT-PCR was performed using the TaqMan® system (Applied Biosystems, 

Foster City, CA) on ABI Prism 7000 Sequence Detector (Applied Biosystems) according to 

the manufacture’s instructions. TaqMan® probes and primers for IFN-γ, IL-12p40, TNF-α, 

IL-6, IL-10, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were purchased from 

Applied Biosystems. Relative expression of real-time PCR products was determined using 

the ∆∆CT technique 29. Briefly, each set of samples was normalized using the difference in 

threshold cycle (CT) between the target gene and housekeeping gene (GAPDH): ∆CT = (CT 

target gene –CT GAPDH). Relative mRNA levels were calculated by the expression 2-∆∆CT where 

∆∆CT = ∆CT sample -∆CT calibrator. Each reaction was done in, at least, triplicate.  

 

Isolation of mononuclear cells from the CNS and Flow cytometric analysis 

After perfusion with PBS, cells from the CNS were isolated as previously described 30. Briefly, 

tissues were dissociated by passing through 100-µm cell strainer, then centrifuged at 400 xg 

for 10 min at 4°C. The pellet was resuspended in 70% isotonic Percoll (Pharmacia, 

Piscataway, NJ), overlaid with equal volumes of 37 and 30% isotonic Percoll, and centrifuged 

at 500 xg for 20 min at room temperature. Cells were collected from the 37:70% interface and 

washed.  

For intracellular IFN-γ staining, collected cells were stimulated for 4 h at 37°C with 

25 ng/ml PMA (Sigma-Aldrich) and 1 µg/ml ionomycin (Sigma-Aldrich) in 1 ml of complete 

medium containing the intracellular transport inhibitor brefeldin A (10 µg/ml; Sigma-

Aldrich). The cells were stained with anti-CD4 (RM4-5; BD PharMingen) and anti-CD8 (53-

6.7; BD PharMingen) Abs, and then washed and treated with FACS permeabilizing solution 

(BD Biosciences, San Jose, CA) for 10 min at room temperature. These cells were incubated 
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for 30 min in the dark with anti-IFN-γ Ab (XMG1.2; BD Biosciences). The Cells were 

analyzed on a FACScan flow cytometer (BD Biosiences).  

 

Production of IL-10 and IFN-γ by splenic B cells 

Splenic B cells from MOG-induced EAE on day 28 were purified (>95% B220+) by removing 

T cells with anti-Thy1.2 Ab-coated magnetic beads (Dynal Inc. Lake Success, NY). Purified 

splenic B cells were cultured in RPMI 1640 containing 10% heat-inactivated FCS, 100 U/ml 

penicillin, and 100 µg/ml streptomycin, 2 x 10-5 M β-mercaptoethanol, and 2 mM L-

glutamine (Gibco, Life Technologies, Paisley, UK). B cells were cultured in 96-well flat-

bottom plates (Becton Dickinson, Franklin Lakes, NJ) at 4 x 105 cells per well with 40 µg/ml 

of MOG peptide and 10 µg/ml of anti-CD40 mAb (1C10; R&D systems, Minneapolis, MN) 

for 5 days. Control cultures were stimulated with MOG alone or anti-CD40 mAb alone. Each 

sample was done in triplicate. IL-10 and IFN-γ accumulation in the culture medium was 

measured by ELISA according to the manufacturer’s protocol (R&D systems).  

For intracellular IL-10 and IFN-γ staining, purified splenic B cells were stimulated at 

1 x 106 cells/ml with 40 µg/ml of MOG peptide and 10 µg/ml of anti-CD40 mAb for 72 h, 

and then restimulated with 25 ng/ml PMA and 1 µg/ml ionomycin for 12 h. Brefeldin A (10 

µg/ml) was added 8 h after the cultures were initiated. The cells were stained with anti-B220 

(RA3-6B2; BD PharMingen) Abs, and then washed and treated with FACS permeabilizing 

solution for 10 min at room temperature. These cells were incubated for 30 min in the dark 

with anti-IL-10 (JES5-16E3; BD Biosciences) and anti-IFN-γ Abs. The Cells were analyzed 

on a FACScan flow cytometer (BD Biosciences). 

 

Adoptive transfer of MOG-primed B cells 
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CD19-/- and wild type mice were immunized with MOG peptide to induce EAE. MOG-

primed splenic B cells were collected from MOG-induced EAE on day 28 and purified 

(>95% B220+) by removing T cells with anti-Thy1.2 Ab-coated magnetic beads (Dynal Inc.). 

Then 107 B cells from CD19-/- and wild type mice were transferred intravenously into wild 

type and CD19-/- mice, respectively. One day later, the recipient mice were immunized with 

MOG peptide to induce EAE.  

 

Statistical analysis 

All data are expressed as the mean value ± SEM. Mann-Whitney U-test was used for 

determining the level of significance of differences between sample means.  

 

Results 

Increased severity of EAE in CD19-/- mice 

To assess whether CD19 expression plays a role in the pathogenesis of EAE, we immunized 

CD19-/- mice and wild type C57BL/6 mice with myelin oligodendrocyte glycoprtoein (MOG) 

peptide in complete Freund’s adjuvant (CFA), and the course of the clinical disease was 

observed. In both lines of mice, EAE was induced at days 12-14, with a peak at days 18-23, 

followed by the plateau phase (Figure 1). However, compared with wild type mice, CD19-/- 

mice showed significantly higher score at the peak and the plateau phase. Thus, CD19-/- mice 

were more susceptible to EAE. This was consistent with histological findings of the inflamed 

CNS tissue, which revealed that CD19-/- mice developed more severe inflammation (Figure 

2A). To further evaluate the pathologic severity, transverse sections of the cervical, upper 

thoracic, lower thoracic, and lumbar region of the spinal cord were stained with H&E and 

Luxol Fast Blue-Periodic acid, and scored for the degree of inflammation and demyelination. 

Areas of inflammation and demyelination were more widespread in CD19-/- mice when 
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compared with those in wild type mice at day 28 (Figure 2E). The pathologic scores in the 

CD19-/- mice were significantly higher with 11.4 ± 1.1 for inflammation and 7.4 ± 1.8 for 

demyelination, while in the wild type mice, the scores for inflammation and demyelination 

were 5.2 ± 0.7 and 2.8 ± 0.5, respectively (p<0.005 and p<0.05, respectively; Figure 2E). 

Collectively, CD19-/- mice developed more severe EAE both clinically and pathologically 

than wild type mice. 

 

CD8+ T cells were selectively increased in the inflamed CNS from CD19-/- mice with 

EAE 

To further evaluate the pathology of EAE in CD19-/- mice, the infiltrating cells in the 

inflamed CNS were examined by immunostaining. As shown in Table 1, the frequency of 

infiltrating CD4+ T cells was not significantly different between CD19-/- and wild type mice, 

while the frequency of CD8+ T cells was significantly 1.9-fold higher in CD19-/- mice than in 

wild type mice. The representative photomicrographs of CNS-infiltrating CD4+ and CD8+ T 

cells were shown in Figure 2C and 2D. The ratio of CD4/CD8 T cells in CD19-/- mice was 1.4 

± 0.5, significantly lower than that found in wild type mice (3.3 ± 1.5). CD4/CD8 T cell ratio 

was not altered in the peripheral blood in CD19-/- mice with or without EAE when compared 

with wild type mice (data not shown). Additionally, the number and percentage of 

macrophages were not different between the two groups (Table 1). Also, B cell infiltration 

was not found in either line of mice (data not shown). CD19 expression was not detected in 

infiltrating T lymphocytes or macrophages (data not shown). Thus, CD8+ T cells were 

selectively increased in the inflamed CNS from CD19-/- mice with EAE.  

 

CD19 loss attenuated anti-MOG Ig production in MOG-induced EAE 
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To dissect the mechanism by which CD19-deficiency enhanced the disease severity, serum 

IgM and IgG anti-MOG Ab levels were measured by ELISA. Sera were collected from CD19-

/- and wild type mice with EAE on days 14 and 28. Serum IgM anti-MOG Abs levels in wild 

type mice with EAE were significantly increased compared to control mice immunized with 

CFA alone 28 days after immunization (p<0.005; Figure 3A). Additionally, serum IgG anti-

MOG Abs levels in wild type mice with EAE were significantly elevated compared to normal 

controls 14 and 28 days after immunization (p<0.005 and p<0.005, respectively; Figure 3B). 

By contrast, the serum levels of IgM and IgG anti-MOG Abs stayed significantly lower in 

CD19-/- mice with EAE, which showed no significantly higher levels than wild type mice 

without MOG immunization (Figure 3). Thus, the loss of CD19 expression dramatically 

inhibited anti-MOG Ab production in EAE.  

 To test whether decreased anti-MOG Ab enhanced the disease severity in CD19-/- 

mice, sera from wild type mice with EAE were transferred to CD19-/- mice with EAE.  

However, no alteration of disease course was observed in CD19-/- mice that received sera 

from wild type mice with EAE (data not shown), suggesting that decreased anti-MOG Ab is 

not solely responsible for the increased severity of EAE in CD19-/- mice.  

 

The inflamed CNS tissue in CD19-/- mice displays a Th1 bias 

To assess the cytokine expression profile of CNS-infiltrating cells, spinal cords were 

harvested from wild type mice and CD19-/- mice 28 days after MOG immunization, and 

cytokine expression was analyzed by real-time PCR (Figure 4A). The mRNA expressions of 

Th1 cytokines, IFN-γ and IL-12p40, in CD19-/- mice were increased compared with wild type 

mice (2.5-fold; p<0.05 and 2.0-fold, respectively). The mRNA expression of TNF-α, a 

proinflammatory cytokine, in CD19-/- mice was also slightly higher by 1.5-fold than wild type 

mice. IL-6 mRNA expression in CD19-/- mice was comparable to wild type mice. By contrast, 
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spinal cords from CD19-/- mice showed dramatically decreased mRNA expressions of IL-10, 

a Th2 cytokine, compared with wild type mice (77% decrease, p<0.05; Figure 4A). To 

address what cell types may be accounting for excess of IFN-γ in the CNS of CD19-/- mice 

when compared to wild type mice, flow cytometric intracellular cytokine staining was 

performed. IFN-γ production from CNS infiltrating CD4+ T cells in CD19-/- mice was 

augmented compared to wild type (Figure 4B). In addition, IFN-γ production from CD8+ T 

cells in CD19-/- mice was also augmented (Figure 4C). Thus, it was likely that excess of IFN-

γ in the CNS of CD19-/- mice were generated by CD4+ and CD8+ T cell collaboration. These 

findings indicate that the inflamed CNS tissue of CD19-/- mice with EAE displays a Th1 bias 

and that this skewed cytokine balance may contribute to the augmented disease manifestation.  

 

CD19 deficiency suppressed IL-10 production from B cells 

Since a recent study has demonstrated that IL-10 from B cells is important for EAE recovery 1, 

we next investigated the difference of IL-10 production in B cells from CD19-/- mice and wild 

type mice. Splenic B cells were purified from CD19-/- mice and wild type mice at day 28, 

followed by in vitro stimulation. Incubation with MOG alone resulted in modest and 

comparable IL-10 production both in CD19-/- and wild type B cells (Figure 5A). By contrast, 

an agonistic Ab to CD40 induced higher levels of IL-10 production in wild type B cells than 

in CD19-/- B cells (Figure 5A). Concomitant stimulation with MOG and anti-CD40 Ab further 

increased IL-10 production in wild type B cells, while it did not increase IL-10 production in 

CD19-/- B cells. In addition, IL-10 production from B cells was confirmed using intracellular 

cytokine staining. Wild type B cells produced IL-10 with MOG and anti-CD40 Ab 

stimulations, whereas CD19-/- B cells did not (Figure 5B). Thus, anti-CD40-induced IL-10 

production was impaired in CD19-/- B cells with or without antigen stimulation. 
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CD19 deficiency increased IFN-γ production from B cells 

We also examined in vitro B cell production of IFN-γ using purified splenic B cells from 

CD19-/- and wild type mice 28 days after immunization. B cells from wild type or CD19-/- 

mice incubated with MOG alone did not produce IFN-γ (Figure 5B). Anti-CD40 Ab induced 

only slight increase of IFN-γ production, if any, in wild type B cells, while B cells from 

CD19-/- mice demonstrated increased IFN-γ production against anti-CD40 Ab (Figure 5B). 

Furthermore, addition of MOG to anti-CD40 Ab greatly increased IFN-γ production in CD19-

/- B cells, while wild type B cells showed only modest IFN-γ production by MOG and anti-

CD40 Ab stimulation (Figure 5B). In addition, IFN-γ production from B cells was confirmed 

using intracellular cytokine staining. IFN-γ production from CD19-/- B cells with MOG and 

anti-CD40 Ab stimulations was augmented compared to wild type B cells (Figure 5C). Unlike 

IFN-γ, B cells from CD19-/- and wild type mice with MOG and anti-CD40 Ab stimulation 

produced scant but comparable amount of IL-12, another Th1 cytokine (data not shown). 

Therefore, anti-CD40-induced IFN-γ production was augmented in CD19-/- B cells, which 

was further exaggerated by the presence of antigen. Collectively, CD19-/- B cells showed 

skewed cytokine response with increased IFN-γ production and decreased IL-10 production.  

 

Adoptive transfer of CD19-/- B cells increased the severity of EAE in wild type mice 

We next assessed whether the altered B cell functions, especially cytokine production, were 

responsible in vivo for increased severity of EAE in CD19-/- mice. First, MOG-primed B cells 

(107 cells, >95% B220+) by removing T cells with anti-Thy1.2 Ab from wild type mice with 

EAE were adoptively transferred to CD19-/- mice prior to EAE induction. However, CD19-/- 

mice which received wild type B cells developed EAE with almost the same severity as 
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CD19-/- mice receiving no B cells (Figure 6A). Therefore, the failure of IL-10 production 

from B cells alone did not explain the increased severity of EAE in CD19-/- mice. Next, 

MOG-primed B cells (107 cells, >95% B220+) from CD19-/- mice with EAE were adoptively 

transferred to wild type mice prior to EAE induction. Wild type mice which received CD19-/- 

B cells developed EAE with significantly higher severity than wild type mice receiving no B 

cells and exhibited as severe EAE as CD19-/- mice (Figure 6B). To exclude dendritic cells or 

NK cells contaminations  in adoptive transfer of B cells, we yielded high purity B cells 

(>99% B220+) by removing T cells, NK cells, monocytes, macrophages, dendritic cells, 

granulocytes and erythrocytes with antibodies for mouse CD43, CD4 and Ter-119. The 

results of adoptive transfer of B cells using high purity B cells (>99% B220+) were 

comparable to using conventional purity B cells (>95% B220+) by removing T cells with anti-

Thy1.2 Ab (data not shown). Thus, exaggerated B cell functions, especially excessive IFN-γ 

production from B cells, may increase severity of EAE in CD19-/- mice.  

 

Discussion 

In the current study, we assessed the role of CD19, a B cell-specific cell-surface molecule, in 

the induction and recovery of EAE. CD19 loss resulted in both increased severity and 

prolonged recovery of the disease (Figure 1). This result was striking since CD19-/- mice 

generally exhibit an immunodeficient phenotype 25,26,28. CD19-/- mice with EAE showed 

increased CD8+ T cell infiltration but not increased CD4+ T cell infiltration in the inflamed 

CNS (Table 1, Figure 2C and 2D). Furthermore, cytokine expression profile was shifted to 

Th1 in the CNS from CD19-/- mice when compared with wild type mice (Figure 4). CD19-/- 

mice with EAE also showed decreased serum IgM and IgG anti-MOG Abs (Figure 3), 

although serum transfer between CD19-/- and wild type mice did not alter disease severity. 

Remarkably, adoptive transfer of B cells from CD19-/- mice with EAE to wild type mice 
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enhanced the disease severity in the recipient wild type mice (Figure 6). By contrast, wild 

type B cells did not rescue EAE in CD19-/- mice. Therefore, the loss of a single B cell-

specific protein, CD19, was sufficient to modify the disease manifestation of EAE, 

suggesting inhibitory role of CD19 in the etiology of the disease. 

While there are some discrepancies among studies, the importance of B cells in EAE 

has been reported, although the mechanisms are still controversial. Mice genetically deficient 

for B cells develop EAE 16,31, but fail to resolve the disease 1,16. Therefore, B cells or Ab are 

not required for primary induction of EAE, while antigen-specific B cells are essential for the 

recovery from the disease. Fillatreau et al. have demonstrated that IL-10 production from B 

cells plays a key role in resolving EAE, suggesting a regulatory role of B cells in the disease. 

Furthermore, another study using mice deficient for Lyn, a Src-family protein tyrosine kinase 

expressed abundantly in B cells, has demonstrated that Lyn-deficient (Lyn-/-) mice show both 

increased severity and more sustained course of EAE and that serum transfer from Lyn-/- mice 

worsens EAE in wild type mice 18. The current study has shown that the loss of CD19 

expression increased severity of EAE at the peak and the plateau phase. Taken together, B 

cells appear to have multiple roles during the process of EAE.  

CD19 positively regulates B cell response to a variety of transmembrane signals 23,24. B 

cells from CD19-/- mice are hyporesponsive to antigen, anti-CD40, LPS, and other stimuli 

25,26,28. Consistent with this, CD19-/- mice immunized with MOG peptide produced lower 

levels of IgM and IgG anti-MOG Ab than wild type mice. CD19 regulates B cell signaling 

pathways by acting as a scaffold protein that recruits Lyn, PI 3-kinase, Vav, and possibly 

other molecules 22. CD19-/- mice and Lyn-/- mice both show increased severity of EAE 18. 

CD19 regulates Lyn kinase activity in BCR signaling 22, although the mechanisms 

exaggerating EAE appear different between the two lines of mice since augmented Ab 

response appears the main mechanism in Lyn-/- mice. In the case of CD19-/- mice, serum 
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transfer did not alter the disease severity. Additionally, mRNA levels of IFN-γ are decreased 

in the inflamed CNS from Lyn-/- mice. By contrast, B cells from CD19-/- mice with EAE 

produced significantly higher levels of IFN-γ in response to MOG and anti-CD40 Ab than 

wild type mice, while MOG and anti-CD40 Ab induced less IL-10 production in B cells from 

CD19-/- mice with EAE than those from wild type mice with EAE. Thus, CD19 regulates IL-

10 production positively and IFN-γ negatively, and this shifted balance likely affected the 

disease severity of EAE. The mechanism by which CD19 regulates cytokine production is 

still unclear. Since CD19 has been shown to regulate BCR-induced STAT1 phosphorylation 

32 which has a critical role in IFN-induced response, altered STAT1 function by CD19 loss 

may affect the signaling pathway. CD19 may also regulate other cytokine signaling such as 

JAK/STAT. Therefore, CD19 may directly regulate IL-10 and/or IFN-γ production 

pathway(s). Alternatively, CD19 regulation on the signal strength to stimuli may indirectly 

affect the cytokine balance. In either manner, CD19 can control Th1/Th2 cytokine balance in 

B cells by the reciprocal regulation between IFN-γ and IL-10.  

The adoptive transfer experiments have demonstrated that wild type B cells did not 

rescue EAE in CD19-/- mice but that CD19-/- B cells worsened EAE in wild type mice. 

Therefore, B cells deficient for CD19 have a positive role for driving the disease. The most 

likely explanation for this phenomenon is excessive production of IFN-γ by CD19-/- B cells. 

Recent studies have emphasized B cells as an important source of IFN-γ 33-40. IFN-γ 

production in B cells is induced by IL-12 35,37-40, while B cells downregulate Th1 response via 

the release of IL-10 1,2. Additionally, the autoreactive B cells function as highly efficient 

antigen presenting cells, enhancing the selective action of MOG-specific T cells 41. B cell-T 

cell interaction with B cell antigen presentation favors Th2, rather than Th1, differentiation 

42,43. Therefore, excessive production of IFN-γ from CD19-/- B cells can negatively regulate B 
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cell antigen presentation, and then can commit T cells to Th1 phenotype. Intriguingly, the 

inflamed CNS of CD19-/- mice exhibited an increase in TNF-α and Th1 cytokines such as 

IFN-γ and IL-12p40 and a decrease in Th2 cytokine such as IL-10, although there was no B 

cell infiltration. Thus, skewed cytokine production of B cells influenced the total cytokine 

profile in the tissue.  

Another striking finding in the current study was a specific increase of CD8+ T cells in 

spinal cord of CD19-/- mice. EAE is considered to be CD4+ T cell-driven 15, associated with 

inflammatory cytokine profile. However, recent studies have shown that CD8+ T cells have a 

disease-promoting role 44. Furthermore, it has been demonstrated that T cells infiltrating into 

active human MS lesions are dominated by CD8+ T cells 45. Thus, the increase in CD8+ T 

cells in inflamed CNS of CD19-/- mice may have relevance with more severe EAE.  

Previous studies have shown that MOG-specific antibodies enhance demyelination 

and inflammation, resulting in increased severity of EAE 19,20. Furthermore, plasma exchange 

can reduce clinical disease activity in a subset of MS patients 46,47; therefore, humoral factors 

play an important role in MS and EAE. However, MOG-specific antibodies had no direct 

effect on EAE induction in the current study. Although the reasons for this discrepancy are 

not clear, B cell functions for cytokine producing and antigen presenting cells may be more 

important than MOG-specific antibody productions in the current study. It is possible that 

CD19-/- B cells act as antigen presenting cells and stimulate autoantigen-specific CD8+ T cells, 

contributing to exacerbation of EAE.  

 In conclusion, the current study has shown that CD19 plays an important role in the 

development of EAE. CD19 is a critical factor for T cell commitment to the Th2 phenotype. 

Thus, modulating CD19 function or its pathway may be a potential therapeutic target of MS 

and other Th1 diseases. 
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Figure Legends 

 

Figure 1. Increased severity of EAE in CD19-/- mice. CD19-/- and wild type mice (ten per 

group) were immunized with MOG peptide in CFA and intravenously injected with pertussis 

toxin. Mice were scored for the severity of EAE using the scale described in Materials and 

Methods. The EAE score is shown as mean ± SEM. * p<0.05.  

 

Figure 2. CD19-/- mice had higher pathological severity scores of EAE. Spinal cords were 

harvested from CD19-/- and wild type mice (five per group) 28 days after immunization. A 

representative section from each group showing lymphocyte infiltration stained by H&E (A), 

demyelination stained by Luxol Fast Blue (B), immunohistochemistry for CD4+ T cells (C) 

and CD8+ T cells (D), and the mean pathologic score of demyelination and infiltration of each 

group (E). Original magnifications: x200. Arrows point to focus of demyelination. Data are 

the mean ± SEM. * p<0.05, † p<0.005. 

 

Figure 3. CD19 loss attenuates anti-MOG Ig production. CD19-/- and wild type mice were 

immunized with MOG peptide in CFA. Sera (five per group) were collected on day 14 and 28, 

IgM (A) and IgG (B) anti-MOG Ab levels were measured by ELISA. The data are presented 

by the mean value of three separate measurements of each sample. Controls (n = 12) were 

wild type mice immunized with CFA alone. 

 

Figure 4. The inflamed CNS tissue in CD19-/- mice displays a Th1 biased cytokine 

production. RNA was isolated from PBS-perfused spinal cords in CD19-/- and wild type mice 

(five per group) 28 days after immunization. The mRNA levels of IFN-γ, IL-12p40, TNF-α, 

IL-6 and IL-10 were analyzed by real-time RT-PCR, and normalized with internal control 
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GAPDH. Data are shown as mean ± SEM. * p<0.05. Mononuclear cells were isolated from 

pooled CNS tissue in CD19-/- and wild type mice (three per group) 28 days after 

immunization by Percoll gradient centrifugation and incubation with PMA and ionomycin. 

The cells were stained with anti-CD4 and anti-CD8 Abs. After permeabilization, cells were 

stained with anti-IFN-γ Ab. Percentages of IFN-γ+ cells are shown in the upper right 

quadrants. These data are representative of three independent experiments.  

 

Figure 5. Production of high IFN-γ and low IL-10 by splenic B cells in CD19-/- mice with 

EAE. Splenic B cells were purified from CD19-/- and wild type mice (five per group) 28 days 

after immunization. Purified splenic B cells were incubated in vitro in media alone (med) or 

MOG peptide, anti-CD40, or both. IL-10 (A) and IFN-γ (Β) accumulation in the culture 

medium was measured by ELISA. Data are the mean ± SEM. * p<0.05. For intracellular IL-

10 (C) and IFN-γ (D) staining, purified splenic B cells were stimulated with MOG peptide 

and anti-CD40 mAb for 72 h, and then restimulated with PMA and ionomycin for 12 h. 

Intracellular cytokine staining was done using anti-B220 Ab to identify B lineage cells. 

Percentages of IL-10+ and IFN-γ+ cells are shown in the upper right quadrants. These data are 

representative of three independent experiments.  

 

Figure 6. The increased severity of EAE in CD19-/- mice does not depend on the loss of IL-

10 production from B cells. (A) Wild type mice were immunized with MOG peptide to 

induce EAE. Splenocytes were harvested 28 days after immunization. Then MOG-primed 

splenic B cells were purified (>95% B220+), and wild type B cells (107 cells) were transferred 

intravenously into CD19-/- mice. One day later, the recipient mice were immunized with 

MOG peptide in CFA to induce EAE. The other groups, CD19-/- and wild type mice, did not 
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receive any cells. (B) MOG-primed splenic CD19-/- B cells were transferred intravenously 

into wild type mice, followed by immunization with MOG peptide in CFA. Mice were scored 

for the severity of EAE as in Figure 1. 
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Table 1. Infiltrating cell profile in the inflamed CNS with CD19-/- and wild type mice 

                     Cell number/transverse section 

 Macrophage CD4+ T cell CD8+ T cell Total infiltrating cells 

CD19-/- 51.2 ± 8.5 39.8 ± 10.7 28.0 ± 4.2† 119.5 ± 20.8* 

Wild type 30.3 ± 8.4 29.8 ± 8.4 8.8 ± 2.4 69.0 ± 5.6 

 Percentage of cells  

  Macrophage CD4+ T cell CD8+ T cell CD4/CD8 ratio 

CD19-/- 44.6 ± 3.8 31.3 ± 2.8 24.3 ± 2.9* 1.4 ± 0.5* 

Wild type 43.8 ± 13.0 43.3 ± 11.9 13.0 ± 3.6 3.3 ± 1.5 

 

Values represent the numbers or percentages of infiltrating cells in the CNS with EAE or the 

CD4/8 ratio. Data are the mean ± SEM. *, The numbers or percentages of cells or the CD4/8 

ratio was significantly different from that of wild type mice, p<0.05; †, p<0.005. n = 5/group.  

 














