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Abstract

With taking account of alternation of kinetic coefficients, we study the possibility of step insta-

bilities on a Si(001) vicinal face. In sublimation, a step with large kinetic coefficient recedes faster

than that with small kinetic coefficient, and step pairs are formed. The upper side step in the step

pair is the step with large kinetic coefficient. An equidistant array of the pairs is unstable against

bunching. Number of steps Nmax in bunches increases with time as Nmax ∼ tβ. The exponent

β = 0.5 when the bunch grows via successive collisions of step pairs, and β ≈ 1.2 when the bunch

grows via coalescence of bunches.
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I. INTRODUCTION

Dimerization of surface atoms occurs on a Si(001) surface [1]. On a Si(001) vicinal face,

the dimers are parallel to the steps on TA terrace and perpendicular to the steps on TB

terrace. The surface diffusion along the dimer rows is faster than that perpendicular to the

dimer rows [2, 3]. The anisotropy of the surface diffusion changes alternately: on TA, the

surface diffusion parallel to the steps is faster than that perpendicular to the steps, and the

relation is the opposite on TB.

In addition to the type of terraces, the type of the steps changes alternately on the Si(001)

vicinal face. The step in the lower side of TA, which is called SA, is smoother than that in the

lower side of TB, which is called SB [2]. The difference in the smoothness changes properties

of the two steps. For example, the step stiffness of SA is larger than that of SB [4–6], and

the kinetic coefficient of SA is probably smaller than that of SB.

When the temperature is about 460◦C, the vicinal face grows by the step-flow mode.

The vicinal face is unstable and step bunching occurs [7, 8]. Frisch and co-workers [9]

theoretically studied the step bunching by one-dimensional step flow model. They showed

that the alternation of the surface diffusion is not important for the bunching. The bunching

is caused by the alternation of the kinetic coefficients.

When a positive Ehrlich-Schowebel effect [10–12] is present, the step bunching occurs in

sublimation [13, 14]. With a strong ES effect [13], pairing of steps occurs. The bunches of

step pairs are formed by coalescence of step pairs. With a weak ES effect [14], the fluctuation

of step density occurs and the large bunches are formed. With the drift of adatoms [15],

the step bunching occurs if the kinetic coefficients are finite [16–19]. In a conserved system,

bunches grows by coalescence of bunches. With evaporation of adatoms, the collision of a

single step and the bunches are repeated, and large bunches are formed [19].

The experiment [7, 8] was carried out only in growth, but the step bunching may also

occur in sublimation. In this paper, we study the possibility of step instabilities in sub-

limation. In previous study [20, 21], with taking account of the drift of adatoms and the

alternation of the diffusion coefficients, we studied the step bunching on the Si(001) vicinal

face in sublimation. Since the step bunching does not occur without the drift, the alterna-

tion of the diffusion coefficients does not cause the step bunching [21]. Thus, in this paper,

we study the step instabilities by alternation of kinetic coefficients. In Sec. II, we introduce
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step flow model. We study the step bunching in Sec. III, and the step wandering in Sec. IV.

In Sec. V, we summarize the results and carry out brief discussions.

II. MODEL

We use a standard step flow model. x-axis is parallel to steps and y-direction is in the

step-down direction. We neglect the anisotropy of the surface diffusion and the impingement.

When the evaporation of adatoms is taken into account, the diffusion equation of adatom

density is given by
∂c(r, t)

∂t
= −∇ · j(r, t) − 1

τ
c(r, t), (1)

where j(r, t) is the adatom current, and τ is the lifetime of adatoms. The adatom current

is expressed as

j(r, t) = −Ds

(
∂2c

∂y2
êy +

∂2c

∂x2
êx

)
, (2)

where Ds is the diffusion coefficient. The boundary conditions at the nth step are given by

∓n · j|yn± = Kn(c|yn± − c(n)
eq ), (3)

where n̂ is the unit vector normal to the step. yn+ (yn−) is the lower(upper) side of the

step. At the steps, the adatom current by the surface diffusion is equal to the number of

solidified or melted adatoms, which is proportional to the difference of adatom density from

the equilibrium value. The kinetic coefficient Kn = KA for SA and Kn = KB for SB. Since

SB is rougher than SA, the kink density of SB is higher than that of SA. Solidification and

melting at the step with high kink density is more frequent than those at the step with low

kink density. Thus, KB is larger than KA.

The equilibrium adatom density c
(n)
eq is expressed as

c(n)
eq = c0

eq

(
1 +

Ω

kBT

∂ξn

∂yn

)
, (4)

where c0
eq is the equilibrium adatom density of an isolated straight step, Ω is the atomic area

and ξn is the repulsive interaction potential between steps. On the Si(001) vicinal face, the

interaction potential is given by [22]

ξn = −A(ln ln−1 + ln ln), (5)

where ln = yn+1 − yn is the width of the nth terrace.
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By solving the diffusion equation eq. (1) with boundary conditions eqs. (3) in quasi-static

approximation (∂c/∂t = 0), the adatom density is determined. The step velocity V is given

by

V = Ωn̂ · (j|yn− − j|yn+). (6)

III. STEP BUNCHING

We assume that the steps are straight. From eq. (1) and eqs. (3), the adatom density

c
(n)
0 (y) on the nth terrace is given by

c
(n)
0 (y) = A−e−y/xs + A+ey/xs , (7)

where y = 0 is the position of the nth step and y = ln is that of the (n + 1)th step. The

coefficients, A± are expressed as

A± =
(λn+1 ∓ 1)el̃ncn ± (1 ± λn)cn+1

2[(1 + λnλn+1) sinh l̃n + (λn + λn+1) cosh l̃n]
, (8)

where the scaled step distance l̃n = ln/xs with xs =
√

Dsτ and the parameter λn = Ds/Knxs.

λn represent represents the effect of the kinetic coefficient. When λn � 1, the effect of the

kinetic coefficient is neglected. The adatom density is in equilibrium at the steps. When

λn � 1, The difference in the adatom density at the step and that in equilibrium is not

neglected. From eq. (6), the step velocity Vn of the nth step is obtained as

Vn =
ΩDs

xs

−(λn−1 sinh l̃n−1 + cosh l̃n−1)c
(n)
eq + c

(n−1)
eq

(1 + λnλn−1) sinh l̃n−1 + (λn + λn−1) cosh l̃n−1

+
ΩDs

xs

−(λn+1 sinh l̃n + cosh l̃n)c
(n)
eq + c

(n+1)
eq

(1 + λnλn+1) sinh l̃n + (λn + λn+1) cosh l̃n
. (9)

We consider the vicinal face with the terrace width lA = lB = l (Fig. 1(a)). On the vicinal

face, the effect of the step repulsion vanishes. The equilibrium adatom density is given by

c
(n)
eq = c0

eq. The step velocity VA of SA and VB of SB are given by

VA =
−2ΩDs[λB sinh l̃ + cosh l̃ − 1]c0

eq

xs[(λAλB + 1) sinh l̃ + (λA + λB) cosh l̃]
, (10)

VB =
−2ΩDs[λA sinh l̃ + cosh l̃ − 1]c0

eq

xs[(λAλB + 1) sinh l̃ + (λA + λB) cosh l̃]
. (11)
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FIG. 1: Condition of surface in the stability analysis: (a) vicinal face with the step distance l, (b)

an equidistant train of step pairs, (c) step pairs with alternation of width of TA, and (d) unstable

train of step pairs.

Since we assume KB is larger than KA, λA is larger than λB. Then, the vicinal face is

unstable and SB recedes faster than SA. The step velocities are given by

VA =
ΩDs

xs

−(λB sinh l̃A + cosh l̃A)c
(0)
A + c

(0)
B

(1 + λAλB) sinh l̃A + (λA + λB) cosh l̃A

+
ΩDs

xs

−(λB sinh l̃B + cosh l̃B)c
(0)
A + c

(0)
B

(1 + λAλB) sinh l̃B + (λA + λB) cosh l̃B
, (12)

VB =
ΩDs

xs

−(λA sinh l̃A + cosh l̃A)c
(0)
B + c

(0)
A

(1 + λAλB) sinh l̃A + (λA + λB) cosh l̃A

+
ΩDs

xs

−(λB sinh l̃B + cosh l̃B)c
(0)
B + c

(0)
A

(1 + λAλB) sinh l̃B + (λA + λB) cosh l̃B
. (13)

where the width of TA is lA and that of TB is lB. Since the width lA of TA is larger than lB

of TB, the equilibrium adatom density c
(0)
A at SA is larger than c

(0)
B at SB.

Due to the repulsive interaction between the steps, the step with double height are not

formed. An equidistant train of step pairs whose upper side step is SA are formed (Fig. 1(b)).

From the condition VA = VB, the difference Δc = c
(0)
A − c

(0)
B in the equilibrium adatom

densities is determined. When the step distance is much smaller than the surface diffusion
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length, from eqs. (12) and (13), Δc is approximately expressed as

Δc =
(λA − λB)l

4xs
c0
eq, (14)

where we assumed that λAl � 1 and λBl � 1. From eqs. (12)-(14), the velocity of the step

pair is given by

Vpair = −ΩDsl

x2
s

c0
eq. (15)

When the repulsion is weak, the step distance lB is much smaller than lA. An equidistant

train of step pairs, which is separated by large TA appears. From eqs. (4) and (5), the

distance in a pair, lB is expressed as

lB =
8ΩAxs

kBT (λA − λB)l
(16)

We give a small perturbation to the width lA of large TA and study the stability of the

equidistant train of step pairs. We assume that large TA with the width lA + δlA and small

TA with the width lA − δlA appear alternately (Fig. 1(c)). We consider the step pair is very

tight and lB is much smaller than lA. We neglect the change of the equilibrium adatom

density, and assume that the step pairs are stable. At a step pair with large upper TA

terrace, the change of adatom current δj− from the upper large TA and that δj+ to the

lower small TA are given by

δj− ≈ −Ds

xs

λBceq

λA + λB

δlA
xs

, (17)

δj+ ≈ Ds

xs

λAceq

λA + λB

(−δlA)

xs

. (18)

Then, the change of the velocity δVpair of step pair with large upper terrace is given by

δVpair = Ω(δj− − δj+) =
ΩDs

xs

λA − λB

λA + λB

δlA
xs

c0
eq, (19)

where we assume that the step distance in a pair does not change by the fluctuation. Since

δVpair is positive, the step pair recedes slower. For the step pair with small upper terrace, the

change of velocity of step pair is −δVpair. The step pair recedes faster. Thus, the equidistant

array is unstable against the fluctuation (Fig. 1(d)).

To derive eq. (19), we assumed that the step pairs are stable, but this assumption may

be not correct. It is not clear whether large bunches are formed. To see the motion of

unstable array of step pairs, we carry out numerical simulations of eq. (9). Figures 2 and
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FIG. 2: Time evolution of step positions. The number of steps is 128 and the system width is 128

with the periodic boundary condition.

3 show the time evolution of steps. The dotted lines represent the motions of SB and the

solid lines represent those of SA. y-axis represents the dimensionless time, t̃ = ΩDsc
0
eqt/x

2
s .

The dimensionless parameters are l/xs = 2−8, ΩDsc
0
eq/x

2
s = 2−16, λA = 10, λB = 1, and

ΩA/c0
eqkBTxs = 2−8 × 10−2. The number of steps is 128. The system width is 128 with

the periodic boundary condition. Initially, the steps are equidistant with a small random

fluctuation.

In an early stage, the step pairs whose upper side step is SA are formed, which is expected

from eqs. (10) and (11). An equidistant array of the step pairs is unstable against the

fluctuation of the width of TB, and the step bunching occurs.

When t̃ ≤ 2000, both the separation of step pairs and the collision between small bunches

repeatedly occur. When 2000 ≤ t̃ ≤ 4000, the collision to bunches does not occur. The

separation of step pairs repeatedly occurs, and the bunch size seems to be saturated. When

t̃ ≥ 4000, the collision starts again and the bunch size grows rapidly (Figure 3).

The change of the frequency of the collision affects the time evolution of bunch size.

Figure 4 shows the time evolution of the size Nmax of the largest bunch, which is averaged

over 100 runs. The size of bunches grows with time as tβ. When 2 × 104 ≤ t̃ ≤ 7 × 104 and

2 × 105 ≤ t̃, the collision between bunches seldom occurs and the exponent β ≈ 0.5. In an

early stage (t̃ ≤ 20000) and middle stage (70000 ≤ t̃ ≤ 200000), the collision between step
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FIG. 3: Time evolution of step positions in a later stage. The parameters are the same as those in

Fig. 2.

FIG. 4: Time evolution of bunch size. Nmax represents the number of steps in the largest bunch.

bunches occurs frequently. In the early stage, the exponent β is not clearly defined, but in

the middle stage, the exponent β is approximately given by β ≈ 1.2.
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IV. STEP WANDERING

When we studied the step bunching, we assumed that the steps are straight. However,

another type of step instability, the step wandering may occur. We consider an equidistant

array of step pairs and study the wandering instability. We assume that both SA and SB are

fluctuated as ζ(t, x) = δζ(t) cos qx.

When the step pairs are tight, the adatom current on TA is larger than that on TB. The

stability of the step pairs is determined by the modification of adatom density on large TA.

By the step fluctuation, the adatom density on TA is given by c(x, y) = c0(y) + c1(y) cos qx,

where c0(y) is the adatom density for straight steps and the second term is the modulation

of adatom density induced by the step fluctuation. From eq. (1), the diffusion equation for

c1(y) is given by
d2c1(y)

dy2
=

(
1

x2
s

+ q2

)
c1(y). (20)

When the amplitude of the step fluctuation is small, the boundary conditions on TA are

given by

Ds
dc1

dy

∣∣∣∣
0

= KB(c1|0 − c
(1)
B ), (21)

−Ds
dc1

dy

∣∣∣∣
lA

= KA(c1|lA − c
(1)
A ), (22)

where c
(1)
B and c

(1)
A are defined as

c
(1)
B = −

(
dc0

dy

∣∣∣∣
0

− λB

xs

c0|0
)

δζ, (23)

c
(1)
A = −

(
dc0

dy

∣∣∣∣
lA

+
λA

xs
c0|lA

)
δζ. (24)

By solving the diffusion equation (20) with boundary conditions (21) and (22), the adatom

density is determined, and the time evolution of δζ is given by

dδζ

dt
= −ΩDs

2x2
s

(
c0|lA − c0|0

)
δζ − ΩDs

2xs

(
dc1

dy

∣∣∣∣
lA

− dc1

dy

∣∣∣∣
0

)

= −ΩDs

2x2
s

(c0
B − c0

A) sinh(lA/xs) +
(
λAc

(0)
B − λBc

(0)
A

)
[cosh(lA/xs) − 1]

(1 + λAλB) sinh(lA/xs) + (λA + λB) cosh(lA/xs)

−ΩDs

2xs
Λq

(c
(1)
B − c

(1)
A )(cosh Λql − 1) + (λAc

(1)
B + λBc

(1)
A ) sinh Λql

(1 + λAλB) sinh(ΛqlA) + (λA + λB) cosh(ΛqlA)
, (25)
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where Λq =
√

q2 + x−2
s . When the step distance is much smaller than the surface diffusion

length, eq. (25) is approximated as

dδζ

dt
= ωqδζ, (26)

The amplification rate ωq is given by

ωq = −1

2

D2
s Δc

(λA + λB)xs

q2. (27)

Since ωq is negative, the amplitude of the fluctuation rapidly decreases. The wandering of

step pairs does not occur.

V. SUMMARY

In this paper, we studied the effect of the alternation of kinetic coefficients on the step

instabilities on the Si(001) vicinal face. In sublimation, SB recedes faster than SA, and the

step pairs whose upper side is SA are formed. In our model, if we assume that KA is larger

than KB, the upper side step in step pairs is SB. However, the results do not change: the

step pairs are unstable against the bunching and stable for the wandering.

An equidistant array of the step pairs are unstable against the fluctuation of the large

terrace, and the step bunching occurs. The number Nmax of step in the largest bunch

increases with time as Nmax ∼ tβ . The exponent β ≈ 0.5 when the bunches grow only via

collision of step pairs and β ≈ 1.2 when the collision of step bunches frequently occurs. In

many systems [19, 21], the exponent β ≤ 1.0. The exponent β ≈ 1.2 is very large. We have

not haven the easy explanation why such a large exponent is obtained. Now we are studying

how the exponent is determined.

Though we neglected the step stiffness in eq. (25), the step pairs are stable for the step

wandering. If we take account of the step stiffness, the step pairs is more stable for the step

wandering. When the step pairs are formed, the kinetic coefficient at the lower side step,

KB is larger than that the upper side step, KA. The step pairs is regarded as the single step

with the positive ES effect. The wandering of single step with the positive ES effect does

not occur in sublimation [23]. Thus, in the present case, the wandering of step pairs does

not occur.

When the step instabilities are caused by the drift of adatoms, the step bunching and the

step wandering can occur simultaneously [24–26]. The recombination by the step wandering
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affects the growth rate of bunch size. In the present case, however, the step wandering does

not occur. The effect of the wandering of step pairs on the step bunching is neglected, and

we can use the one-dimensional model to study the growth law of bunch size.

On the Si(001) vicinal face, the step bunching in growth has been observed at low temper-

ature [7, 8]. The results of theoretical study [9] agree with the experiments [7, 8]. However,

the step motion in sublimation at the low temperature has not been observed. At low tem-

perature the surface diffusion length is so long that the condition is probably similar to our

simulation. Thus, the confirmation of the present results are expected.
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Figure Captions:

Figure 1:

Condition of surface in the stability analysis: (a) vicinal face with the step distance l, (b)

an equidistant train of step pairs, (c) step pairs with alternation of width of TA, and (d)

unstable train of step pairs.

Figure 2:

Time evolution of step positions. The number of steps is 128 and the system width is 128

with the periodic boundary condition.

Figure 3:

Time evolution of step positions in a later stage. The parameters are the same as those in

Fig. 2.

Figure 4:

Time evolution of bunch size. Nmax represents the number of steps in the largest bunch.
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Figure 1: M. Sato and K. Deura
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Figure 2: M. Sato and K. Deura
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Figure 3: M. Sato and K. Deura
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Figure 4: M. Sato and K. Deura
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