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Abstract. We study the effect of step permeability on step instabilities on a grow-

ing vicinal face. When alternation of kinetic coefficients is taken into account,

pairing of steps occurs on the vicinal face. Irrespective of the step permeability,

the step pairs are stable for a wandering instability. The bunching of step pairs

occurs if the steps are impermeable. The bunch size increases with time as tβ with

β = 1/2, which does not depend on the form of the repulsive interaction potential

between steps. The repulsion influences the relation between the step distance in

a bunch and the bunch size. When the repulsive potential ζ with the step distance

l is given by ζ ∼ l−ν , the average step distance l̄ in a bunch decreases as l̄ ∼ N−α

with α = 1/(ν+1). The exponents, β and α are the same as those in the bunching

induced by the Ehrlich-Schowebel effect in growth.

PACS 81.10.Aj Theory and models of crystal growth – 05.70.Ln Nonequilibrium

and irreversible thermodynamics – 47.20.Hw Morphological instability – 68.35.Ct

Interface structure and roughness

1 Introduction

A Si(001) surface is reconstructed by the dimerization of surface atoms. On the vicinal face

tilted in the 〈001〉 direction, terrace TB with the dimers parallel to steps and terrace TA with

dimers perpendicular to the steps appear alternately [1]. Due to the formation of the dimer

row, surface diffusion becomes anisotropic. Surface diffusion parallel to the dimer rows is faster

than that perpendicular to the dimer rows [2,3].

When a specimen is heated by direct electric current, step bunching [4–6] and step wan-

dering [6] occur on the Si(001) vicinal face. The cause of the instabilities is considered to be
a e-mail: sato@cs.s.kanazawa-u.ac.jp



2 Will be inserted by the editor

the drift of adatoms induced by the current [7–14]. If we take account of the alternation of the

anisotropic surface diffusion, the step wandering occurs with step-up drift [12], and the bunching

occurs irrespective of the drift direction [7–14]. The results agree with experiments [4–6].

On the Si(001) vicinal face, in addition to the diffusion coefficients, the type of step changes

alternately [2]. Step SA, which is at the lower side of TA, is smoother than SB, which is at

the lower side of TB. The difference in the smoothness causes differences in step properties,

e.g., the step stiffness of SA is larger than that of SB [15–17] and kinetic coefficient of SA

is probably smaller than that of SB. On the vicinal face, step bunching occurs at 490◦C in

growth [18,19]. Frisch and co-worker [20] theoretically studied the step bunching. They used

a step flow model, in which the anisotropy of the surface diffusion and the kinetic coefficients

are changed alternately, and showed that the alternation of the kinetic coefficients causes the

step bunching on the growing vicinal face. In the study [20], they assume that the steps are

impermeable. Without solidification, surface diffusion between neighboring terraces does not

occur. The surface diffusion fields on neighboring terraces are independent of each other.

In general, if the kinetic coefficients are finite, the permeability can be incorporated in a

macroscopic step flow model. Step permeability affects the condition which causes the step

bunching. For example, in the drift-induced step instabilities on a Si(111) model, the drift

direction to cause the instabilities changes with the step permeability [21–23]. In the present

case, the permeability may also change the step behavior.

In this paper, bearing the growing Si(001) vicinal face in mind, we study the effect of the step

permeability on step instabilities induced by alternation of kinetic coefficients. We neglect the

alternation of anisotropy of surface diffusion. To see the effect of the step permeability clearly, we

consider only two extreme cases: the vicinal face with perfectly permeable steps and that with

impermeable steps. We show how the motion of the steps is changed by the step permeability.

In Sec. 2, we introduce a step flow model. We study instabilities of the impermeable steps in

Sec. 3, and those of the perfectly permeable steps in Sec. 4. We summarize the results and give

brief discussions in Sec. 5.

2 Model

In our step flow model, alternation of the kinetic coefficients is taken into account. We consider

a vicinal face with step distance l, where the y-direction is the step-down direction and the

x-direction is parallel to the steps. When we neglect evaporation of adatoms, the diffusion

equation of the adatom density c(r, t) is given by

∂c(r, t)
∂t

= ∇ · j(r, t) + F, (1)
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where j(r, t) is the adatom current and F is impingement rate of atoms. The adatom current

in the vicinal face is expressed as

j = −Ds

(
∂c

∂y
êx +

∂c

∂x
êy

)
, (2)

where êy is the unit vector in the y-direction, êx is that in the x-direction and Ds is the

diffusion coefficient. To focus on the effect of the kinetic coefficient, we neglect the alternation

of anisotropy of surface diffusion.

Solidification of adatoms and melting of solid atoms occur at step positions. At the ith step,

solidification occurs if the adatom density is higher than the equilibrium value, c
(i)
eq , and melting

occurs if the adatom density is lower than c
(i)
eq . The boundary conditions at the step are given

by [24]

Ki(c|yi+
− c(i)

eq ) = −n̂ · j|yi+
+ Pi(c|yi+

− c|yi−), (3)

Ki(c|yi− − c(i)
eq ) = n̂ · j|yi− + Pi(c|yi− − c|yi+

), (4)

where n̂ is the unit vector normal to the step, Ki is the kinetic coefficient and Pi is the

parameter for the step permeability. yi represents the step position and the subscript +(−)

indicates the lower (upper) side of the step. The kinetic coefficient changes with the type of the

step: Ki = KA for SA and Ki = KB for SB. Since SB is rougher than SA, we assume that KB

is larger than KA. The parameter Pi should be changed with the type of steps, but to see the

effect of the step permeability clearly, we also assume PA = PB = P .

In eqs. (3) and (4), the term on the left hand side represents the number of adatoms solidified

at the steps. By the interaction potential ζi between steps, the equilibrium adatom density, c
(i)
eq

is given by

c(i)
eq = c0

eq

(
1 +

Ω

kBT

∂ζi

∂yi

)
, (5)

where c0
eq is the equilibrium adatom density of an isolated step and Ω is the atomic area. On

the Si(001) vicinal face, ζi is given by [25]

ζi = −A(ln li + ln li−1), (6)

where the terrace width li is given by li = yi+1 − yi.

In eqs. (3) and (4), the first term on the right hand side represents the adatom current to the

steps, and the second term represents the number of adatoms passing through the step without

solidification. When P → ∞, the step is called perfectly permeable. Without solidification,

adatoms move to neighboring terraces. The difference in the adatom density vanishes. When

P → 0, the step is called impermeable. The diffusion fields on neighboring terraces are separated

at the step position and independent of each other. The adatoms move to the neighboring

terraces after solidification at the step. If the kinetic coefficient is finite, a gap in the adatom

density appears.
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By solving the diffusion equation, eq. (1) with the boundary conditions, eqs. (3) and (4),

the adatom density is determined and the velocity Vi of the step is obtained as

Vi = Ωn̂ · (j|yi− − j|yi+
). (7)

In general, the permeability Pi depends on the type of step, and is also related to the step

kinetics. Since the kink density at SB is more than that at SA [15–17], solidification at SA is easier

than at SB. The permeability of SA may be larger than that of SB. However, if the difference in

the step permeability is taken into account, the situation becomes more complicated. Our aim

is to see the effect of the permeability clearly. Thus, we assume the permeability of SA is equal

to that of SB, and we treat two extreme cases: the instabilities with perfectly permeable steps

and those with impermeable steps.

3 Instabilities with impermeable steps

We first study step instabilities of impermeable steps. To study the stability for the step bunch-

ing, we assume that the steps are straight. When we use the one-dimensional model, the velocity

Vi of the ith step is given by

Vi =
ΩKi[Fli−1{Ki−1li−1 + 2Ds} + 2DsKi−1Δci−1]

2{Ds(Ki + Ki−1) + KiKi−1li−1}
+

ΩKi[Fli{Ki+1li + 2Ds} − 2DsKi+1Δci]
2{Ds(Ki + Ki+1) + KiKi+1li} , (8)

where the difference Δci of the equilibrium adatom density is given by Δci = c
(i+1)
eq − c

(i)
eq .

On a vicinal face with li = l, the effect of the repulsion on the equilibrium adatom density

cancels from eq. (5): c
(i)
eq = c

(i+1)
eq = c0

eq and Δci vanishes. The step velocities, V 0
A of SA and V 0

B

of SB are given by

V 0
A =

KAFl(KBl + 2Ds)
Ds(KA + KB) + KAKBl

, (9)

V 0
B =

KBFl(KAl + 2Ds)
Ds(KA + KB) + KAKBl

. (10)

Since we have assumed that KB is larger than KA, SB advances faster than SA. An equidistant

array of step pairs separated by TB is produced. By the difference in the terrace width, the

equilibrium adatom density cB of SB is larger than cA of SA. From eqs. (5) and (6), the difference

Δc(= cB − cA) in the equilibrium adatom density is expressed as

Δc =
2Ωc0

eqA

kBT

(
1

l − Δl
− 1

l + Δl

)
≈ 4Ωc0

eqA

kBT l2
Δl, (11)

where Δl = (lA − lB) represents the difference in the terrace width.
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Since the steps move as step pairs, SA and SB advance with the same velocity. From the

condition VA = VB, Δc is expressed as

2KAKBΔc

(KB − KA)F
=

Ds(KA + KB)l
Ds(KA + KB) + KAKBl

+
KAKBlAlB

Ds(KA + KB) + KAKBl
, (12)

where lB is the width of TB and lA is that of TA. From eqs. (8) and (12), the velocity Vpair of

the step pair is given by Vpair = ΩFl. The difference between Vpair and V 0
A(V 0

B) are expressed

as

V 0
B − Vpair = −(V 0

A − Vpair)

=
FlDs(KA − KB)

Ds(KA + KB) + KAKBl
. (13)

By the formation of step pairs, the velocity of SA becomes faster and that of SB becomes slower.

Vpair is the average of V 0
A and V 0

B .

With a set of parameters, the step distance in a pair is uniquely determined. When the

repulsion is strong, the step pair is loosely bound. Δl is much smaller than the average step

distance l. From eq. (11), Δl is expressed as

Δl =
kBT l2(KB − KA)F

8KAKBΩAc0
eq

. (14)

When the repulsion is weak, the step pair is tightly bound and Δl is comparable to l. If lA is

so narrow that lA � (KA + KB)Ds/2KAKBl, from eq. (12) Δc is approximated as

Δc =
(K2

B − K2
A)FDsl

2DsKAKB{Ds(KA + KB) + KAKBl} . (15)

On the other hand, when lA is much narrower than lB, Δc is expressed as

Δc =
2Ωc0

eqA

kBT

(
1
lA

− 1
lB

)
≈ 2Ωc0

eqA

kBT lA
, (16)

in which we use eq. (5). From eqs. (15) and (16), the step distance lA is approximately given

by

lA ≈ 4KAKB{Ds(KA + KB) + KAKBl}ΩAc0
eq

FDsl(K2
B − K2

A)kBT
. (17)

Hereafter, we study the instability of an equidistant train of tight step pairs. For small TA,

the adatom current is much smaller than that for large TB. The stability of the equidistant array

of step pairs is determined by the adatom current on large TB. We give a small fluctuation to

the width of TB without changing lA. We assume the narrow TB with width lB − δlB and wide

TB with lB + δlB appear alternately. Since the repulsion is weak and lB is large, the change of

Δc is neglected. When the width of the upper side terrace is lB + δlB, the change of the velocity

δVpair of the step pair is given by

δV = μFδlB, (18)
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where the coefficient μ is expressed as

μ =
D2

s (K
2
B − K2

A)
{Ds(KA + KB) + 2KAKB}
× 1
{Ds(KA + KB) + KAKB} . (19)

When the difference in terrace width is small [20], δV is proportional to F 2. In the present case,

the tight step pairs are formed and the difference in terrace width is large. δV is proportional

to F in eq. (18).

Since KB is larger than KA, the coefficient μ is positive in eq. (19). If δlB < 0, i.e., the upper

side terrace is smaller than the lower side terrace, the step pair is decelerated. If δlB > 0, the

step pair is accelerated. Therefore, the equidistant array of step pairs is unstable against the

fluctuation, and the pairing of step pairs occurs. When the similar process occurs successively,

large bunches may be formed.

To study the behavior of an unstable array, we carry out numerical simulations. In our

simulations, we use ζi = Aν(l−ν
i + l−ν

i−1) or ζi = −A0(ln li + ln li−1) as the repulsive interaction

potential. Figure 1 shows the time evolution of step positions with the logarithmic repulsive

potential. The dimensionless time t̃, the dimensionless step position ỹ and the dimensionless

impingement rate F̃ are defined as

t̃ =
tKν+3

B Ω2Ãνc0
eq

Dν+2
s kBT

, (20)

ỹ =
yKB

Ds
, (21)

F̃ =
FD2

s kBT

K3
BΩÃνc0

eq

, (22)

where ν = 0 and Ãν = A0 for the logarithmic repulsive potential and Ãν = νAν for other

potentials. The dimensionless impingement rate is F̃ = 20 and the ratio of the kinetic coefficients

is KA/KB = 0.2. The number of steps is 32 and the scaled system size is 64 with the periodic

boundary condition. The dotted lines are the orbits of SA and the solid lines are those of SB.

Initially, the steps are equidistant with small random fluctuation. In an early stage, SB

advances faster than SA, and pairing of the steps occurs. The step pairs are not broken into

single steps. The equidistant array of the step pairs is unstable and step bunching occurs. In

a later stage, collisions of step pairs to bunches occurs successively. When a step pair collides

to a bunch from the upper side, another step pair separates from the lower side. By repeating

the collision and separation, bunches gradually grow. In step bunching, the step pairs do not

break and are stable, which agrees with a previous study [26].

The adatom density at the lower side of the step pair is higher than at the upper side. In

the equidistant array of the pairs, the difference Δcpair in the adatom density is given by

Δcpair =
FlA(KB − KA)

2{2Ds(KA + KB) + KAKBlA} , (23)
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Fig. 1. Time evolution of step positions. The number of steps is 32 and the system width is 64 with

periodic boundary conditions.

where we assumed that step distance in a pair is small. On a vicinal face consisting of single

steps with step distance lA, the same gap is given if the kinetic coefficients are KA/2 in the

upper side of the step and KB/2 in the lower side of the step. Since the steps move as step

pairs, we can regard a step pair as an effective single step with the negative Ehrlich-Schwoebel

(ES) effect [27,28]. Then, growth law is expected to be the same as that for step bunching,

induced by the ES effect on the growing vicinal face [29].

Figure 2 shows the time evolution of the size of the largest bunch, which is averaged over

10 runs. The system size is twice as large as that in Fig. 1. Irrespective of the exponent ν

of the repulsive interaction potential, the bunch grows as tβ with β ≈ 1/2. The form of the

repulsion affects the step distance in the bunch. Figure 3 shows the dependence of the average

step distance l̄ on the number Nmax of steps in the largest bunch. With increasing the bunch

size Nmax, the average step distance decreases as l̄ ∼ N−α
max with α = 2/(ν +1). The exponent α

with the logarithm repulsion (ν = 0) seems to be slightly smaller than α = 2, but the exponents

α and β agree with those in theoretical studies [26,29,30].

In the above analysis, we assume that the steps are straight. In the two-dimensional system,

however, the other type of step instability, step wandering may occur during growth. Since the

evaporation of adatoms is neglected in the present case, we use the same analysis as that in

Ref. [31]. We consider the equidistant train of steps whose normal direction is tilted from the

y-axis with an angle θ. In growth, the vicinal face is unstable and the pairing of steps occurs.

When the step pairs are formed, the total current JA
x in the x-direction on TA and JB

x on TB
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Fig. 2. Time evolution of the size of the largest bunch, which is averaged over 10 runs: © with ν = 0

and F̃ = 2 × 10, � with ν = 2 and F̃ = 2 × 10−2, � with ν = 4 and F̃ = 2 × 10−5 and ♦ with ν = 6

and F̃ = 2 × 10−8. The number of steps is 64 and the system width is 128.

Fig. 3. Dependence of average step distance in the largest bunch on the number Nmax of the step,

which is averaged over 10 runs. The parameters and symbols are the same as those in Fig. 2.
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are given by

JA
x = −μA tan θ, (24)

JB
x = −μB tan θ. (25)

The coefficients μA and μB are expressed as

μA = −Dsl̃A[F l̃A(KB − KA) + 2KAKBΔc̃]
2[(KA + KB) + KAKBl̃A]

, (26)

μB = −Dsl̃B[F l̃A(KA − KB) − 2KAKBΔc̃]
2[(KA + KB) + KAKBl̃B]

, (27)

where l̃A + l̃B = l cos θ and Δc̃ is the difference of the adatom density on the tilted system.

When the difference of the terrace width is small, the total current Jx = JA
x + JB

x per step

pair is given by

Jx = −F 2(KB − KA)kBT l4

16KAKBΩc0
eqA

× tan θ cos4 θ

{Ds(KA + KB) + KAKBl cos θ} . (28)

When an in-phase wandering occurs and the fluctuation is expressed as ζ(x, t), the time evolu-

tion of the fluctuation is given by

∂ζ

∂t
= −Ω

∂Jx

∂x
≈ γ

∂2ζ

∂x2
, (29)

where we use ∂ζ/∂x = tan θ. In eq. (29), the coefficient γ is expressed as

γ =
F 2(KB − KA)kBT l4

16KAKBc0
eqA[Ds(KA + KB) + KAKBl]2

. (30)

If lA is so narrow that Jx ≈ JB
x , the coefficient γ is expressed as

γ =
Fl2(KB − KA)[2(KA + KB) + KAKBl]

2[(KA + KB) + KAKBl]2
. (31)

Irrespective of the width of lA, the coefficient γ is positive. Then, with the alternation of the

kinetic coefficients, the step wandering does not occur on the growing vicinal face.

4 Step instabilities with perfectly permeable steps

When the steps are perfectly permeable, the parameter P → ∞. The boundary conditions,

eqs. (3) and (4) are expressed as

c|yi+
= c|yi− = cs, (32)

2Ki(cs − c(i)
eq ) = êy ·

(
j|yi− − j|yi+

)
. (33)
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The step velocity is given by

Vi = 2ΩKi(cs − c(i)
eq ). (34)

On the vicinal face, the step velocities, VA and VB are the same as those with the impermeable

steps, which are given by eqs. (9) and (10). Since SA advances faster than SB, step pairs

separated by TB are formed. When the width of TB is lB and that of TA is lA, the velocities

are given by

VA =
ΩKAl(2DsFl + KBlAlB + 2KBΔc)

(KA + KB)Dsl + KAKBlAlB
, (35)

VB =
ΩKBl(2DsFl + KAlAlB − 2KAΔc)

(KA + KB)Dsl + KAKBlAlB
. (36)

From the condition VA = VB, the difference Δc in the equilibrium adatom density is obtained

as

Δc =
Fl(KB − KA)

2KBKA
, (37)

which does not depend on Δl. The form of Δc is different from that in the impermeable case,

which is given by eq. (12). The velocity of the step pair, however, is the same as that in the

impermeable case and given by Vpair = ΩFl.

On surface consisting of equidistant step pairs, from eq. (37), the total adatom currents JA

on TA and JB on TB are given by

JA =
lBDs[2KAKBΔc + F (KA − KB)l]
2[Dsl(KA + KB) + KAKBlAlB]

= 0, (38)

JB =
lADs[−2KAKBΔc + F (KB − KA)l]

2[Dsl(KA + KB) + KAKBlAlB]
= 0. (39)

Step bunching occurs when the average adatom current in the upper side direction increases

with increasing the inclination of the surface [32]. In the present case, the average adatom

currents are absent on both TA and TB. Then, step bunching probably does not occur.

To examine the stability of the array of step pairs, we use a two-dimensional square lattice

model and carry out a Monte Carlo simulation. The algorithm is similar to that in a previous

study [33], in which the model is in the limit of large ES effect. Diffusion between neighboring

terraces is forbidden. In our model, the ES effect is neglected and adatom diffusion between

neighboring terrace without solidification is allowed.

Adatoms and solid atoms are distinguished in our model. We repeatedly choose a solid atom,

which is at a step position, or an adatom. When an adatom is chosen, the adatom hops into

a neighboring site with the probability 1/4 if the site is empty. In our algorithm, the diffusion

constant Ds = 1. In one diffusion trial, the increase Δt of time is expressed as Δt = 1/4Na,

where Na is the number of adatoms. After a few diffusion trials, impingement of adatoms is

periodically carried out. In the continuum limit, the distribution of adatom density obeys eq. (1)

if the adatom density is low. In our model, solidification of adatoms and melting occurs only
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at step positions, and the nucleation of two dimensional islands and vacancies is forbidden.

After the hopping trial, the solidification trial is successively carried out if the adatom attaches

to a step from the lower side. When a solid atom is selected, a melting trial is carried out.

The melted atom stays in the same site as an adatom. For SB steps, the probability p+ of

solidification and p− of melting are given by

p± =
[
1 + exp

(
ΔEs ∓ φ

kBT

)]−1

. (40)

ΔEs = ε× (the increment of the step perimeter), where ε is half of the bonding energy. φ is the

decrease in the chemical potential by solidification. For SA steps, the probabilities are given by

pkp±, where the parameter pk represents the ratio of the kinetic coefficients and pk < 1. With

equilibrium adatom density c0
eq, the frequency of solidification is equal to that of melting at a

kink site. Irrespective of the type of step, the equilibrium adatom density is given by

c0
eq =

[
1 + exp

(
φ

kBT

)]−1

(41)

The estimation of kinetic coefficients from microscopic models has been carried out in pre-

vious papers [34–36]. Solidification and melting mainly occur at kink sites. When the step kink

density is high, we can roughly estimate the kinetic coefficient. The number ΔNs of solidified

adatoms and the number ΔNm of melting atoms are roughly estimated as

ΔNs =
cspsL

Na
, (42)

ΔNm =
(1 − cs)pmL

Na
, (43)

where cs is the adatom density at the step, L is the system length, ps is the average solidification

probability, and pm is the average melting probability. The probabilities are approximately the

same as those at a kink site. For SB steps, the net number of solidification atoms per unit length

is given by

ΔNs − ΔNm

L
=

csps + (1 − cs)pm

Na

=
cs(ps + pm) − pm

Na

=
cs − c0

eq

Na
= 4Δt(cs − c0

eq), (44)

where we used pm = c0
eq at the kinks and Δt = 1/4Na. By comparison of eqs. (3) and (4) with

eq. (44), the kinetic coefficient of SB is estimated as KB = 4. For SA, the kinetic coefficient is

given by KA = 4pk.

In our model, we introduced the probability pk to change the kinetic coefficient of SA, but

we can change the kinetic coefficient by changing the step energy ε of SA. When the step energy
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of SA is larger than that of SB, the step stiffness of SA is larger than that of SB. Thus, the

kink density of SA is smaller than that of SB, and KA becomes smaller than KB. However,

if we change the step energy, we cannot use the rough estimation given by eq. (44). Thus,

we introduced the probability pk and changed the kinetic coefficient. In our model, the step

stiffness β̃ of SA is the same as that of SB, and given by

β̃ =
2kBT

a
sinh2 ε

2
, (45)

where a is the lattice constant. In simulation, we set a = 1.

If solidification does not occur, the adatom stays at the same position. The adatom coming

from the upper terrace stays on the lower terrace. By the next diffusion trial, the adatom

can move to the neighboring terrace. If a difference in the adatom density between the upper

terrace and the lower terrace is present, the gap can be removed by the diffusion. Since the extra

potential barrier is absent in the diffusion between the neighboring terraces, irrespective of the

type of step, c|− = c|+ = cs in the continuum limit. Thus, the steps are perfectly permeable

in our model. If we change the steps to impermeable steps, the adatom motion at the step

positions is more complicated as in Ref. [22]

Figure 4 shows a snapshot of the surface. The dotted lines are SA and the solid lines are

SB. Parameters are ε/kBT = 2.0, φ/kBT = 1.5, F = 0.005 and pk = 0.1. The step stiffness β̃

is β̃/kBT = 2.7. Since the kink density is ∼ (β̃/kBT )−1 = 0.37, the steps have many kinks and

the estimation by eq (44) is valid.

Fig. 4. Snapshot of the step pairs. The system size is 256× 256 with periodic boundary condition and

the number of steps is 32.
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Fig. 5. Time evolution of positions of steps. Parameters are the same as those in Fig. 4

Initially, the steps are straight and equidistant. When impingement starts, the pairing of

steps occurs. The equidistant array of steps seems to be stable, and step bunching does not

occur. To examine the stability of an equidistant array of step pairs, we started the simulation

with an isolated large bunch. Figure 5 shows the time evolution of the average step positions.

In the initial stage, the step pair at the front side of the step bunch successively separates from

the bunch, and the bunch is broken to step pairs. Thus, on the vicinal face with permeable

steps, the equidistant array of step pairs is stable and step bunching does not occur.

In Fig. 4, step wandering does not seem to occur. When the step is perfectly permeable, the

adatom currents are JA = JB = 0. If the system is tilted, the total adatom current Jx in the

x-direction is absent, and ∂ζ/∂x = 0. From the same analysis as that in Sec. 3, we can show that

the step pairs are marginal compared to in-phase step fluctuation. When the Gibbs-Thomson

effect is taken into account, the fluctuation is suppressed and the array of step pairs is stable

for step wandering.

5 Summary and discussions

In this paper, taking a growing Si(001) vicinal face as an example, we studied the effect of step

permeability on step instabilities induced by the alternation of kinetic coefficients. Irrespective

of the step permeability, the growing vicinal face is unstable and pairing of steps occurs. The

pairs are stable for a wandering instability. The stability for step bunching changes with step

permeability. The equidistant array of step pairs is stable if the step is perfectly permeable, but
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the step bunching occurs if step is impermeable. In experiment [18,19], step bunching occurs

at 490◦C. Then, the steps are probably impermeable on the growing Si(001) vicinal face.

In our simulation, the number N of steps in the largest bunch increases as N ∼ t̃β with

β = 1/2, and the average step distance l̄ in the bunch decreases as l̄ ∼ N−α with α = 2/(ν +1).

The exponents, β and α are the same as those in step bunching by the negative ES effect on

the growing vicinal face [29,30]. In our model, since the steps move as step pairs, the step pair

is regarded as single step with the negative ES effect [27,28,26]. Then, the exponents, α and β

agree with those in previous studies [29,30].

In a previous study [20], step pairing does not occur when the impingement rate is larger

than the critical value. In our model, from eq. (17), the step distance in a pair lA decreases as

lA ∼ F−1, and the critical impingement rate does not appear. In the previous paper [20], they

set lA = 1 and found the suitable lB. Then, with large impingement rate, lA cannot be smaller

and the formation of tight step pairs is forbidden, which explains the disagreement.

With the alternation of the kinetic coefficients, step wandering does not occur irrespective

of the step permeability. In our model, the alternation of the diffusion coefficients, which causes

the step wandering with the drift of adatoms [12], is neglected. The alternation may cause

step wandering on the growing vicinal face. We are currently studying the possibility of step

wandering caused by alternation of the diffusion coefficients.

In a real system, when the adatoms attach to steps, they migrate along the step and solidify

at the kink sites. When the kink density is high, the majority of adatoms can solidify, and

the step is impermeable. When the kink density is low, many adatoms cannot find the kink

sites. The adatoms detach from the step without solidification, and the step is permeable. The

step permeability is changed by the kink density. Since the kinetic coefficient is related to the

kink density, the permeability depends on the kinetic coefficients. Though we assumed that the

permeability of SA is the same as that of SB in our model, we should change the permeability

of SA from that of SB. However, to derive the relation between the kinetic coefficient and the

permeability, the detailed parameters of the materials are necessary and the situation becomes

complicated. Then, for the first step, we changed the permeability independently of the kinetic

coefficients.

By using this simple model, we studied only the two extreme cases: the instabilities with

perfectly permeable steps and those with impermeable steps. When the steps are impermeable

and the kinetic coefficient is finite, large bunches are formed and the growth laws in imperme-

able steps are consistent with experiment [26]. Thus, the steps on Si(001) vicinal faces at low

temperature may be regarded as impermeable steps. However, we studied only the two extreme

causes. To carry out more quantitative comparison with experiments [18,19,26], we have to

study more general causes.
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