Matter degrees of freedom and string breaking in
Abelian projected quenched SU(2) QCD

S5 eng

HhRE

~FHH: 2017-10-05

*F—7—NK (Ja):

F—7— K (En):

YRR

X—=ILT7 KL AR:

FiT/:
https://doi.org/10.24517/00028519

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.



http://creativecommons.org/licenses/by-nc-nd/3.0/

PHYSICAL REVIEW D 70, 014506 (2004

Matter degrees of freedom and string breaking in Abelian projected quenchedsU(2) QCD

M. N. Chernodub
Institute for Theoretical Physics, Kanazawa University, Kanazawa 920-1192, Japan
and Institute of Theoretical and Experimental Physics, B.Cheremushkinskaya 25, Moscow 117259, Russia

Koichi Hashimoto and Tsuneo Suzuki
Institute for Theoretical Physics, Kanazawa University, Kanazawa 920-1192, Japan
(Received 1 March 2004; published 30 July 2p04

In the Abelian projection the Yang-Mills theory contains Abelian gauge figdsyonal degrees of freedom
and the Abelian matter field®ff-diagonal degregsdescribed by a complicated action. The matter fields are
essential for the breaking of the adjoint string. We obtain numerically the effective action of the Abelian gauge
and the Abelian matter fields in quench8d(2) QCD and show that the Abelian matter fields provide an
essential contribution to the total action even in the infrared region. We also observe the breaking of an Abelian
analogue of the adjoint string using Abelian operators. We show that the adjoint string tension is dominated by
the Abelian and the monopole contributions similarly to the case of the fundamental particles. We conclude that
the adjoint string breaking can successfully be described in the Abelian projection formalism.
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I. INTRODUCTION problem[13]. In our study we pursue a different approach
based on the dual superconductor model.

The mechanism of color confinement in QCD is one of Consider the screening in a confining Abelian model with
the most important nonperturbative problems in the quantuncharge-2 matter fieldd@ake, for example, the Abelian Higgs
field theory. One of the most promising approaches to thisnodel with compact gauge fieldsThe presence of doubly
problem is based on the existence of dual objects, calledharged matter fields screens the confining interaction be-
monopoles, which are condensed in the confinement phasgveen the external particles with opposite double charges.
This approach—known as the dual superconductor hypothithis happens due to the pair creation from the vacuum at
esis[1]—is realized with the help of the so-called Abelian certain separations between the external charges. As a result,
projection [2] of SU(N) color degrees of freedom to the potential between the particles flattens at some distances.
U(1)N~1 degrees of freedom. It should be stressed that the problem is not only to explain

The model was shown to be quite successful in explaininghe flattening of the potential but also to show the linear
the confinement of the fundamental charges such as quarkghavior of the potential in the intermediate region. On the
(see, e.g., reviews if3]). Abelian and monopole contribu- other hand, the charge-1 external fields remain unscreened in
tions to the interquark potential are dominant in the long-this model. Namely, the potential is linearly rising at large
range region of quenched QCM3,5]. An infrared effective  distances.
monopole action has been derived in the continuum limit The standard model of the dual superconductor in
after a block-spin transformation of monopole currg6ts]. quenched QCD ignores the existence of off-diagonal gluons.
It is a quantum perfect action described by monopole curHowever, these gluons have a charge 2 with respect to the
rents. The condensation of monopoles in the confinementbelian subgroup and they may explain the flattening of the
phase was observed in various numerical approaph&s intergluon potential which is usually studied with the help of
In the language of monopole currents condensation impliethe adjoint Wilson loop. On the other hand, the introduction
the formation of a percolating cluster studied both numeri-of new degrees of freedom—off-diagonal gluons—should
cally [9] and analytically{10]. not violate the already achieved success of the explanation of

However, this mechanism has a serious problem even ithe quark confinement in this model. Indeed, quarks have the
quenched QCD. Although the 't Hooft scenario describes theharge 1 and doubly charged gluons cannot screen them.
confinement of quarks correctly, this scenario predicts als@These and related issues were discussed in Réi. for
the existence of string tension for the adjoint charfga-  quenched as well as for fuB U(N) QCD.
ons in the infrared region. On the other hand, gluon charges From the point of view of a realization of thenodified
must be screened at large distances due to the presencedval superconductor scenario it seems that we have to keep
gluons in the QCD vacuum. This screening-confinementll charge-2 Abelian Wilson loops in the effective action
problem was extensively discussed in recent publicationsyritten by the Abelian link fields to reproduce the screening
[11]. of charge 2. Indeed, the theory in terms of Abelian link fields

The problem of the screening of the adjoint charges in
qguenchedSsU(N) QCD has also been discussed in R&g].

The paper provides arguments that the relevant quantity in'However, we may expect a renormalization of the tension of the
the confinement mechanism is not the Abelian monopolestring spanned between the quarks due to the presence of double
but theZ(N) center vortices which can explain the screeningcharges.
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or Abelian monopole currents alone becomes highly nonlocajariableo is always closed on the external curréniThere-
if we integrate out all off-diagonal gluon fields after an Abe- fore there is no source for string breaking in this model.

lian projection. Needless to say, such an Abelian effective Now let us consider the off-diagonal gluons. The Wilson
action is useless. The same problem is more serious in thestion of quenche®U(2) QCD is

real full QCD, since a fundamental charge is also screened in

this case. B
The aim of this paper is to calculate numerically the ef- S= 5 > TrU,,(s),
fective action of quenched QCD within the Abelian projec- Swv
tion formalism. Contrary to previous calculations of this kind N N
we include also the doubly charged off-diagonal gluon fields U ,.(S)=U ,(s)U,(s+ u)Ul(s+ 1)U (s), (4)

in the effective action and we show that their contribution is
essential and thus cannot be neglected. We also calculatéereU ,(s) is theSU(2) gauge field.
correlators of the adjoint Polyakov loops in the Abelian for- It is convenient to parametrize tf&U(2) link variable
malism and observe the screening of a properly defined pdJ ,(s) asU ,(s)=c,(s)u,(s) where
tential between static adjoint sources. 4

The plan of the paper is the following. In Sec. Il we Cose,,(S) i sing,(s)e 'l
discuss how the screening and confinement problem is Culs)= i sinc{:M(s)ei“’ﬂ(S) 0S¢ ,(S) '
solved qualitatively in the framework of Abelian dynamics.
Section Il is devoted to an investigation of the Abelian ac-
tion for the Abelian gauge and matter fields obtained by the u,(s)=
inverse Monte Carlo method. In Sec. IV we discuss the po-
tential between the adjointd=2) charges within the Abe- ) , ) .
lian projection formalism. We show numerically that a prop- €€ ¢, ¢, and ¢ are independent variables defined in the
erly defined Abelian potential shows screening of e2  €gions—m<6,(s), ¢,(S)<m, and 0=¢,(s)<m/2. The
charges. Moreover, we observe the Abelian and monopolfield ¢ behaves as aJ(1) gauge field while the field

dominance for the adjoint string tension. Our conclusions ar&€0responds to the phase of the off-diagonal gluon field be-
presented in the last section. cause, under an Abelian gauge transformation

el () 0
0 e 10u(9)]"

QAbe'(s)=diagei“(s),e_i“(s)) (5)
Il. STRING BREAKING IN ABELIAN

PROJECTED THEORY they behave as follows:

The partition function of the Abelian effective theory of ~
guenchedSU(2) QCD in the infrared region may be ap- 0,(8)—0,(8)—d,a(s)=0,(s)+ a(s)—a(st+pn),
proximated in the Villain-like forn{15]

¢ ()= ¢ ,(5)+2a(s). ©)

ZQ[‘J]:J_WD‘QHE;(Q) The varigble%(s) is not _affecte_d by theJ (1) gauge
, ’ transformation. After an Abelian projection we can integrate

x g~ (WAm)[(do+2m),AD(do+27n)]+iQ(6.)) (1) this variable out without harming thg(1) content of the
model. In order to get an insight of possible forms of inter-

whereD is a differential operator: actions between the Abelian gauge and Abelian matter fields
L o we replace the averages of apg(s) and sing,(s) by their
D~a+BA 1+ yA. (2)  mean values:

This operator contains a local self-interaction term, the Coucosé,,(s)—(cos¢,(s))=c, sing,(s)—(sing,(s))=s,
lomb term described by the inverse Laplacian,!, and ad- 7
ditional interactions between nearest neighbors. The cou- _ )

pling constantsy, 8, andy were calculated numerically in where ¢ and s are functions of theSU(2) coupling con-

Ref. [15]. To simplify th i he differential St2NA- . o . .
fo?m [fo?]mal(i)sr?n(:r? Itfgetlaeitizgﬁt]lon we use the differentia As the Abelian projection, we use the maximal Abelian

The partition function(1) can be rewritten as a string gauge which is defined by a maximization of the functional,

model[15] )
R= > SE: Tr[USD#(S)Ug’DL(S)]ESE [2 Cog(f)’u(S)— 1],
Zg[J]= 2 6_72(‘7'(AD)710)’ 3) T ~ o
o+

with respect to theSU(2) gauge transformationt ,(s)

where we have neglected perimeter terms. This model doesﬂ#(s)=Q(S)UM(S)Q*(5+,&). The functional(8) is in-
not contain dynamical matter fields and therefore the stringyariant under residudl (1) gauge transformation$). The
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Let us assume for simplicity the following effective ac-

written in the continuum limit as the differential equation tion:

- A3 A2y
(9, +igAL) (A, —IAS)=0. _
The maximization of the function#8) corresponds to the

minimization of the ¢ variable. Thus the observation of

Refs.[17,18 made for the mean valugg),

c=1, s<c,

9

does not come as a surprise. These relations hold in a wi

region of the coupling constar.

Following Ref.[18] we rewrite the action of the modét)
in terms of the variable®, ¢ and ¢ with the help of the
definitions(5). Applying Eq.(7) to the original action we get

1
ETI’ U,U«V(S)
=c*c040,,(s)]—c*sc0§ 0 ,,(s)—H,,(5)—C,.(s)]
—c?s?c04 0 ,,(s)+H,,(5)—C,.(9)]
+c?s?c04 0 ,,(s)+H,,(s)]+c?s?co§ O, ,(s)
—H,,(8)+H,,(s)—C,,(s)]+c’s’cog 0 ,,(s)
—H,.(s)]+¢*s°c04 0 ,,(s)+C,,(5)]
+5%040,,(s)—H,,(s)+H,,(s)—2C,,(9)],
(10

where we have denoted th#(1) gauge invariant variables
as follows:

0,,(S)=0,(5)+0,(str)—0,(s+v)—0,(s), (1)

H,(8)=20,(S)+ ¢,(S)— ¢, (ST 1), (12)

C/.LV(S):(plU,(S)_(PV(S)' (13)
The variable® is theU (1) plaquette for the gauge fiel@l
the variableH describes the interaction of the matter figld
with the gauge field), and the variabl€ corresponds to the

self-interaction of the matter field. The validity of the mean-
field approximation based on a self-consistent substitution

(7) is not known. When we perform thé integration, we

generally get an effective action in terms@f,,, H,,, and

C,. . Below we use numerical method to find this effective

action.
A few remarks about the actiofd0) are now in order(i)

From Eq.(9) one can immediately observe that the leading
contribution to the action is provided by the first QED-like

term depending on the variablésonly. The coupling be-
tween the gauge field and the matter field is suppressed

Serr.= SM(0) +S2)(0,¢),
S@(6,¢)=—F(H)—F,(H")—F4(C), (14)

where we putH=H,,(s), H'=H,,(s), C=C,,(s), and

o’:el’ F,, F3 are periodic functions. Following Ref14] we

rewrite the corresponding partition functi@nwith the exter-
nal source] as follows:

ZqlJ] fﬁﬁDeD(pe*Seﬁ%iQ(H,J)

fﬂ DODype™ sM(6) -5 (6.¢) +i1Q(6,9)
— T

a
f Dee—s(“(e)ﬂQ(e,J)
— 1T

« f” DpeFilH) +FaH) +F5(0)] (15)
— T

The part in the square brackets can be expanded in a Fourier
series:

>

n(')e'/(cz)
i=1,2,3

w @i (HnM)+i(H" n@)+i(c,n®)

1= Pe B L) n@)yn®)

(16)

wheren®, i=1,2,3, are integers and the lattice tensdts
H', n®, n® sum only for u>v becauseH, H' are not
antisymmetric contrary toG,n®).

Integrating oveko and summing oven® one can rewrite
Eqg. (16) as

[--]= 2 w(j)e?®D,
jeZ(cy)
5)j=0

17

wherew(j) are certain weights for the closed currgmthich
is defined from the variables’*) andn(®):

jﬂ<s>=y2 ns)+ X nXs).

(<p) v(>p)

(18)

The general form of Eq€17) and(18) follows from the fact
that the fieldse are doubly charged and from the gauge

and the self-interaction of the matter field is suppressed eveinvariance of the expression under the exponential function

further. (ii) The action(10) should acquire corrections from in Eq. (16). We also give a detailed derivation of Eq47)
the Faddeev-Popov determinant resulting from the fixing ofand (18) in Appendix A.

the maximal Abelian gauge. This determinant is an essen- To simplify further considerations let us rewrite the first
tially nonlocal functional and the leading local terms wereterm in Eqg.(14) in the Villain form as in Eq.(1). Then we
calculated in Ref[18]. get, for the partition functior§15),

014506-3
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Zo[3]= f”ﬁmne;(cz) 3@ w(j)exp{ - ﬁ T =I%I (‘ + Z])

5j=0
FIG. 1. The visualization of the blockspin transformation, Eq.

><((d0+2wn),AD(d0+2wn))+i(¢9,2j+QJ)]. (29).

actionS; is the leading term in the Abelian actighO) cor-
Analogously to Eq(3) we get the following model for the responding to quenche8U(2) QCD in the mean-field ap-
string variables dual to the gauge fiedd proximation. The partsS, ; are also included because they
may arise naturally from the integration ovér
As an interaction term between the gaude,and the
matter, ¢, fields we adopt, for simplicity,

Zolll= 2 2 w(j)exp{—7*(o,(AD) ')}
j E-Z(Cl) oe Z-(Cz)
5j=0 S0=2j+QJ (19

S;=-— cog§® ,,(s)—H,.(s

The string mode(19) is different from the mode(3) by the 4 SZ‘&V{ $0,(8) ~Hu(9)]

presence of the doubly charged currents representing the

contribution of the off-diagonal gluor{she first sum in Eq. +0080,,(8)+H,.(s)]}, (24)

(19)]. The second sum in this equation is over the integer-

valued string variable which has the dynamical curijeas

, where the plaquette variabltis given in Eq.(12). We have
its boundary.

i not included other terms from E@L10) into the trial action

If the external charge has a unit valul@=1, then the  pocayse it turns out that the minimal form of the acti26)
dynamical currenj cannot screen the external curré@d  jagcribes the numerical data with a good accuracy.
and therefore the string alyvays spans on the trajectorles of \We have used the standard Monte Carlo procedure to gen-
the external currentsjo=2j+QJ#0. However, if the ex-  grate the gauge field configurations on thé &fttice. The
ternal current is doubly charge®,=2, then there exists the SU(2) coupling constant was chosen in the range
dynamical currenf= —J such thatbo=0. This state breaks _5 15 7. |n order to express dimensionful quantities in
the string: when the distance between the external charges%ysicm units we have followed Ref15], providing the
large enough the state wifl= —J provides a dominant con- y5jyes of such quantities in units of t8&J(2) string tension.
tribution to the partition function. The lattice spacing at a given value of the gauge coupling
B can be the expressed through tlealculated numerically

Ill. EFFECTIVE ACTION FOR GAUGE lattice string tension, oy, Using the relation a(g)
AND MATTER FIELDS =V 0oa(B) opnys For illustration purposes we have associ-

. . . . ated the value of the SB) string tension with the phenom-
In this section we calculate numerically the effective ac-

. : , . nological value of the string tension in the real QGD,
tion for the Abelian gauge and the matter fields in quencheg g g Q

. L = (440 MeV). Then the length scalb=0.45 fm corre-
SU(2) QCD. We have chosen a trial action in the form sponds approximately to the leng 1.00-Y2in terms of

phys
B the SU(2) string tension.
Sefl(0,¢) = @151(0) + 225,(0) + a3S3(6) + £154(0,¢), We have generated 100 configurations of the gauge field
(200  for each value of the coupling constant and then used the
simulated annealing methd8] to fix the maximal Abelian

whereq;, 1=1,2,3, andg; are the coupling constants to be gauge. The couplings; , i=1,2,3, and3; were determined

determined numerically. by solving the Schwinger-Dyson equatidi2§]. We describe
The functionalsS;, i=1,2,3, describe the action of the the details of this method in Appendix B. To make a further

gauge fields: improvement of our results towards the continuum limit we

used also a block-spin transformation for tB&J(2) link
variableU ,(s): We apply the block-spin transformation to

1= _s,;w [c0s0,.,(9)]. @D the link variableU ,(s):
1 N -
SZZ_S’%V[COSZ(BMV(S)], (22 U;‘(S,):N U#(S)U#(S-I-/J,)-i-yy(;’u) U,(s)U,(s+ )
Si=+ > [sin®,,(s)sin®,,(s+2)], (23 XU, (s+p+)Ui(st+2u) |, (25)
S,uFV

where the plaquette variabl® is given in Eq.(11). The  which is visually represented in Fig. 1. Hdde=N(U) is the

014506-4
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T T T T T T
\
0.2F ® n=/ 7]
u p=2
* n=4
& A =8
3'0ir-® - fi 1
P — }}Tfki*m4———-—1-—-—-—-&—------ FIG. 2. The parameters;, i
@ b) 0 05 7 75 pRT=Y =1,2,3, and B, for different
blocking stepsn vs the scale pa-
' ' ' ' ' rameterb. The fits by Eq(26) are
041t . shown by the dashed lines.
n=
=2
03F o nes 7
- 0 o .i- A ;=8
3 02+ \ —— fit 4
N
N
0.1 \0\ 7]
04fF 1 e
(c) o 0.5 1 1.5 2 plfm] (d) % 03 7 75 7 h[fm]l

normalization factor which is introduced to make the fat link this parametery=2. Similarly, we have also fixed=1 for

belonging to theSU(2) group. The weight paramet¢rwas  a, andCy=0 for a, 3. Note that the fit cannot describe the

set toy=0.5. coupling a; accurately at small scalels=0.2 fm. A similar
The couplings obtained in this way are depicted in Figs.deviation can be found for the coupling. We expect that at

2(a)—2(d). The couplinga; shows a perfect scaling since the small scales the Abelian action becomes much more compli-

coupling constant depends only on the physical leigénd  cated than the trial actio(20), (21), (22), (23), (24) which

it does not depend onanda separately. For the couplings \ye ysed to solve the Schwinger-Dyson equations. A small

@y, as, andp, this feature does not work: the original data gjmjlar effect is observed for the effective monopole action

(no block-spin transformatiom=1) is quite different from obtained by inverse Monte Carlo methdds].

the cases where the block-spin transformation was dane ( The functionalS,, Eq. (21), makes the leading contribu-

>1) while the coupling constants with>1 scale almost tion to the action since the corresponding couplingis the

perfectly. One can make a conclusion that the orlgma_ll dat?argest. The action§, and S, in addition to the expected
corresponds to very small values bfwhere the effective 7 . :
action S;, play an essential role at small scales since the

action takes more complicated form than E2Q). di | d shina. Th
In order to quantitatively characterize the dependence of°'€SPonding coupiinga; and az aré nonvanishing. ihe

the coupling constants on the scale fadtove have fitted the actionS,, which describes the interaction of the matter fields

data by a function with the gauge fields, has a nonvanishing coupling both at
small and large scales similarly 8. Moreover, according
f(b)=Co+ Crexp[— (b/bg)"}, (26)  to Table I the couplingsy; and 81, corresponding to these

N _ parts of the total action, have relatively large lendithsom-
we have excluded the data without the block-spin transforgcajesh /o> 1, the effective Abelian action for th8U(2)
mation,n=1, for all coupling constants except faf, case. gauge theory can be approximated as a sum of the QED-like

The best fit curves are plotted in Fig. 2 as the dashed lines,tion for the gauge fieldS,(6), and the interaction term
and the best fit parameters are shown in Table I. S.(6,9).

We have found that in the case af and g, the param- We interpret the results obtained in this section as the
eterv is very close to 2, and therefore in these fits we fixedygnifestation of the Abelian dominancéonvanishing
dominant couplinga;) and the importance of the off-
diagonal (matte) degrees of freedontnonvanishing cou-
pling B1). The matter fields are essential for the breaking of
the adjoint string. From the point of view of further analyti-

TABLE |. The parameters for the exponential fi{&6) of the
couplingse;, 1=1,2,3, andB;.

Coupling Co € bo [fm] ! cal study the results of this section are qualitative because in
a 0.06610) 1.202) 0.61(1) 2 order to make a quantitative analytical predictions at a finite
a, 0 0.322) 0.2317) 1 value of the scald we need much more terms in the trial
as 0 —0.2873) 0.463) 1.82) action (20) than we have imposed. Indeed, in REf5] the
B 0.0645) 0.301) 0.692) 2 monopole contribution to the string tension has been calcu-

lated using the effective monopole action. The monopole ac-
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tion was obtained numerically and it turns out that in order toin the Q=2 Abelian and monopole components of the po-
get a correct analytical result for the string tension onetential. Moreover, we have observed the Abelian and mono-
should take into account not only the most local terms in thepole dominance for the adjoint string tension.

effective monopole action but also a series of the nonlocal After the Abelian projection the€Q=2 component be-
terms. The situation with the effective action for the Abeliancomes
fields (20) should be similar to the case of the monopole
action since these actions are related to each ¢itgrNev-

ertheless, the adjoint string breaking caqunantitatively be
discussed within the numerical approach on the basis of

maximal Abelian gauge fixing. This topic is discussed in thewhere 9, enters theQ=1 Abelian Polyakov loop,P%,

S,=C0S20;, Vo= > 6, (30)

ieC

next section. =cosd;.
We calculate numerically the static potential between the
IV. Q=2 POTENTIAL FROM POLYAKOV LOOPS adjoint particles using the Polyakov loop correlat@3). We

. . . use four types of the Polyakov loops: non-Abelian, Abelian,
The easiest way to observe numerically the string breakfnonopole and photon Polyakov loops:
ing effect is to consider the theory at finite temperature and ' '
define the potential with the help of the Polyakov loop corr- P .=p2—p2 P® . —cos29
elators[14,19: Q=2=Po— Pz, Q=2 C

N N - - mon __ mon ph _
(P(X)PT(y))=e VNI, 27 PQ=2=C0S 20¢mon,  Po-,=C0S 20, a1

HereT is temperature.

The adjoint Polyakov loog, is defined as follows: respectively.

The functionsd,mon and ¥, ph represent the contributions
to the Polyakov loop coming from the monopole currents

1 1 . .
plngr |Hc Dl[Ui]) = §(4p§_1), (29 and the photon fields, respectivegly,5]:

where the color vectqp=py+ip - o defines the fundamental ~ 9C™"= _zt: E D(X=x",t=1")9,0 ,4(x",t'), (32
Polyakov loop, P4»=1/2Trp, p=Il;..U;, and C is the s

straight line parallel to the temperature direction. The adjoint

Polyakov loop(28) contains the charged terr@=2, and ICP=—27> > D()Z—)Z’,t—t’)&;LnM()Z',t’),
neutral termQ=0: Xt 33

2 1
PQ:2=§(p§—p§), PQ:0:§(2pS+ 2p5-1). (29  where the variable® e (—,7) and neZ are extracted
from the Abelian plaquette variabl€) ,,(s)=6,(s)+ 0,(s
The Abelian dominance in the most general sense means i) — 0,(s+v)—0,(s)=0 ,,(s)+2mn,,,(s). Here D(s)
that a non-Abelian observable can be calculated with good the inverse Laplacian, d,D(S)=— &os-
accuracy with the help of the corresponding Abelian operator We numerically measured the potential between the static
in a suitable Abelian projection. The Abelian dominance wasadjoint sources on the $& 4 lattice at3=2.2 (confinement
first established for the tension of the chromoelectric stringphasé using 2000 configurations. The Abelian, monopole,
spanned between the fundamental souféésin this case and the photon components of the potential were measured
the non-Abelian Wilsor{or Polyakov loop was replaced by in the maximal Abelian gauge. In order to reduce the statis-
its Abelian counterpart. tical errors in our calculations of the potentials we have ap-
However, in the case of the adjoint potential we immedi-plied the hypercubic blockin§23] procedure to ensembles

ately encounter a problef21]: in the Abelian projection the of the non-Abelian, Abelian, and photon gauge fields. We
Q=2 charged component of the Wilson loop shows the arefave not applied the blocking to the monopole contribution
law while the neutralQ=0 component is constant. There- of the potential because in this particular case the blocking
fore, strictly speaking, a straightforward Abelian projectionmakes the data noisier. The hypercubic blocking method is
of the adjoint operators leads to vanishing Abelian stringbriefly described in Appendix C.
tension. The simplest way to overcome this difficulty is to We present the numerical results in Fig. 3. One can
introduce the obvious prescription for the adjoint operatorslearly see that all potentials become flat in the infrared re-
proposed originally in Refl22]. Namely, one should disre- gion, clearly indicating the presence of string breaking. The
gard theQ=0 component of the Wilson loop operator and non-Abelian potential as well as the Abelian and the mono-
consider theQ =2 Abelian component of the Wilson loop as pole contributions contain linear pieces at small enough dis-
the Abelian analogue of the fulhon-Abelian) loop. In Ref.  tances while the photon contribution to the potential does not
[22] some numerical arguments in favor of the validity of contain a linear part. These observations are in qualitative
this prescription were given. Below we follow this recipe agreement with the Abeliatmonopolg dominance hypoth-
and show that the string breaking effect can indeed be seessis[4].
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o Tt for the string tensionirgbzzmo.gélanz, whereoq-; is the

string tension extracted from the non-Abelian Polyakov loop
correlator. The monopole dominance can also be observed:
L o0%,~0.833 ,~0.787o_,. The monopole dominance is

] less manifest than the Abelian dominance in agreement with
precise observations gt=2.5115 in the case of fundamental
external sourcefs].

In Ref.[5] the potential between the stafiz=2 Abelian
sources has been measured in the zero-temperature case. De-
spite string breaking not being observed in this case, the ratio
S betweenQ=2 andQ=1 Abelian string has been measured:

0.5 1 15 0g-2/0g-1=2.235). Taking into account that the ratio be-
R, [fm] tween Q=1 Abelian andSU(2) string tensions ig5],

Non-Abelian
Abelian
Monopole
Photon

> < Oo

10

V(R)IT

FI_G. 3. The potential between adjoint st_atic_ sources and t_h%%;zllfzzzo/'gi(? Ag\(lizgft\jc:p g%(llg:i/oen ;fVZ?;'[S]Og :]geree—
Abelian, the monopole, and the photon contributions to it. The fits < . g
by the function(34) are shown by the solid lines. ment with our resultoo_,/0'=2.333), given in Table Il.
According to our numerical results the Abelian and mono-
To make a quantitative characterization of the potential§3°|e. contributions to the Masses of the heavy—hght adjoint
we fit our data by a function particles, m, QO not coincide with the cqrrespondlng mass
measured with the help of the non-Abelian Polyakov loops.
q’ Vf"(R)] p{ Vo+2m p{ Vo+ Ve R)] On the other hand, we do not expect eith_er Abelian or mono-
exp — =exp — ———+exp — ——¢, pole dominance to hold in this case since these types of
T T T dominance are usually valid for infrarédonloca) quantities
(34)  in accordance with the ideas of RgL]. Because of the local
) N i nature of the masm, the Abelian and monopole dominance
where we have chosen the string potential in the 5|mplesrlhay not work in this case.
form, V((R)=0q-,R. The fitting parameters are the ad-  The gpsence of the Abelian dominance for the mass pa-
joint string tensionoq.-,, the mass parameten, and the 3 metemm implies the absence of Abelian dominance for the
self-energyV,. The first term in Eq(34) corresponds to the - gyring breaking distance. Indeed, the simplest definition of
broken string state and the parameteis the mass of a state 4 string breaking distand@y, corresponds to a value &
of “external heavy adjoint source”—*light gluon.” The sec- 4 \yhich both terms in Eq(34) are equal. For the linear
ond term is t_he unbrok_en string state. Here we neglect Otheétring potentiaV,= oo—R, this distance is defined &,
states including the string excitations. __=2m/og-,. In other words, the string breaking distance is
We perform fits in the range starting from two lattice {4 gistance where the energy of the string,_,Rq,, is
spacingsy min=2a. The reason for this restriction is twofold: equivalent to the energy of the two heavy-lighjc statas, 2
(i) the hypercubic blocking modifies the potential at smallgjnce the Abelian dominance works only for the string ten-
dC|stances,_(||) in-our f'tF'”g_ functlon_(34) the per_turbat!ve siono -5, the string breaking distande, should not be an
oulomb interactiortwhich is essential at small distan¢és  Apajian- and monopole-dominated quantity.
not included?
The best fit functions are shown in Fig. 3 by the dashed
lines and the best fit parameters are presented in Table Il V. CONCLUSIONS
One can clearly see the existence of the Abelian dominance \We have calculated the effective action for the Abelian
gauge and the Abelian charged matter fields in the maximal
Abelian projection of quenche®U(2) QCD. We have
Nevertheless, we have checked the effect of the Coulomb intershown that in the infrared limit the contribution of the matter
action shifting the string potential a¥(R)—Vs(R)—a/R,  field to the action is nonvanishing. Thus we have shown at
wherea is an additional fitting parameter. We have observed thathe qualitative level that the matter fields, carrying Abelian
the best fit values of the parametets_ , andmhad a shift of about  chargeQ=2, must lead to adjoint string breaking. To check
1%-2% which is of the order of the statistical errors for thesethjs effect on the quantitative level we have studied the po-
parameters. tential between adjoint static sources as well as the Abelian
, . and monopole contributions to this potential. We have ob-
funzﬁ:nl_(idl)l' Jgfégirim?ff of)o r the fits of the potential by the go /0 that string breakin(lattening of the adjoint poten-
' vz ) tial) manifests itself in Abelian and monopole contributions

Type on o mo similarl_y_to the_z non-At_)eIia_n case. Moreover, we shpw that
Q=2 the adjoint string tension is dominated by the Abelian and

Non-Abelian 2.490) 1.291) monopole contributions analogously to the case of funda-
Abelian 2.333) 1.841) mental particles. Thus we conclude that adjoint string break-
Monopole 1.941) 2.272) ing can qualitatively be described in the Abelian projection

formalism. The key role in adjoint string breaking in the
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Abelian picture is played by the off-diagonal gluons which which lead to
become doubly charged Abelian vector fields in the Abelian
projection. nB(s)—n®(s— ) +n@(s)~n@(s-)=0. (A6)
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APPENDIX A: DERIVATION OF EQ. (17)

In this appendix we present a detailed derivation of Eq.  §j=2>) ,j,(s)= E [n)(s)—nM(s—u)+nf)(s)
7). m

(2)
™ —n;(s—v 0.
f p¢eF1(H)+Fz(H’)+F3(C): 2 W(j)GZi(aJ‘)_ i )]

j§.7f°1) Combining Egs.(A2), (A4), and (A7), we get the RHS of
j=0 g
(Al)  Eqg.(Al1) with

The Fourier transformation applied to each of the terms on

. . . . 3
the left-hand sidéLHS) of this equation gives wolj)= 2 I—S[ {H n(')(s))}5<jﬂ(s)— (Z) nELlV)(S)
L n® ey = r(<p
f D(PeFl(H)+F2(H’)+F3(C) 12,3
+ > nii’(s))a(nﬁ(s) nG)(s—p)
i®(p.nM) v(>p)

= D¢H > [Iﬂl(n(')(s)) e

B s n(')z
i= 123

~2n((s)) a(n2s)~n{2(s ) +2n{s).
(A2) (A8)

where; are the Fourier components efi and @ is the
APPENDIX B: SCHWINGER-DYSON EQUATIONS

phase:
Consider a model of the gauge fiefd The expectation
®(p,n))= H,,(s)n (1) S)+H,,(s n(2) (s value of an arbitrary operatod(#) measured at the en-
(¢.n) Zs Zy[ p(S)N(S) ) )] semble{#;} of the gauge field® is
+ 2, CLusn(s A3 w
2, CurIN(S)| (A9 <O(9>>=f DoO(0)eSO=]] f d6,0({6;})e S,
I -
Using the definitiong11)—(13) we get (B
®(o,nM) 2 2 {26, (S)n(l)(s)+20 (s)n(z)(s) Shifting one of the link fields9i0 at the linkiy by an infini-
tesimal valuee we get
+¢,(9)[NG)(s) ~nL)(s—p)—2nF)(s)] .
) 1)~ SH6h
+¢,(8)[nZ)(s)—n@(s—v)+2n3)(s)1}. H f_wde'o({a'})e
(Ad) 11' .
=11 deif d6; 06, {1} e X ottlizio
Integration over the fielg gives two constraints i#ig J—m -
A T T+ €
nE(s) —nfi)(s— ) —2n)(s) =0, =11 | de f 46,00, e {0} i)
0 - —TTE
n(s)—n@(s—v)+2nP)(s)=0, (A5) W o= S0 e dbitizi)
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plings with the help of Eq(B6) and then use EqB7) as a
O(6iy{i}ixi,) consistency check. We find that for the original fields the
LHS of Eq.(B7) is approximately 10% larger than the RHS.
9 However, after applying the block-spin transformation the
x @~ SOipi0itizig) + 6—[0(9i0:{9i}i¢i0) discrepancy becomes much smalliébecomes of the order
90i, of the statistical errojs and the solution of EqgB6), (B7)
becomes self-consistent.

:H ’ db’ifw d0i0

i#ig J -

XeS(giov{gi}i:tio)]—k(?(ez)}. (B2

The requirement that this shift not change the partition func- APPENDIX C: HYPERCUBIC BLOCKING

tion gives the Schwinger-Dyson equation The hypercubic blockinghyp) procedure is a version of
the smearing method which allows us to reduce the noises of
H JW daiJ’W de, 1[0(0- 16,41 Yo~ Siglolizi)] the lattice gauge field23]. As a result the statistical errors
%y J SETTN lor L 717 o of ensemble averages of various operators are reduced. hyp
is replacing gauge link fields) ,(s), by “fat links” V ,(s),

:J' Deﬁ[O(G)e*S(”)]zo, (g3  according to the following scheme:
‘0 . aq ~
which can also be rewritten in the form Vuls)= Ky (1=ay)U,(s)+ 6,2, Viiu(S)
d0(0) as(0)\ _ SR R
70, —{ O(0) 70, =0. (B4) XV, (st )V (s+u)|,
To determine the parameters of the trial acti@f)—(24) 1
we solve Eq.B4) with the following set of operators: v“;"(s):k— (1—az)U ,(s)
2
0,——2 (1=1,2,3,4, O 95 (B5)
= =41,£,99, = " az \/ \/ ~
| &HM(S) ’ &(’D“(S) + 4 p#g;f . VP:,uv(S)V/L;vp(S"'P)

The expectation values of these operators give a set of five
Schwinger-Dyson equations:

9%S, _i < 9SS, >
90,,(s)? IE=T 30,(s) 90,(s)

S, S,

+31<— > (1=1,2,3.4,
90,,(8) 96,,(3) X X Ul 9)U,(sto)Ul(s+a),
(B6) oFEtu,*v,tp

— “
XVP;MV(S—I— M)

— 1 a3
V;L;Vp(s):k_s (1_ a3)U,U,(S)+ 7

(CD

S, 39S, \?
39¢,(5)2 =P (&QD#(S)) ' B7) wherek;, i=1,2,3, are chosen in such a way that the matri-
ces(C1) belong to theSU(2) group. We choose the param-
Since we have five equatiolB6), (B7) to determine four eters of the hypa;, a,, a3;e[0,1], following Ref. [23]:
independent couplings;, i=1,2,3, andg;, the system of «;=0.75, @,=0.60, anda3=0.30. At these values the
equations(B6), (B7) is overdefined. Thus we find the cou- smoothing of the gauge field configurations is most efficient.
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