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The gauge problem of monopole dynamics is studie®(2) lattice gauge theory. We study first the
Abelian and monopole contributions to the static potential in four smooth gauges, i.e., the Laplacian Abelian,
maximally Abelian Wilson loop, andl-type gauges in comparison with the maximally Abel{&hA) gauge.

They all reproduce the string tension in good agreement witt8idg) string tension. The MA gauge is not

the only choice of a good gauge which is suitable for the color confinement mechanism. Using an inverse
Monte Carlo method and block spin transformation, we determine the effective monopole actions and the
renormalization grougRG) flows of its coupling constants in various Abelian projection schemes. Every RG
flow appears to converge to a unique curve which suggests gauge independence in the infrared region.

DOI: 10.1103/PhysRevD.67.074504 PACS nuniber12.38.Gc, 11.15.Ha

[. INTRODUCTION Our aim in this paper is to show first that the MA gauge is
not a special choice of a good gauge for color confinement.
It is important to understand the color confinementWe restrict ourselves to pur8U(2) QCD for simplicity.

mechanism in quantum chromodynami€CD). Many nu- Here we discuss two new gauges in addition to the LA
merical simulations have been done and they support thgauge. They have a different continuum limit but they can all
dual superconductor scenario of the QCD vacuum as a corieproduce well th&§U(2) string tension. The second aim is
finement mechanisifi,2]. Magnetic monopoles are induced to derive an effective monopole action and to study the block
by performing an Abelian projectiof8], i.e., a partial gauge Spin transformation of the monopole currents in various Abe-
fixing that keepsU(1)®U(1). It is known that the string lian projections. If their renormalization grouRG) flows
tension calculated from the Abelian and the monopole part§onverge onto the same line with a finite number of block
reproduces well the original one when we perform an Abe-spin transformations, we can expect gauge independence of
lian projection in the maximally AbeliatMA) gauge where monopole dynamics in the infrared region. The paper is or-
link variables are Abelianized as much as possible. In addiganized as follows. In Sec. I, we present some theoretical
tion to the string tension, many low-energy physical proper-and phenomenological arguments which support gauge inde-
ties of QCD are reproduced from the Abelian and monopolgendence of Abelian and monopole dominance. In Sec. lll,
degrees of freedom alone. It is called “Abelian and mono-We describe by gauge fixing procedures being used. In Sec.
pole dominance.” These facts suggest that monopoles plalV, we show that theSU(2) string tension is well reproduced
an important role for the confinement mechanism. Actually, &rom Abelian or monopole degrees of freedom alone in four
low-energy effective theory that is described in terms ofdifferent Abelian projection schemes. In Sec. V, we present
monopole currents has been derived by Shiba and S{i¢piki our results from RG flow study of effective monopole ac-
and an almost perfect monopole action showing the scalin§ons in various Abelian projections. In Sec. VI, we summa-
behavior has been derived by Chernodaital. [5]. Mono-  fize our conclusions.
pole condensation occurs due to energy-entropy balgfice

The Abelian color-electric flux is squeezed into a stringlike [l. THEORETICAL AND PHENOMENOLOGICAL
shape[6,7] by the superconducting monopole current. This BACKGROUND
squeezed color flux causes a confinement potential between

quarks. A. Gauge fixings and Abelian dominance

We note that we have infinite degrees of freedom when It is known that the Abelian Wilson loop reproduces well
we perform an Abelian projection. That is to say, whichtheSU(2) string tension numerically, if the MA or LA gauge
gauge should be chosen? Recently the Laplacian Abeliais applied[9,10]. In the case of the Polyakov gauge, the
(LA) gauge was proposed and it appears to have similastring tension which is calculated from Abelian Polyakov
good propertie$8,9]. Actually the MA and LA gauges are loop correlators is exactly the same as thatSa(2) [11].
very similar. Are the MA and LA gauges exceptional? If suchShoji et al. developed a stochastic gauge fixing method
is the case, there must exist a reason to justify it, although ivhich interpolates between the MA gauge and no gauge fix-
seems very difficult to find this reason. Another interpreta-ing [12]. They found that Abelian dominance for the heavy
tion is that monopole dynamics does not depend on thguark potential is realized even in a gauge that is far from the
choice of gauge in the continuum limit, although it seemsMA gauge. In a finite temperature system, Abelian Polyakov
dependent on the gauge choice at the present stage of lattimps in various gauges reproduce the phase transition be-
study. In other words, the MA gauge and LA gauge are conhavior of theSU(2) Polyakov loop13] (see Fig. 1
sidered to have a wider window even at present to see the Abelian dominance is also shown analytically. Abelian
continuum limit than other gauges. Wilson loops constructed without any gauge fixing give the
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FIG. 1. SU(2) Polyakov loop vs Abelian Polyakov loop in vari- FIG. 2. SU(2) Polyakov loop vs monopole Polyakov loop in
ous gauges. The behavior of t8&J(2) Polyakov loop is well re-  various gauges. The behavior of t8&J(2) Polyakov loop is well
produced by the Abelian Polyakov loop in these gauges. reproduced by the monopole Polyakov loop in these gauges.
same string tension as that 8fU(2) Wilson loops in the B. Monopole dominance

strong coupling expansidri0]. The same fact for any cou- T ical | . le domi
pling region has been proved by Ogilvie using the character ere are numerical results supporting monopole domi-

expansiorf 14]. An Abelian Wilson loop operator is given by ?hin(r;eéﬁgégl)e f)tzglrrtl% ft,eArtl)ZII(i)in\S/V;,IVseolL rl?)gg)sdmctehde (I)\;l]k’gf;%rge

[15,1 and LA gauge[9]. We note also that monopole

; Polyakov loops in various gauges reproduce the phase tran-
sition behavior of th&&U(2) Polyakov lood13] (see Fig. 2

In addition to this numerical evidence, we can prove ana-
lytically the gauge independence of monopole dominance if
Abelian dominance is gauge independghf]. If Abelian
dominance is gauge independent, a common Abelian effec-
tive action Sy written in terms of the Abelian gauge field
surely exists in any gauge and works well in the infrared
. region as in the MA gauge. Sinc®; takes the form of a
modified compact QED, an effective monopole action can be
h%erived analytically. One can evaluate the contribution of
monopoles to the Abelian Wilson loop using this effective

1
W[C]=5Tr

HC U,(s)

S,ue

whereu,, is an Abelian projected (1) link variable. Since
W, is not a class function of th&U(2) group, only the
SU(2) invariant part extracted frot/, is nonvanishing in

the expectation value. This can be written as

. 1
W',{“’=§f Dg Tr

IT g(s)u,(s)g'(s+p)
s,ueC

Using a character expansion, we get an expression for t
expectation value of the Abelian Wilson loop in terms of

. : monopole action.
SU(2) Wilson loops: In the MA gauge, it is known numerically that an effective
_ 2\ P(O) monopole action composed of two-point selffCoulomb +
(W',Q”):(§> (Wsu2) 12 nearest-neighbor interactions is a good approximation in the
infrared region. The action can be transformed exactly into a
+ (half integer higher representations modified compact QED action in the generic Villain form:

Since the lowest representation is dominant, we can show [ 1
that theSU(2) string tensionrgz) can be reproduced per- 2= f_ wDHHEEz ex;{ 4W2(d0+27m’AD
fectly from the Abelian string tensioay :

(Wa(l+ 1,3+ 1)) (Wa(1,3)) ><(d0+27rn))+i(.],0)l,

O ARSI AR ES T I R

|,J—oo

Furthermore, Ogilvie has shown that similar arguments holdvhere D~BA ™'+ a+yA. The expectation value of the

even with the gauge fixing function Abelian Wilson loopW=¢'("?) can be estimated using this
action, wherel is the color electric current which takes the
values+1 on a closed loop. When we use the Berenskii-

_ t
Syr=A2 TU,(s)a3U}(s) o], Kosterlitz-Thouless(BKT) transformation[18,19, we get
the expectation value of the Abelian Wilson loop in terms of
if the gauge parameter is small enough. monopole currentg:

074504-2
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& 015 * - respectively. Figure 3 shows that the spaflattice) mono-
0.1 pole density may take nonzero values even inahe0 limit.
This is not compatible with the theoretical expectation
0.05 above. In the authors’ opinion, the continuum limit of lattice

monopoles must contain extra ingredients different from the
expected monopoles corresponding to singularities of Polya-
kov loop operators. We will give a detailed analysis else-
FIG. 3. Monopole density in Polyakov gauge versus latticewhere.
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1. VARIOUS ABELIAN PROJECTIONS ON A LATTICE
(W)= E z exp{— (k,Dk) — 27i (k, 5A M) To check gaug_e(in)depencjenqe of monopole dynamics,
Z ke7.dk=0 we study the Abelian projection in various gauges.
) b1 (1) MA gauge. The most well known is the maximally
—7J,(AD) "]}, (D Abelian gauge. It is defined by maximizing the following

quantity Rya):

whereM takes the values 1 on a surface whose boundary

is J (J=6M). Electric-electric currentJ-J) interactions are Rya=T E U,(s) UgUL(S) o3. 2
of a modified Coulomb interaction and have no line singu- Skt

larity leading to a linear potential. The linear potential of the
Abelian Wilson loop originates from the second term of the
monopole contribution. The gauge independence of mono-

pole dommqnce is derived from that of Abelian do!”mnance. XMA(S):E [UM(S)U3UL(S)+ UL(S_ p)osU,(s—u)l.
The gauge independence of an order parameter is also ob- u

served in Ref[20].

This is achieved by diagonalizing the operator

That is,

C. The objection to gauge independence Xuma(s)—Xyals) =V(S)XMA(S)VT(S)

As we have shown in previous subsections, there is en- =diag{\ 1, N2},
couraging evidence that supports gauge independence of the
confinement scenario in terms of monopoles. On the othefherev(s) is a gauge transformation matrix. The diagonal-
hand, there is a strong objection to the idea of gauge indgzation corresponds to the condition
pendence.
Consider a gauge called the Polyakov gauge where Polya- .
kov loop operators are diagonalized in continuum finite- > (9, FIADA, =0 (©)
temperature QCD. It is provel®1,27 that the singularities a
of the gauge fixing run only in the timelike direction. This in the continuum limit.

means that there are only timelike monopoles in the system (2) LA gauge[8]. First consider the MA gauge again. To

when the Polyakov gauge is employed, if the degenerac}%aximizeR in Eq. (2) is to minimize the functional
points in Abelian projection correspond only to monopoles MA

as 't Hooft argued. Since such timelike monopoles do not

. ) : ; 1 R
contribute to the physical string tensidi23], monopole Sua= >, 1—§Tr[<I>(s)UM(s)CD(s+M)U;(s)]
dominance is violated. S
But numerically the above theoretical expectation seems A
to be inconsistent with numerical data. We show our prelimi- = {1- ¢*(S)RE(S)¢°(s+ w)}, 4
nary result in Fig. 3. The spatial and temporal monopole S

densities are plotted in Fig. 3 as a function of lattice spacing . o . _
ain the unit of physical string tensiogior,. These densities WNereR, is a gauge field in the adjoint representation,
are defined as

ab _ 1 T
R (s)= ETr[UaUM(S)UbUM(S)]-

1
13 3,k
ps(B)= — , ® is parametrized by a spin variabt® which satisfies the
(Ns2)”Ny4 local constraint
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3 63

®(5)=V(9)o3V(s)= 2 ¢%(5)7a, (5)
3
2 [6%(9)]P=1. (6)
Because of the local constraint from the normalization, it is 03
very difficult to find a set of¢p which realizes the absolute D G
minimum of Eq.(4). > 3
The key idea of the LA gauge fixing is to relax this con- 63

straint:
FIG. 4. Schematic representationlotype gauge.

3 3

> [d3(9)P=1-2 D [#¥(9)]?=1. .

a=1 s a=1 XMAWL(S): Eé {G(S,M)[U(S,M)USUT(S,M)]_E(S_M,M)
mFEv

X[UT(s—p,p)orsU(s— , 1)1},

The functional to minimize becomes

1

Sia=3 2 2 400", (1) where

Where E(S'M)ESIn@;;V(S)_SIn(;)MV(S_ V).
Ug(s,u) +U3(s, 1)
b_ b R b R
_Diy_% [25xy5ab_ RZ (x) 5YvX+M_R/La(y) Sy x—pl- In the continuum limit, we get the following gauge con-
(8) dition:

Minimizing Eg. (7) amounts to finding the eigenvector be- E 0 f Af=0. (14)
longing to the lowest eigenvalue of the covariant Laplacian Ly T

operator. This eigenvalue problem can be solved numerically
(we used an implicitly restarted Arnoldi method; for ex-
ample, see Ref24]). The gauge transformation matiis)

(4) L-type gauge. There are infinitely many gauges similar
to the MA gauge. Here we show one of the simplest exten-
sions called the.-type gauge. It is defined by maximizing

is defined by
3 _ - t - T
V(8 oraV(8) = 21 P(s)n, @ BT WEﬁ U,(8)o3U,(s+m)o3Ul(s+m)o3Ul(s) 5.
This is given by diagonalizing
where
R — T T
$3(5)= () B(s). 10 XU(8)= 2 [Uu(9)05UL (517U (s) U (s)
3 +UL(s—pm)osU (s— )
pA(s)=2, ($%(5))”. (11) L .
a=t Xo3U,(s—p)o3U,(s—u)]

In the continuum limit, the LA gauge corresponds to theA schematic representation Bf is shown in Fig. 4.
gauge condition In the continuum limit, we get the following gauge con-
dition:
> (0, 7iA%)(p?A,)=0. (12) -
2 Z’ {(3,%iagAd)+(d,=iagA )} (A +A;])=0.
(3) MAWL gauge [25]. The maximally Abelian Wilson (15

loop (MAWL ) gauge is a gauge that maximizes a Wilson

loop operator written in terms of Abelian link variables: (5) There are various gauges called the unitary gauge. The

Polyakov gauge an#,, gauge are defined with the follow-

W,=c0s0,,(s), (13) ing operators, which are diagonalized:
- - Ny
where ® ,,(s)=6,(s)+ 0,(s+u)—0,(stv)—06,(s). Itis Xo (S)= Us+(i—1)4 16
achievedﬂby diaglé)nalizing the foIIov/\L/ing operator: Pal(S) |];[l a(sH( )4). 19

074504-4
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X, (8)=U1(s)U,(s+1U](s+2)UL(s), 17 »
¥,
‘,**N&M
. 0.4 £
respectively. .,
In the continuum, the Polyakov gauge is reduced to L+,
- *
X 0.01 F .
A5 (X)=0, (18 %
whereas thé-;, gauge gives E 0.001 F
F1/x)=0. (19 :
0.0001 F sU)
(6) We also consider simple Abelian components ex- MAbeIialn o | 1
tracted without gauge fixing, where exact Abelian dominance s FI%Z?,”,I%Z '..'f'f.'li." | ' ‘I
X
1 1

is proved analytically 14].

IV. STRING TENSION

As a first step, we measure Abelian and monopole contri
butions to the string tension in various Abelian projections.
We used 100 configurations of a3216 lattice for the mea-
surement. In this case, the critical point lies ngar-2.7.
We set the gauge coupling to 2.5, so that the system is in

PHYSICAL REVIEW D67, 074504 (2003

4 6 8

Distance R

10 2

FIG. 5. Abelian and monopole Polyakov loop correlator in the
MA gauge.

w(S)=0,(8)+0,(s+ )= 0,(s+1)—0,(3)

can be decomposed into two parts:

the confinement phase. To reduce the statistical errors effi-

ciently, we adapted hypercubic blockifhg6] to the original
configurations.

0,,(9=0,,(5)+27n,,(s),

The value of Polyakov loop correlators corresponds to thg here ®,,(s) e[~ 4m4m) and ) (s)e[— ). Here
y 2% H . il

static potential between one pair of quark and antiquark:

(TrP(0)TrPT(R))=e V(RIT, (20)

where P(R) is the Polyakov loop operator E¢L6). V(R)
gives the interquark potential

V(R)=UR—%+C, 21)

andT=1/(N,a) is the temperature of the system.
The Abelian Polyakov loop operator is written as

Pa:exp{i

Ny—1

D Ou(s+id)|.

i=0

(22)

#V(s) is interpreted as the electro-magnetic flux through
the plaquette, and the integer valueg,(s) corresponds to
the number of Dirac strings piercing the plaqueti(s
—s') is the Coulomb propagator on a lattice.

Figures 5, 6, 7, and 8 show the valuessdj(2), Abelian,
and monopole Polyakov loop correlators in the MA, LA,
MAWL, and L-type gauges, respectively. The values of Abe-
lian and monopole Polyakov loop correlators in each gauge
are almost degenerate. The string tensiocan be extracted
from these values by fitting them to EQO). Fitted lines are
also plotted in the same figure. In the case of the MA gauge,
the fitted values are consistent with the results by BaAl.
[27]. In the case of other gauges like a unitary gauge, one
cannot extract the string tension clearly from the Abelian and
monopole Polyakov loop correlators due to large statistical

Equation(22) can be decomposed into photon and monopoleyrors.

parts[11] as follows:

Pa=Pp-Pm,
Ny—1
Py=expg —i > > D(§+i&—s’)a;®p4(s’)],
=
Ny—1
P.=exg —2mi 2, > D(§+i21—s’)(9’vny4(s’)],
=

where we use the identity
04(S)=— 2 D(5=5)[9,0 ,4(S") +d4(3,60,(5")].
S!

The Abelian field strength tensor

07450

Explicit values of the fitted string tension are shown in
Table I. They almost agree with each other, although these
four gauges have different gauge fixing conditions in the
continuum limit.

V. RG FLOWS OF THE EFFECTIVE ACTION IN VARIOUS
ABELIAN PROJECTIONS

To clarify what is happening in the monopole dynamics,
we study the effective monopole actions in various gauges in
this section.

A. Simulation method

Our method to derive an effective monopole action is the
following. We generateSsU(2) gauge field§U ,(s)} using
the standar& U(2) Wilson action. We con5|der a 48yper-

4-5
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- . TABLE |. Fitted string tensions (3X16 lattice, B
0.1 [,

: -\+‘+ E MA LA MAWL L-type
~ *4-* : Abelian 0.0305445) 0.0301134) 0.0305145 0.03065%43)
%‘: 0.01 ‘*-.-\ Monopole 0.025481) 0.0253628) 0.0254631) 0.0262434)
lé E
E 0.001 |

z=f DUe SV §(XT)AR(U)
00001 - SU( ) .............. |
Moropole a1 [antay :f Du f DCe SV 5(X*)A(U)
) Fitted line - ------ 1:'.5 |
1x105 1 1 1 |
2 4 6 8 10 12 14 16
Distance R :j Due Sefilul
FIG. 6. Abelian and monopole Polyakov loop correlator in the .

LA gauge. =(H > )J Due Sl 5(k, f(u))
cubic lattice forg from 2.1 to 2.5. We took 50 independent %
configurations after 10000 _therma_llzat_lon sweeps. Th_e_n, we =11 > (H Sk (m)’())e—s[k],
perform an Abelian projection in six different gauge fixings s k(§=—= \m»
to extract Abelian gauge fieldai,(s)} from SU(2) gauge .
fields. whereU ,=C,u, andX~ is the off-diagonal element of the

One can define magnetic monopole currents from Abeliainatrix X which is diagonalized in the procedure of Abelian
field strength tensor following DeGrand and Toussg2@.  projection. Ag(U) is the Faddeev-Popov determinant and

We can define the monopole currdof(s) as d(k,f(u)) gives the definition of the monopole currdnas a
function of the Abelian gauge field.
The above integrations are done numerically. We create

Ku(S)= 56#”P<’(9vnﬂ<’(s+“)' (23 vacuum ensembles of monopole currents using the Monte
Carlo method and the definition of the monopole current Eq.
By definition, it satisfies the current conservation law (23). Then, we construct the effective monopole action from
monopole vacua using Swendsen’s inverse Monte Carlo
al’LkM(s):O, method, which was developed originally by Swend§29|

and extended by Shiba and Suz{#.
whered,, and (?;L denote the forward and the backward dif- We consider a set of independent and local monopole in-
ferences, respectively, in the direction. teractions which are summed up over the whole lattice. We
We want to get an effective monopole acti§k] on the denote each interaction term &fk]. Then the effective
dual lattice, integrating out all degrees of freedom except fomonopole action can be written as a linear combination of

the monopoles: these operators:
10 . 10
E e i E
'-,**ég(k Mm " *X)% o
0.1 £ 0.1 Foithe,
L+, ﬂ%%k, o L+ &%‘(a‘
+ +
. L, % ‘ R N
£ oot e 2 oot
& &
x \a x \a
g r g r
L L
= 0.001 = 0.001
£ i . £ i
0.0001 | SU@) . b 0.0001 | sU@) .
- il [ i L
MAbeIlalln beoend i A gL MAbeIlalln beoend L
Monopole +--+-- I i Monopole +--+- ||
1x105 1 1 1 .‘ 1 |II1| 1x108 1 1 1 Hl i}
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Distance R Distance R

FIG. 7. Abelian and monopole Polyakov loop correlator in the  FIG. 8. Abelian and monopole Polyakov loop correlator in the
MAWL gauge. L-type gauge.
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TABLE I1l. The quadratic interactions used for the modified

Swendsen method.

PHYSICAL REVIEW D67, 074504 (2003

TABLE lll. The higher order interactions used for the modified
Swendsen method.

Coupling Distance Type Coupling Type
91 (0,0,0,0 ku(S) Four-pointg,g So(20-4Ki(9))?
92 (1,0,0,0 Ku(s+ p) Six-point g s34 KE(s))?
93 (0,1,0,0 K, (s+7)
g4 (1,1,0,0 K,(s+p+7v)
s (0.1,1,0 Ku(stv+p) the blocked monopole current ensemiié, (s™)}. Then
Ye (2,000 Ku(s+2u) one can obtain the RG flow in the 29-dimensional coupling
97 (02,00 Ku(st2v) constant space.
Os (1,1,1,2 K, (s+pm+v+p+0)
99 (1,1,1,0 K,(s+u+v+p)
910 (0,1,1,3 k,(s+v+p+0) B. Numerical results
9u 2.1,0.9 Ku(s+2utv) The effective monopole action is determined successfully.
912 12,00 Ku(stpt2v) All coupling constants that are contained in the effective
Y13 02,10 Ku(s+2v+p) monopole action are obtained with relatively small errors.
Y14 (2,1,0,0 kv(s+?“f V)A We use the jackknife method for the error estimation. These
Y15 (21,10 Ku(st2utv+p) effective monopole actions except in the MA gauge are de-
Y16 (1,2,1,0 Ku(stut+2v+p) termined for the first time in this paper. Moreover, these
917 0,213 Ku(st+2v+p+o) effective monopole actions are determined from the blocked
O1s (21,13 ku(s+2u+v+p+o) monopole configurations, too. The results are summarized as
919 (1,2,1,3 K,(s+p+2v+p+0) follows.
920 (22,00 K, (s+2u+2v) (1) Only the quadratic interaction subspace seems suffi-
921 0,220 k,(s+2v+2p) cient in the coupling space for the low-energy region of
922 (3,0,0,0 K, (s+3) QCD. Figures 9 and 10 show coupling constants for four-
923 (0,300 k,(s+3v) point and six-point interaction terms versus physical sbale
924 (2,2,1,0 K, (s+2m+2v+p) Here, note that the effective coupling constants for the block-
925 (1,2,2,0 K, (s+ p+2v+2p) ing factorn=1 are omitted in Figs. 9, 10, and 14—23. In the
026 0,2,2,2 K,(s+2v+2p+0) case of the MA, LA, MAWL, and_-type gauges, these cou-
927 (2,2,1,0 Ko(S+ 2+ 21+ p) pling constants take relatively larger absolute values for the
smallb region. They become negligibly small for the lafdge
region. In the case of Polyakok,,, no gauge fixings, the
coupling constants for four-point and six-point interaction
Skl=2> @Skl (24 terms take the values very close to zero in the whole region
! of b.
where g; denotes the effective coupling constants. Explicit 0.02 . .
forms of the interaction terms are listed in Tables Il and IlI.
We determine the set of couplingg;} from the monopole
current ensemblék ,(s)} with the aid of an inverse Monte 0.00 - wEpeRFERRms- =R = . R
Carlo method. In practice, we have to restrict the number o y"‘.
interaction terms. The form of action adopted here is 27 qua  _; 4, = )
dratic interactions and four-point and six-point interactions "{
(5,30 ="
We perform a block spin transformation in terms of the§ -0.04 * <o 1
monopole currents on the dual lattice to study the RG flow 0¥¢ ®MA
The n-step blocked current is defined by —0.06 | g $ :AL/;:WL _
L-type
n-1 ﬁ <POI§2kov
Ku(s™)= 3 K Ins+(n=Djptivsjpriol. el T N5 gauge ired
29 ~0.10 . . ‘
0 2 4 6 8
b

The blocked lattice spacinigis given asb=na(B) and the
continuum limit is taken as the limit— o for a fixed physi-
cal scaleb. We determine the effective monopole action fromb.
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FIG. 9. (Color online Four-point couplingg,g vs physical scale



ITO et al.
0.004 T
o MA
mLA
0.003 | L
L-type
E S <« Polyakov
*3 YF,
0.002 | 3 No gauge fixed | o
S AR * £
> @ 3
2
0001 *m °©
<>
o @
- W
v
0 | #owiilitem mm o m m  m LB
-0.001 - g a
0 2 4 6 8

FIG. 10. (Color onling Six-point couplingg,q vs physical scale
b.

PHYSICAL REVIEW D 67, 074504 (2003

op-2.1
== *B=23
vV B=2.5
0.1 | - %: i
s
o B
o9
0.01 | o = 3%[ 4
o 4 70*7 %
-
* o éo % ﬁ
0.001 | - e — !
% Q‘
0.0001 L L L L 1 L 1 1 1
4 0o 1 2 3 4 5 6 7 8 9
R2

FIG. 11. (Color onling Effective couplings vs squared distances
in lattice unit.(MA gauge,3=2.1,2.3, and 2.5, effective couplings

for n=8 blocked monopolg.

(2) Typical cases of the coupling constants for quadratic

interaction terms versus squared distances in lattice units akglique curve for different blocking factorg is seen even in
shown in Fig. 11. We see that the coupling constants for théhe smallb region. The effective actions which are obtained
self-interaction terng,; and the nearest-neighbor interactions N€re appear to be a good approximation of the action on the

g, and gz are dominant, andj,=g;. Other couplings de-

crease exponentially as the distance between the two mon
pole currents grows. This behavior does not depend on
gauge coupling constar®. Therefore, we concentrate our
analysis on the coupling constants of quadratic interactio?. .
terms, especiallg, andg,. XI

(3) We used a standard iterative gauge fixing procedur
for the MA, MAWL, and L-type gauges. In this case, gauge
fixing sweeps may be stuck in some local minima of a gaugé‘
fixing functional. Different local minima give rise to differ-
ent gauge transformations, but they cannot be distinguishe
from the viewpoint of the iterative gauge fixing procedure.
These are the lattice Gribov copies. Indeed, Batlial.
showed that the effect of such copies on the Abelian strin
tension is not very small27]. To check the effect of copies
on the effective couplings, we generate 190(2) configu-
rations on a 24 lattice at3=2.5. Then, we generate seven
of gauge equivalent configuratiofise., copie$via a random
gauge transformation. Using these gauge copies, we corf
struct effective monopole actions and compare their effectiv
couplings. Fig. 12 showg, in the case of the MA gauge
for the different blocking factors are described in different
symbols. We see some fluctuationsgipfor the MA gauge.
This is nothing but the effect of lattice Gribov copies. The
effect of the copies, however, is negligibly small. Therefore,
the qualitative analyses that are given later will not be af-
fected. In principle, the LA gauge does not have such copies
[8]. Indeed, we confirmed that effective couplings for the LA
gauge are not affected by Gribov copi€sg. 13.

(4) Figures 14 and 15 show the most dominant quadratic
self-coupling constanty; and quadratic nearest-neighbor
coupling constang, versus the physical scakein the cases
of the MA, LA, MAWL, and L-type gauges, respectively. In
these gauges, the effective coupling constants take large val-
ues in the smalb region and the scaling behavigre., the
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renormalized trajectory corresponding to the continuum
B[nit. In addition to this, the coupling constants for these four
auges are very close to each other, although these gauges
ave a completely different form in the continuum limit.
(5) However, in the cases of Polyakdv;, and no gauge
ngs, the coupling constants are different from those in the
<5:;1bove four gauges¢see Figs. 16 and 17In these gauges,
coupling constants take smaller values and the scaling be-
avior is not seen, especially in smhaliegion. To clarify the
scaling properties of these coupling constants, we give fig-
es showing a distinction between the different blocking
actorsn in two typical gauges. In the case of the Polyakov
gauge(Fig. 18, the coupling constants depend on the block-
ing factorn strongly in the smalb region. On the other hand,
n the case of the LA gaugéig. 19, the renormalized cou-
pling constants lie on a unique curve.

(6) Once the effective actions are fixed, we can see from
the energy-entropy balance of the system whether monopole
ondensation occurs or not. If the entropy of a monopole
oop exceeds the energy, the monopole loop condenses in the

CD vacuum. In four-dimensional lattice theory, the entropy

25 % % x % % x x X n=l b-x—d ]
) =2 gl
‘E 2_EEEEE|E~IEE!"=4|.._Q.._|_
8 - S
E 2 00 g ® @ 0 g
5 15 1
9
Fe]
= 1L i
N‘é -3 & 4 & -4 8 5 &
S
0.5 -
1 1 1 1 1 1 1 1
012345867
# of copies
FIG. 12. Gribov copy effect fog,; (MA gauge.
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FIG. 13. Gribov copy effect fog, (LA gauge JH*_—%‘?
.13 py 0 (LA gauge. . AT T PN .
) _ 0 2 4 6 8
of a monopole loop can be estimated as In7 per unit loop b

length. It is determined by a random walk without backward ) ) ) )
tracking. The action can be approximated by the self- FIG. 15.(Color onling Nearest-neighbor coupling, vs physi-
interaction termg; alone since the interactions with two €@lPin the MA, LA, MAWL, and L-type gauges.

separate currents are almost cancg®&t. The free energy

per unit monopole length is approximated by VI. SUMMARY

F~g,—In7 (26) We measured first the Abelian and the monopole contri-
! ' butions to the string tension in four types of Abelian projec-

sinceg; can be regarded as the self-energy per unit monotion. i.e., the MA, LA, MAWL, andL-type gauges. They
pole loop length. Ifg,<In 7, the entropy dominates over the show a good agreement with each other. Slml_lar results for
energy, that is, monopole condensation occurs. In Figs. 1#1€ MAand LA gauges have already been obtained by ligen-
and 16, we see that the entropy of the system dominates ov&ftz et al. in Ref. [32]. Monopole string tensions are ex-
the energy in the largdé region for all gauges. In other tracted in the same manner as Abelian string tensions, and
words, monopole condensation occ{#§ in the largeb re-  they also agree with each other. The MA and LA gauges are
gion for all gauges. not unique good gauges.

(7) Figures 20, 21, 22, and 23 show the RG flows pro- Next, we determined the effective monopole actions in
jected onto they;-g,, §1-0s, g1-g7, andg;-gio coupling various gauges from monopole vacua using the modific_ed
planes, respectively. The effective coupling constants for affwendsen method. In the case of the MA gauge, an effective
gauges seem to converge to the identical line for the large MoNopole action has already been obtained in . In
region. This may show gauge independence of the monopo%dd't'on to this action, the effective monopole actions in the
condensation in the low-energy region. Although all couplingPolyakov gauge,F;, gauge, LA gauge, MAWL gauge,
constants become very small in the latyeegion, it is im-  L-type gauge, and no gauge fixing are also determined for
portant that the slopes of the renormalization flows seem téhe first time in this paper. Moreover, these effective actions

converge in all gauges. are determined on the blocked monopole vacua, too. In these
:.:x o MA o MA
ELA u Polyakov
£ oMAWL | . oF
2 ﬁ* L-type 2r g No gauge fixed |
- -
*E‘ 2
. .
-+ -
& Y . ° -
1 L o i 1L * l
n s 2
e -
= - _ﬁ—i—{ -@
oy ‘" @
B - Bl D
s g
0 %—E i&ﬁg# X A P 0 J"*’:‘F;'.;‘.:’T%;' RaPran o~
0 2 4 6 8 0 2 4 6 8
b b
FIG. 14. (Color online The most dominant self-coupling vs FIG. 16. (Color onlineg The most dominant self-couplingy vs
physical scaléh in the MA, LA, MAWL, and L-type gauges. physical scalé in MA, Polyakov,F4,, and no gauge fixings.
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FIG. 17. (Color online Nearest-neighbor coupling, vs physi-

; o FIG. 19. (Color onling g, versusb in the MA and LA gauges.
cal scaleb in MA, Polyakov, F4,, and no gauge fixings.

Each symbol correspond to a different blocking factars

effective actions, two-point interactions are dominant,AppEme: MAXIMALLY ABELIAN WILSON LOOP
whereas four-point and six-point effective coupling constants (MAWL ) GAUGE

are negligibly small in the infrared region. The RG flows
seem to converge to the identical line when the block spin The SU(2) gauge fieldJ ,(s) can be parametrized by its
transformation is repeated. It is important that the slopes ofS0spin components. In this section, we denote each isospin
renormalization flows in all gauges seem to converge. Th€omponent olJ ,(s) asUg(s,u), Ui(s,x), and so on, for
data are compatible with the assumption of gauge indepersimplicity. This gauge is realized by maximizing the Abelian
dence of the monopole dynamics in the continuum limit. TheWilson loop of 1X1 size:
energy-entropy balance also tells us that monopole conden-
sation occurs in the large region for all gauges. R= 2 cos0,,(s), (A1)

s, utv
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This gives
SUo(s, ) = —[ai(s) — ai(s+ m)]Ui(s, p), (A3)
SU (s, 1) =[ ar(8) — ar(+ 1) JU(S, 1)
— &l ai(s)+ ai(s+m)]Uj(s,m).  (A4)
ThenR changes as
SR=— 2 sin®,,(s){86(s,u)+ 66(s+ p,v)
S,uF v
— 86(s+ ) — 56(s,v)}, (A5)
where
Uo(s,u)8U3(s,u) —Us(s,u)6Uq(S, 1)
S0(s,u)= > >
Ug(s,u)+Usz(s, 1)
(A6)
0.1 T
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FIG. 22. (Color onling RG flows of effective monopole actions
projected onto the;-g; coupling plane.
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FIG. 23. (Color online RG flows of effective monopole actions
projected onto the,-g,, coupling plane.

One can check thaR is invariant under théJ(1) trans-
formation. Hence we do not need to consider &hés) part.
First, let us consider the; part. Since there is a sum over
whole lattice sitess, one can shift the site variable, for ex-
ample,stos— ,& Also one can use th@nt)symmetric prop-
erty with respect to the. and v directions. Finally, one gets

2 :SE [al(s)xl(svﬂ'i V) + sz(S)Xz(S,M,V)],

Xa(8p,v) = €(8,u)[U1(S, 1) Us(8, 1) = Uo(S, ) U(S, )]

—e(s—p w)[Uy(s— p, w)Us(S— )

+Uq(s— ) Uo(s— )], (A8)

Xo(8,u,v)=€(s,m)[Uo(S,u)Us(S, ;) +Ug(s,u)Us(S, )]

—e(s—p,w)[Uy(s—p, m)Us(s— i, )

—Ug(s— ) Uy(s— )], (A9)

where

Sin® ,,(s)—sin® ,,(s—v)
U3(s,u) +U3(s, 1)

e(s,pu)= (A10)

When we writeX* =X, +iX,, it is easy to see tha¢™ trans-
forms covariantly under the residudl(1).

Finally, one gets the matrix which is diagonalized in this
gauge,

X(s)= g {e(s,w)[U(s,1)03UT(s,1)]— e(5— , )
HFV

XUT(s—p,u)o3U(s— p,m)}.
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Because of the nonlocality of the gauge condition, one can- (3) If the off-diagonal element 0K(s) becomes smaller
not calculate the gauge transformation matrix that diagonalthan a suitable threshol@gve set this to 1.0), one can regard
izesX(s) in a simple way. Therefore, we employed an itera-the gauge fixing procedure as having been completed.
tive update procedure to Satisfy the gauge Condition_ We set the |n|t|a| Value Of( to 0.1.Rcan be miaX.|m|Zed
(1) Make a trial gauge transformation, adopting and S long as we take>0. We apply the MA gauge fixing as a
a, as follows: ay(8) = — kX,(S), @a(S)=— KkX,(S). preconditioning for the MAWL gauge f|X|_ng and t_hen we
(2) MeasureR. If R becomes larger than before acceptpe_rform the a_b_ov_e pr_ocedur_e on th_e MA fixed configuration.
this trial and repéat step 1. R becomes smaller than ,before This precopdrgtlonlng S requwe? 0 |mprov§ the convergehnce
: . = property of the MAWL gauge fixing. We have to note that
take knew= Ko1¢/2 @nd adopt the gauge transformation usingthe configurations obtained via the above procedure are not
this e\ With respect to the configuration before trial, and perfectly gauge fixed because the off-diagonal elements of

then repeat step 1. X(s) still remain not very small.
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