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Abstract 

 Matrix metalloproteinases (MMPs) play roles in spatially dynamic processes, including 

morphogenesis, wound healing, and tumor invasion. Three-dimensional (3-D) type I collagen 

stimulates cellular activation of MMP-2, however, the mechanisms underlying this are controversial. 

The present study investigated mechanisms for 3-D collagen-induced MMP-2 activation in highly 

invasive human malignant mesothelioma cells. MMP-2 was effectively activated by cells cultured 

in 3-D collagen but not in 2-D collagen, whereas MMP-2 activation was not regulated by the 

flexibility of collagen. The 3-D collagen did not largely increase the gene expression of MMP-2 and 

MT1-MMP. However, MT1-MMP exposed to the cell surface was much increased by 3-D collagen, 

and loss of MT1-MMP abolished MMP-2 activation in response to 3-D collagen. MT1-MMP and 

integrin β1 translocated to pericellular regions interacting with collagen-coated microbeads, 

however their localization was different. Importantly, inhibition of integrin β1 function and 

expression did not affect 3-D collagen-induced cell surface localization of MT1-MMP and MMP-2 

activation. Our results strongly suggest that 3-D collagen scaffolding may provide opportunity for 

direct and multivalent interaction with MT1-MMP, by which MMP-2 activation occur in abundant 

cell surface MT1-MMP-dependent manner, rather than a manner regulated by matrix stiffness and 

integrin β1 function.  
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Introduction 

 Tissues and organs are formed by specific cells and extracellular matrix (ECM) spatially 

organized in three-dimensional (3-D) structures. Although our knowledge about cellular behaviors 

is derived primarily from studies on planar tissue culture substrates, the importance of 3-D ECM 

has been recognized for epithelial cells and muscle cells, wherein 3-D environments promote cell 

polarity, differentiation, and morphogenesis [1]. Recent studies have demonstrated cellular 

locomotion and focal adhesion formation in 3-D ECM that differ from those in 2-D [2, 3]. 

Mechanical properties of matrix stiffness are the proposed molecular basis of the 3-D ECM-induced 

morphogenesis of breast epithelial cells [4] and myotubes [5], and the differentiation of 

mesenchymal stem cells into specified cell types [6].  

 Matrix metalloproteinases (MMPs) are proteolytic enzymes with the ability to remodel the 

ECM as well as to regulate cellular modulators such as cell-adhesion molecules and growth factor 

receptors [7]. Membrane type 1 metalloproteinase (MT1-MMP) not only exhibits pericellular 

collagenase activity but also activates MMP-2, which is essential for skeletal development, cancer 

invasion, growth, and angiogenesis [8–10]. MMP-2 is secreted as a latent pro-enzyme and 

processed into its active form through the formation of a ternary complex composed of MMP-2, 

metalloproteinase inhibitor 2 (TIMP-2), and MT1-MMP [9–11]. Previous studies have 
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demonstrated that 3-D type I collagen induced activation of MMP-2 in a wide variety of cells 

[12–19]. Because type I collagen is a major component of stromal tissue, and both normal and 

tumor cells digest collagen fibrils to grow or to invade connective tissues, 3-D collagen-dependent 

MMP-2 activation seems to be a fundamental mechanism in both physiological and pathological 

conditions. However, the mode of MMP-2 activation induced by 3-D collagen remains 

controversial and may use different mechanisms depending on cell types. The gene expression of 

MMP-2 [12, 13], TIMP-2 [14], and MT1-MMP [12–15], as well as the cell surface localization [13, 

16, 17] or processing [16, 18] of MT1-MMP were increased by 3-D collagen. Collagen-induced 

MMP-2 activation is postulated to occur either directly or indirectly through integrin signaling [17, 

18]. Recent studies have demonstrated a functional interplay between MT1-MMP and integrins [19, 

20].  

 In the present study, the mechanisms for 3-D collagen-dependent MMP-2 activation were 

investigated, using highly invasive human mesothelioma cells. We addressed whether the difference 

in matrix stiffness or the difference in integrin signaling between 3-D and 2-D collagen is 

responsible for MMP-2 activation. We obtained evidence that 3-D but not 2-D collagen induces 

abundant cell surface localization of MT1-MMP, by which pericellular MMP-2 activation occur in 

cell surface MT1-MMP-dependent manner, rather than a manner regulated by matrix 
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stiffness/flexibility and integrin β1 function. 
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Materials and Methods 

Cells and materials  

Human malignant mesothelioma cells (ACC-Meso-1, EHMES-1, EHMES-10, and JMN-1B) were 

cultured as described previously [21]. Human umbilical vein endothelial cells (HUVECs) were 

purchased from Cambrex Bio Science. For thin layer coating, a cover glass was coated with 0.1% 

gelatin (Sigma), 10 g/ml fibronectin (Sigma), collagen type I (BD Biosciences), laminin (Sigma), 

or collagen type IV (Sigma) in phosphate buffer saline (PBS), washed twice with PBS, and blocked 

with 3% bovine serum albumin (BSA) in PBS. Matrigel Matrix was obtained from BD Biosciences. 

For cell culture in 3-D collagen, cells were suspended at 3 x 105 cells/ml of neutralized collagen 

type I (2 mg/ml) (BD Biosciences) and solidified at 37 °C for 90 min. Anti-MT1-MMP (for Western 

blot), anti-integrin 2 (for Western blot), anti-integrin 1 (FB12 for FACS and functional blocking), 

anti-integrin 2 (A2-IIE10 for FACS and functional blocking; P1E6 for functional blocking), 

anti-integrin 3 (ASC-6 for FACS and functional blocking), and anti-integrin 1 (P5D2 for FACS, 

functional blocking, and immunofluorescence; B3B11 for Western blot) antibodies were obtained 

from Millipore. Anti-MT1-MMP antibody (hinge region, for immunofluorescence) was obtained 

from Abcam. Anti-TIMP-2 antibody was obtained from Anaspec, Inc. 

Preparation of the polyacrylamide substrate  



 8

Polyacrylamide gels were prepared as previously established [2, 5]. In brief, N,N’ 

methylene-bis-acrylamide (ranging from 0.03% to 1%) was added to 10% acrylamide solutions and 

cross-linked by the addition of 10% ammonium persulfate (1/200 vol) and 

N,N,N’,N’-tetramethylethylenediamine (1/2,000 vol). The polymerizing solution was placed on an 

aminosilanized glass slide and covered with coverslips coated with dichlorodimethylsilane. The 

polyacrylamide gel was chemically cross-linked with type I collagen by using photo-reactive 

sulfosuccinimidyl-6-(4-azido-2-nitrophenylamino) hexanoate (Pierce). The polyacrylamide gel was 

washed with PBS and blocked with 3% BSA in PBS before use. 

Quantitative PCR  

Total RNA was extracted using TRIZOL reagent (Invitrogen). First-strand cDNAs were synthesized 

using SuperScript III Reverse Transcriptase (Invitrogen) with a random hexamer. The primer 

sequences were as follows: human MT1-MMP (forward primer, 5'-cactgcctacgagaggaagg-3' and 

reverse primer, 5'-ttggggtactcgctatccac-3'); human MMP-2 (forward primer, 

5'-atgacagctgcaccactgag-3' and reverse primer, 5'-atttgttgcccaggaaagtg-3'); human TIMP-2 (forward 

primer, 5'-aaagcggtcagtgagaagga-3' and reverse primer, 5'-cttctttcctccaacgtcca-3'); and, human 

GAPDH (forward primer, 5'-gagtcaacggatttggtcgt-3' and reverse primer, 5'-gacaagcttcccgttctcag-3'). 

Quantitative PCR was performed on an ABI PRISM 7900HT Sequence Detection System (Applied 
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Biosystems) and a Power SYBR Green PCR Master Mix (Applied Biosystems). 

Western blotting and gelatin zymography  

Cells were lysed and subjected to SDS-PAGE and Western blotting as described previously [21]. 

Conditioned media were collected from cultures in serum-free medium, and 20 l samples were 

subjected to gelatin zymography, as described previously [22]. 

RNA interference  

Small interfering RNA (siRNA) oligonucleotides were obtained from Nippon EGT. The siRNA 

sequences for human MT1-MMP and scrambled control sequences were described previously [23]. 

The siRNA sequences for human integrin β1 were as follows: sense, 

5'-CUGUGAUAGAUCCAAUGGCtt-3' and anti-sense, 5'-GCCAUUGGAUCUAUCACAGtt-3'. 

Cells were transfected with 100 nM siRNA by lipofectamine 2000 (Invitrogen) for 5 h, then 

medium was replaced with fresh RPMI1640 medium containing 10% FBS for 24 h before each 

assay.  

Biotin labeling for cell surface proteins  

Cells were cultured on thin layer collagen or 3-D collagen gel in serum-free medium for 40 h. The 

cells were harvested with trypsin/EDTA solution for thin layer collagen or 0.05% collagenase 

solution for 3-D collagen gel, washed twice with PBS, and surface proteins were labeled with a 
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non-permeable sulfo-NHS-lc-lc-biotin (500 g/ml in PBS, Pierce) at 4 °C for 1 h. After washing 3 

times with PBS, cells were incubated with 50 mM Tris-HCl (pH 8.0)/150 mM NaCl for an 

additional 30 min at 4 °C. Washed cells were lysed with 500 l of buffer composed of 20 mM 

Tris-HCl (pH 7.5), 1% (v/v) Triton X-100, 150 mM NaCl, 2 mM phenylmethylsulfonyl fluoride, 10 

g/ml aprotinin, pepstatin A, and leupeptin, and clarified by centrifugation. Biotin-labeled cell 

surface proteins were precipitated with 30 l streptavidin-agarose (Sigma) for 4 h at 4 °C on a 

rotator, washed 5 times with lysis buffer with 500 mM NaCl and subjected to SDS-PAGE.  

FACS analysis 

The cells were harvested with trypsin/EDTA or 0.05% collagenase as described above, washed 

twice, and suspended in 10% BSA in PBS at 105 cells/ml. Cells were incubated with anti-integrin 

antibody or control mouse IgG1 (0.5 g per 105 cells in 10% BSA/PBS) and followed by secondary 

antibody conjugated to Alexa-488 (Invitrogen). Cells were suspended in 5 g/ml propidium 

iodide/10% BSA/PBS. Cell surface expressions of integrins in viable cells were analyzed with 

FACS Canto (Becton Dickinson). 

Collagen-coated beads and immunofluorescence 

Polystyrene latex beads (Sigma, mean particle size 3.0 m) were mixed with 1 mg/ml type I 

collagen in 0.02 N acetic acid or 3% BSA in PBS for 12 h at 4 °C and washed 3 times with PBS. 
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Collagen- or BSA-coated beads were added to the cell culture and bound for 4 h. The cells were 

washed 3 times with PBS, fixed with 4% paraformaldehyde in PBS, and blocked with 2% BSA in 

PBS for 1 h at room temperature. The cells were incubated with anti-MT1-MMP and anti-integrin 

1 antibodies in PBS with 3% goat serum, followed by secondary antibodies conjugated to Alexa 

Fluor-488 or -546. Cells were imaged using a laser-scanning confocal microscope 

(LMS510METASP; Carl Zeiss).  
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Results 

Activation of MMP-2 by mesothelioma cells cultured on various ECMs 

Human malignant mesothelioma cells expressing MMP-2 were studied for cellular processing of 

MMP-2. In all 4 lines, most MMP-2 was remained as latent form in cells cultured on a planar 

culture plate, but it was efficiently activated by cells cultured in 3-D type I collagen (Fig. 1A). 

Cellular activation of MMP-2 was not observed on the thin layer coat of type I collagen, fibronectin, 

laminin, or type IV collagen (Fig. 1B). Cellular activation of MMP-2 was observed when cells were 

cultured both within and on 3-D collagen gel (Fig. 1C), suggesting that cells did not recognize 

dimensionality (2-D versus 3-D). Matrigel, basement membrane fibrils largely composed of laminin 

and type IV collagen, did not support cellular activation of MMP-2 (Fig. 1C). These results 

suggested the specific regulation of MMP-2 activation by 3-D type I collagen. 

Substrate flexibility in 3-D collagen-induced MMP-2 activation 

To investigate whether 3-D collagen-induced MMP-2 activation is depend on substrate flexibility, 

Meso-1 cells were cultured on collagen-coated polyacrylamide gel with a wide range of flexibility 

obtained by changing the bis-acrylamide concentration from 0.03% to 1% as reported previously [2, 

4] (Fig. 2). Without the chemical cross-linking of collagen to polyacrylamide gel, polyacrylamide 

gel did not support cell adhesion (data not shown). A well-spread cell morphology, similar in 
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appearance to cells on the 2-D culture, was seen in the case of 1% bis-acrylamide, while an 

insufficiently spread cell morphology similar in appearance to cells on the 3-D culture was seen in 

the case of 0.03% bis-acrylamide (Fig. 2A). In these conditions, activation of MMP-2 was not 

detected (Fig. 2B). This suggested that 3-D collagen-induced MMP-2 activation does not involve 

the mechanical compliance of the matrix.  

The central role of MT1-MMP in 3-D collagen-induced MMP-2 activation 

Because transcriptional upregulation of MMP-2 [12, 13], TIMP-2 [14], and MT1-MMP [12-15] 

have been reported in response to 3-D collagen, changes in mRNA levels for these genes were 

analyzed by quantitative PCR in Meso-1 cells cultured on collagen-coated plates (0 h) and in 3-D 

collagen for different time periods (Fig. 3A). mRNA of these genes showed less than 2-fold 

upregulation. Next, to analyze changes in protein levels, cell lysates or conditioned media from 

Meso-1 cells cultured on 2-D or 3-D for 40 h were subjected to Western blot for MT1-MMP and 

TIMP-2 (Fig. 3B, si-Scr). Consistent with mRNA level, MT1-MMP protein in total cell lysates was 

unchanged between 2-D and 3-D.  

 TIMP-2 was abundant in a conditioned medium of 2-D culture (Fig. 3B, si-Scr), suggesting 

that TIMP-2 secreted from cells does not anchor on cells in 2-D, while it effectively anchors on 

cells in 3-D. We tested whether the association of TIMP-2 with the cells is dependent on 
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MT1-MMP using siRNA-mediated knockdown. In the cells treated with siRNA targeting 

MT1-MMP, MT1-MMP expression was strongly diminished, and this caused a remarkable decrease 

in cell-associated TIMP-2 levels and a lack of MMP-2 activation, even in 3-D cultures (Fig. 3B, 

si-MT1). These results indicated the essential role of MT1-MMP expression in the 3-D 

collagen-induced anchoring of TIMP-2 to cells and subsequent MMP-2 activation.  

Cell surface localization of MT1-MMP in 3-D collagen  

Given the essential role of MT1-MMP in 3-D collagen-induced MMP-2 activation without 

significant change in MT1-MMP mRNA and protein level, we test the possibility that 3-D collagen 

conditioning might influence cell surface localization of MT1-MMP [13, 16, 17]. Cell surface 

proteins were biotinylated in cells either cultured on collagen-coated plates (2-D) or on collagen gel 

(3-D) for 40 h, purified, and subjected to Western blot for MT1-MMP (Fig. 3C). The active form of 

MT1-MMP exposed to the cell surface was much higher in the 3-D culture than in the 2-D culture 

of mesothelioma and endothelial cells. Integrin 2 localized on the cell surface was equivalent 

between 2-D and 3-D. This result suggested that the increased cell surface localization of 

MT1-MMP was a prerequisite for MMP-2 activation in response to 3-D collagen in cancer cell as 

well as normal endothelial cell. 

Dispensable role of integrin 1 for the surface localization of MT1-MMP and MMP-2 
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activation 

Cellular interaction with type I collagen is mediated largely through integrin 11, 21, and 31 

receptors. Previous studies have indicated that crosslinking of integrin 1 could activate MMP-2 in 

ovarian carcinoma cells, suggesting direct involvement of integrin signaling in MMP-2 activation 

[17, 18]. To test the involvement of integrin 1 in MMP-2 activation and cell surface localization of 

MT1-MMP, expression of integrin 1 was largely abolished in Meso-1 cells treated with siRNA for 

integrin 1 (Fig. 4A). These cells showed a round appearance both in 2-D and 3-D culture, 

confirming the functional knockdown of integrin 1 (supplementary Fig. S1A). Unexpectedly, cell 

surface localization of MT1-MMP and MMP-2 activation were clearly induced in these cells in 

response to 3-D collagen (Fig. 4A). Furthermore, addition of functional blocking antibodies for 

integrin 1, 2, 3, or 1 could not prevent MMP-2 activation in response to 3-D collagen (Fig. 

4B). Cell surface expression of integrin 1, 2, 3, and 1, as determined by FACS, showed 

comparative levels of these integrins between 2-D and 3-D cultures (supplementary Fig. S1B). 

Taken together, these results strongly suggested that integrin 1 is dispensable for 3-D 

collagen-induced cell surface localization of MT1-MMP and MMP-2 activation. 

 Finally, to investigate further the relationship between MT1-MMP, integrin 1, and collagen, 

the distribution of MT1-MMP and integrin 1 on the cell membrane was analyzed after being 
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attached to collagen-coated beads by immunofluorescence. Collagen-coated beads would 

effectively bind to Meso-1 cells, but none of the BSA-coated beads would (Fig. 4C). Cell surface 

MT1-MMP was increased at the peripheral layer of collagen-coated beads (Fig. 4D). Cell surface 

integrin 1 was localized at the base of the collagen-coated beads (Fig. 4D, arrowhead). The 

differential localization of MT1-MMP or integrin 1 with pericellular collagen suggests the direct 

interaction of MT1-MMP with collagen. 
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Discussion 

 3-D collagen induced transcriptional upregulation of MMP-2 [12, 13], TIMP-2 [14], and 

MT1-MMP [12-15]. In the present study, a slight increase in MMP-2, MT1-MMP, and TIMP-2 

mRNA and protein expression was observed, however, this could not explain the activation of 

MMP-2 that occurs almost exclusively in 3-D collagen. The ratio between TIMP-2 and MT1-MMP 

determines the activity of MT1-MMP [10, 24]. Although we observed increased association of 

TIMP-2 to cells in 3-D, this was a consequence of MMP-2/TIMP-2/MT1-MMP ternary complex 

formation, because the association between TIMP-2 and cells, as well as MMP-2 activation, was 

abolished in cells devoid of MT1-MMP expression. Surface biotinylation analysis clearly 

demonstrated that 3-D collagen significantly increased the amount of MT1-MMP on mesothelioma 

and endothelial cell surfaces. Taken together, these results strongly suggest that cell surface 

localization of MT1-MMP leading to ternary complex formation with TIMP-2 and MMP-2 is a 

critical regulatory step in 3-D collagen-dependent MMP-2 activation.  

 Clustering of integrin 1 increased cell surface MT1-MMP, colocalization of MT1-MMP with 

integrin, and facilitated activation of MMP-2 [17, 18]. MT1-MMP and integrin V3 play a 

cooperative role in MMP-2 activation [19]. Association of MT1-MMP with 1 or V3 integrins 

controls the internalization of MT1-MMP in endothelial cells [20]. Thus, it has been postulated that 
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collagen-induced activation of MMP-2 occurs either directly or indirectly through integrin signaling. 

Here, cell surface localization of MT1-MMP and activation of MMP-2 were clearly induced in 

mesothelioma cells even when expression of integrin 1 was substantially abolished. Cell surface 

expressions of integrin 1, 2, 3, and  1 were equivalent between 2-D and 3-D. Although these 

results do not exclude the possibility that integrin signals can stimulate MMP-2 activation, the 

results of the present study showed that integrin 1 is dispensable for 3-D collagen-induced 

MT1-MMP surface localization and MMP-2 activation, at least in mesothelioma cells. 

 The differential localization of MT1-MMP or integrin 1 with pericellular collagen suggests 

the direct interaction of MT1-MMP with collagen, rather than integrin1-mediated association. 

Previous studies have indicated that collagen can associate directly with the hemopexin domain of 

MT1-MMP, and addition of recombinant hemopexin domain inhibits collagen-induced MMP-2 

activation [25]. The addition of type I collagen to cell cultures blocked internalization of 

MT1-MMP through the hemopexin domain, thereby leading to increases in surface MT1-MMP and 

MMP-2 activation [16]. Considering these reports and the results of the present study, it seems 

apparent that collagen might directly interact with MT1-MMP, leading to increased surface 

expression of MT1-MMP and MMP-2 activation.  

 What is the difference between 2-D and 3-D collagen that affects differential regulation of cell 
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surface localization of MT1-MMP and MMP-2 activation? The results using collagen-coated gels 

with different degrees of stiffness have suggested that mechanical properties of extracellular 

scaffolding were not involved in MMP-2 activation. One possible explanation is that the amount of 

immobilized collagen on the culture plates is insufficient for MMP-2 activation, because tissue 

culture plates have a limited protein binding capacity, on the order of ~g, which is much less than 

the amount, on the order of ~mg, of 3-D collagen gel. 

 In conclusion, the present study has demonstrated that 3-D collagen-dependent MMP-2 

activation depends on neither integrin 1 nor collagen flexibility in malignant mesothelioma cells. 

Cell surface localization of MT1-MMP available for ternary complex formation with TIMP-2 and 

MMP-2 is a critical regulatory step in 3-D collagen-dependent MMP-2 activation. Collagen in a 

3-D scaffold may provides opportunity as dense and multivalent scaffold capable of directly 

interacting with MT1-MMP, by which MMP-2 activation occur in abundant surface 

MT1-MMP-dependent manner. 
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Figure legends 

 

Fig. 1. Activation of MMP-2 by mesothelioma cells cultured on various ECMs. (A) MMP-2 

activation in mesothelioma cells cultured in 3-D collagen gel or on a plastic dish for 2 days. (B) 

MMP-2 activation by Meso-1 cells cultured on a cover glass coated with various ECM. FN, 

fibronectin; LN, lamminin; Col I, type I collagen; and, Col IV, type IV collagen. (C) MMP-2 

activation by Meso-1 cells cultured on a cover glass coated with a thin layer of collagen (2-D), 

within a 3-D collagen gel, on top of a 3-D collagen gel, or within 3-D Matrigel for 2 days. 

Conditioned media were subjected to gelatin zymography. Closed and open arrowheads indicate 

pro-MMP-2 and active-MMP-2, respectively.  

 

Fig. 2. Effect of matrix flexibility on MMP-2 activation. Meso-1 cells were cultured for 24 h on 

collagen-coated polyacrylamide gels with different elasticities prepared by varying the 

bis-acrylamide concentration in the polymerization reaction. Cells were fixed, stained with crystal 

violet, and photographed (A, scale bar: 100 m). Conditioned media were subjected to gelatin 

zymography (B).  
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Fig. 3. Essential role of MT1-MMP and its cell surface localization in 3-D collagen-induced 

MMP-2 activation. (A) mRNA expression for MT1-MMP, MMP-2, and TIMP-2 in 3-D collagen. 

Meso-1 cells on a collagen-coated plate were harvested (0 h) and cultured in 3-D collagen for the 

indicated time periods. Relative mRNA levels normalized to glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) mRNA levels are presented as means ± SD. (B) Essential role of 

MT1-MMP in 3-D collagen-induced MMP-2 activation. Meso-1 cells were transfected with 

scrambled control siRNA (si-Scr) or siRNA targeting MT1-MMP (si-MT1), and cultured on a thin 

layer of collagen (2-D) or within collagen gel (3-D) for 2 days. Cell lysates were subjected to 

Western blotting using anti-MT1-MMP or anti-TIMP-2 antibody. Conditioned media were 

subjected to Western blotting using anti-TIMP-2 antibody or to gelatin zymography. (C) Increased 

cell surface localization of MT1-MMP in 3-D collagen. Mesothelioma cells (Meso-1 and JMN-1B) 

or endothelial cells (HUVECs) were cultured on 2-D or 3-D collagen for 2 days. Conditioned 

medium was subjected to gelatin zymography. Cell surface proteins were biotinylated, purified with 

streptavidin-agarose (Strep-ppt), and subjected to Western blot using anti-MT1-MMP antibody or 

anti-integrin 2 antibody. 

 

Fig. 4. Dispensable role of integrin 1 on cell surface localization of MT1-MMP and MMP-2 
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activation. (A) Meso-1 cells transfected with control siRNA (si-Scr) or integrin 1-targeting siRNA 

(si-1) were cultured on 2-D or 3-D collagen for 2 days. Cell surface proteins were biotinylated, 

purified with streptavidin-agarose (Strep-ppt), and subjected to Western blot using anti-MT1-MMP 

antibody or anti-integrin 1 antibody, while the conditioned media were subjected to gelatin 

zymography. Note that cell preparation from the 2-D culture with trypsin resulted in cleavage of 

integrin 1. (B) Meso-1 cells were cultured on 2-D or 3-D collagen with 20 g/ml of functional 

blocking anti-integrin antibody or control mouse IgG1 for 2 days. Conditioned media were 

subjected to gelatin zymography (C, D) Cell surface distribution of MT1-MMP and integrin 1 

upon attachment of collagen coated-beads. Collagen- or BSA-coated beads were added to a culture 

of Meso-1 cells for 4 h. The cells were photographed (C) and subjected to immunocytochemistry 

(D) with anti-MT1-MMP (green) or anti integrin 1 (red) antibody. Scale bars: 50 m (C) or 5 m 

(D).  
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